

Introduction

1

10

11

12

13

14

15

16

17

18

19

20

21

Children of TgX
Advertising TEX

Why use TgX?

What's to stay, what's to go
Stability

MetaTgX, a roadmap
What'’s in a name

About what ConTgXt isn’t
False promises

About manuals
Performance again

All those TgX's

Hidden treasures

Don’t use TgX!

Speeding up TgX

Unicode

ConTgXt in TEXLive 2023
How not to install ConTgXt
Side effects

Strange assumptions

It’s about time

Content

32
36
44
52
60
68
74
84
92
96
104
110
114
120
132
160
166
168
176

180

22

23

24

25

26

27

28

Missing kerns

We deserved it

Testing RiscV

(Ab)use of font features

The shift (or: just moving on)
Illiterate programming

Fake quality

192

200

206

210

220

224

230

Introduction

This is a collection of articles and wrap-ups that don’t suit in other manuals or collec-
tions. Some are published, some meant as draft for a presentation.

The “Children of TgX” article is the framework for a presentation at BachoIgX 2017 in
Poland, and covers the main theme of the conference. In the aftermath of that confer-
ence I wrote “Advertising TEX” and later “Why use TgX?”. The 2018 BachoIEX confer-
ence theme is explored in “What's to stay, what’s to go”. After a short discussion on
the ConTgXt mailing list about stability (at the moment that MKkII had been frozen for
more than a decade but is still used without problems) I wrote “Stability”.

Many of the thoughts in these articles are influenced by discussions with my colleagues
Ton Otten and Kees van Marle, users and developers. Operating in a similar arena, they
provide me the reflection needed to sort out my thoughts on these matters.

The order in this document is not chronological. In the meantime we also put some
development related stories in this collection, just because they have to fit in somewhere.

Not all musings are checked and copy-edited so let me know if there are errors and
typos in them.

Hans Hagen
Hasselt NL
2017-2023+

Introduction 4

5 Introduction

Children of TEX 1

1.1 The theme

Nearly always TEX conferences carry a theme. As there have been many conferences
the organizers have run out of themes involving fonts, macros and typesetting and are
now cooking up more fuzzy ones. Take the Bachotug 2017 theme:

Premises The starting point, what we have, what do
we use, what has been achieved?

Predilections How do we act now, how do we want to
act, what is important to us and what do we miss?

Predictions What is the future of TgX, what we’d like
to achieve and can we influence it?

My first impression with these three P words was: what do they mean? Followed by
the thought: this is no longer a place to take kids to. But the Internet gives access
to the Cambridge Dictionary, so instead of running to the dusty meter of dictionaries
somewhere else in my place, I made sure that I googled the most recent definitions:

premise an idea or theory on which a statement or action is based
predilection if someone has a predilection for something, they like it a lot
prediction a statement about what you think will happen in the future

I won't try to relate these two sets of definitions but several words stand out in the
second set: idea, theory, action, like, statement and future. Now, as a preparation for the
usual sobering thoughts that Jerzy, Volker and I have when we staring into a BachoIgX
campfire I decided to wrap up some ideas around these themes and words. The books
that I will mention are just a selection of what you can find distributed around my place.
This is not some systematic research but just the result of a few weeks making a couple
of notes while pondering about this conference.

1.2 Introduction

One cannot write the amount of TEX macros that I've written without also liking books.
If you look at my bookshelves the topics are somewhat spread over the possible spec-
trum of topics: history, biology, astronomy, paleontology, general science but surpris-
ingly little math. There are a bunch of typography-related books but only some have
been read: it’s the visuals that matter most and as there are no real developments I
haven’t bought new ones in over a decade, although I do buy books that look nice for
our office display but the content should be interesting too. Of course I do have a cou-
ple of books about computer (related) science and technology but only a few are worth
a second look. Sometimes I bought computer books expecting to use them (in some

Children of TRX 6

eoe
NICK BOSTROM

SUPERINTELLIGENCE

Paths, Dangers, Strategies

Yuval Noah
Harari

Sapiens
A Brief

HlStOI’y of A Brief History
Humankind of Tomorrow

PO REN

TIME

ADRIAN TCHAIKOVSKY

history futurology science fiction informatics

Figure 1.1

project) but I must admit that most have not been read and many will soon end up in
the paper bin (some already went that way). I'll make an exception for Knuth, Wirth
and a few other fundamental ones that I (want to) read. And, I need to catch up on
deep learning, so that might need a book.

My colleagues and I have many discussions, especially about what we read, and after
a few decades one starts seeing patterns. Therefore the last few years it was a pleasant
surprise for me to run into books and lectures that nicely summarize what one has
noticed and discussed in a consistent way. My memory is not that good, but good
enough to let some bells ring.

The first book that gave me this “finally a perfect summary of historic developments”
teeling is “Sapiens” by Yuval Noah Harari. The author summarizes human history from
a broad perspective where modern views on psychology, anthropology and technical
developments are integrated. It’s a follow up on a history writing trend started by Jared
Diamond. The follow up “Homo Deus” looks ahead and is just as well written. It also
integrates ideas from other fields, for instance those related to development of artificial
intelligence (Dennett, Bostrom, etc.).

Another inspiration for this talk and article is the 50 hour lecture series on behavioral bi-
ology by Robert Sapolsky of Stanford University, brought to my attention by my nephew
Bram who visited a few TgX conferences with me and who is now also forced to use TgX
for assignments and reports. (How come self-published books used at universities of-
ten look so bad?)

The title of this talk is inspired by the book “Children of Time” by Adrian Tchaikovsky
that I read recently. There are science fiction writers who focus on long term science
and technology, such as some of Alastair Reynolds, while others follow up on recent
development in all kind of sciences. One can recognize aspects of “Superintelligence”
by Bostrom in Neal Asher’s books, insights in psychology in the older Greg Bear books,
while in the mentioned “Children of Time” (socio)biological insights dominate. The
main thread in that book is the development of intelligence, social behaviour, language,
script and cooperation in a species quite different from us: spiders. It definitely avoids
the anthropocentric focus that we normally have.

7 Children of TgX

So how does this relate to the themes of the BachoIEX conference? I will pick out some
ways to approach them using ideas from the kind of resources mentioned above. I
could probably go on and on for pages because once you start relating what you read
and hear to this TEX ecosystem and community, there is no end. So, consider this a
snapshot, that somehow relates to the themes:

premise Let’s look at what the live sciences have to
say about TgX and friends and let’s hope that I don’t
offend the reader and the field.

predilection Let’s figure out what brings us here to this
place deeply hidden in the woods, a secret gathering
of the TgX sect.

prediction Let’s see if the brains present here can pre-
dict the future because after all, according to Den-
nett, that is what brains are for.

At school I was already intrigued by patterns in history: a cyclic, spiral and sinusoid
social evolution instead of a pure linear sequence of events. It became my first typeset-
by-typewriter document: Is history an exact science? Next I will use and abuse patterns
and ideas to describe the TgX world, not wearing a layman’s mathematical glasses, but
more from the perspective of live sciences, where chaos dominates.

1.3 The larger picture

History of mankind can be roughly summarized as follows. For a really long time we
were hunters but at some point (10K years ago) became farmers. As a result we could
live in larger groups and still feed them. The growing complexity of society triggered
rules and religion as instruments for stability and organization (I use the term religion
in its broadest sense here). For quite a while cultures came and went, and climate
changes are among the reasons.

After the industrial revolution new religions were invented (social, economic and na-
tional liberalism) and we’re now getting dataism (search for Harari on youtube for a
better summary). Some pretty great minds seem to agree that we're heading to a time
when humans as we are will be outdated. Massive automation, interaction between the
self and computer driven ecosystems, lack of jobs and purpose, messing around with
our genome. Some countries and cultures still have to catch up on the industrial revo-
lution, if they manage at all, and maybe we ourselves will be just as behind reality soon.
Just ask yourself: did you manage to catch up? Is TgX a stone age tool or a revolutionary
turning point?

A few decades ago a trip to BachoIgX took more than a day. Now you drive there in
just over half a day. There was a time that it took weeks: preparation, changing horses,
avoiding bad roads. Not only your own man-hours were involved. It became easier later
(my first trip took only 24 hours) and recently it turned into a piece of cake: you don’t
pick up maps but start your device; you don’t need a travel agent but use the Internet;

Children of TRX 8

there are no border patrols, you can just drive on. (Okay, maybe some day soon border
patrols at the Polish border show up again, just like road tax police in Germany, but
that might be a temporary glitch.)

Life gets easier and jobs get lost. Taxi and truck drivers, travel agents, and cashiers
become as obsolete as agricultural workers before. Next in line are doctors, lawyers,
typesetters, printers, and all those who think they’re safe. Well, how many people were
needed 400 years ago to produce the proceedings of a conference like this in a few days’
time span? Why read the introduction of a book or a review when you can just listen
to the author’s summary on the web? How many conferences still make proceedings
(or go for videos instead), will we actually need editors and typesetters in the future?
How much easier has it become to design a font, including variants? What stories can
designers tell in the future when programs do the lot? The narrower your speciality is,
the worse are your changes; hopefully the people present at this conference operate on
a broader spectrum. It’s a snapshot. I will show some book covers as reference but am
aware that years ago or ahead the selection could have been different.

1.4 Words

Words (whatever they represent) found a perfect spot to survive: our minds. Then
they made it from speech (and imagination) into writing: carved in stone, wood, lead.
At some point they managed to travel over wires but no matter what happened, they
are still around. Typesetting as visualization is also still surrounding us so that might
give us a starting point for ensuring a future for TgX to work on, because TgX is all about
words. There is a lot we don’t see; imagine if our eyes had microscopic qualities. What if
we could hear beyond 20KHz. Imagine we could see infrared. How is that with words.
What tools, similar in impact as TgX, can evolve once we figure that out. What if we get
access to the areas of our brain that hold information? We went from print to screen
and TEX could cope with that. Can it cope with what comes next?

The first printing press replaced literal copying by hand. Later we got these linotype-
like machines but apart from a few left, these are already thrown out of windows (as we
saw in a movie a few BacholIgX’s ago). Photo-typesetting has been replaced too and be-
cause a traditional centuries old printing press is a nice to see item, these probably ring
more bells than that gray metal closed box typesetters. Organizers of TgX conferences
love to bring the audience to old printing workshops and museums. At some point
computers got used for typesetting and in that arena TgX found its place. These gray
closed boxes are way less interesting than something mechanical that at least invites us
to touch it. How excited can one be about a stack of TgX Live dvds?

1.5 Remembering

Two times I visited the part of the science museum in London with young family mem-
bers: distracted by constantly swiping their small powerful devices, they didn’t have the
least interest in the exhibited computer related items, let alone the fact that the couch

9 Children of TgX

they were sitting on was a Cray mainframe. Later on, climbing on some old monument
or an old cannon seemed more fun. So, in a few decades folks will still look at wooden
printing presses but quickly walk through the part of an exhibition where the tools that
we use are shown. We need to find ways to look interesting. But don’t think we're
unique: how many kids find graphical trend-setting games like Myst and Riven still
interesting? On the other hand a couple of month ago a bunch of nieces and nephews
had a lot of fun with an old Atari console running low-res bitmap games. Maybe there
is hope for good old TgX.

If indeed we're heading to a radically different society one can argue if this whole dis-
cussion makes sense. When the steam engine showed up, the metaphor for what went
on in our heads was that technology, It’s a popular example of speakers on this topic:
“venting off steam”. When electricity and radio came around metaphors like “being
on the same wavelength” showed up. A few decades ago the computer replaced that
model although in the meantime the model is more neurobiological: we’re a hormone
and neurotransmitter driven computer. We don’t have memory the way computers do.

How relevant will page breaks, paragraph and line breaks be in the future? Just like
“venting off steam” may make no sense to the youth, asking a typesetter to “give me a
break” might not make much sense soon. However, when discussing automated type-
setting the question “are we on the same page” still has relevance.

Typesetting with a computer might seem like the ultimate solution but it’s actually
rather dumb when we consider truly intelligent systems. On the large scale of history
and developments what we do might get quite unnoticed. Say that mankind survives
the next few hundred years one way or the other. Science fiction novels by Jack McDe-
vitt have an interesting perspective of rather normal humans millennia ahead of us who
look back on these times in the same way as we look back now. Nothing fundamental
changed in the way we run society. Nearly nothing from the past is left over and apart
from being ruled by ais people still do sort of what they do now. TgX? What is that?
Well, there once was this great computer scientist Knuth (in the remembered row of
names like Aristotle —I just started reading “The Lagoon” by Armand Leroi— New-
ton, Einstein, his will show up) who had a group of followers that used a program that
he seems to have written. And even that is unlikely to be remembered, unless maybe
user groups manage to organize an archive and pass that on. Maybe the fact that TeX
was one of the first large scale open source programs, of which someone can study the
history, makes it a survivor. The first program that was properly documented in detail!
But then we need to make sure that it gets known and persists.

1.6 Automation

In a recent interview Daniel Dennett explains that his view of the mind as a big neural
network, one that can be simulated in software on silicon, is a bit too simplistic. He
wonders if we shouldn’t more tend to think of a network of (selfish) neurons that group
together in tasks and then compete with each other, if only because they want to have
something to do.

Children of TgX 10

RICHARD fRin

THE XUAN
AW_@DS B

HUMAN NATURE

AR

Nusr()r\

A Pilgrimage to the Dawn of Evolution

paleontology evolutionary anthropology physics
biology

Figure 1.2

Maybe attempts to catch the creative mindset and working of a typesetter in algorithms
is futile. What actually is great typography or good typesetting? Recently I took a look
at my bookshelf wondering what to get rid of — better do that now than when I'm too
old to carry the crap down (crap being defined as uninteresting content or bad looking).
I was surprised about the on-the-average bad quality of the typesetting and print. It’s
also not really getting better. One just gets accustomed to what is the norm at a certain
point. Whenever they change the layout and look and feel of the newspaper I read the
arguments are readability and ease of access. Well, Inever had such a hard time reading
my paper as today (with my old eyes).

Are we, like Dennett, willing to discard old views on our tools and models? When my
tirst computer was a RCA 1802 based kit, that had 256 bytes of memory. My current
laptop (from 2013) is a Dell Precision workstation with an extreme quad core processor
and 16 GB of memory and ssd storage. Before I arrived there I worked with dec-10, vax
and the whole range of Intel cpus. So if you really want to compare a brain with a
computer, take your choice.

I started with TEX on a 4 MHz desk top with 640 MB memory and a 10 MB hard disk.
Running ConTgXt MKIV with LuaTgX on such a machine is no option at all, but I still
carry the burden of trying to write efficient code (which is still somewhat reflected in
the code that makes up ConTgXt). In the decades that we have been using TgX we had to
adapt! Demands changed, possibilities changed, technologies changed. And they keep
changing. How many successive changes can a TgX user handle? Sometimes, when I
look and listen I wonder.

If you look back, that is, if you read about the tens of thousands of years that it took
humans to evolve (“The mind in the cave” by Lewis-Williams is a good exercise) you
realize even more in what a fast-paced time we live and that we're witnessing transitions
of another magnitude.

In the evolution of species some tools were invented multiple times, like eyes. You
see the same in our TgX world: multiple (sub)macro packages, different font tech-
nologies, the same solutions but with an alternative approach. Some disappear, some

11 Children of TgX

stay around. Just like different circumstances demand different solutions in nature, so
do different situations in typesetting, for instance different table rendering solutions.
Sometime I get the feeling that we focus too much on getting rid of all but one solution
while more natural would be to accept diversity, like bio-diversity is accepted. Tran-
sitions nowadays happen faster but the question is if, like aeons before, we (have to)
let them fade away. When evolution is discussed the terms ‘random’, ‘selection’, ‘fit’,
and so on are used. This probably also applies to typography: at some point a font
can be used a lot, but in the end the best readable and most attractive one will survive.
Newspapers are printed in many copies, but rare beautiful books hold value. Of course,
just like in nature some developments force the further path of development, we don’t
suddenly grow more legs or digits on our hands. The same happens with TgX on a
smaller timescale: successors still have the same core technology, also because if we’d
drop it, it would be something different and then give a reason to reconsider using such
technology (which likely would result in going by another path).

1.7 Quality

Richard Dawkins “The Ancestor’s Tale” is a non-stop read. In a discussion with Jared
Diamond about religion and evolution they ponder this thread: you holding the hand
of your mother who is handing her mother’s hand and so on till at some point fish get
into the picture. The question then is, when do we start calling something human? And
a related question is, when does what we call morality creeps in? Is 50% neanderthaler
human or not?

So, in the history of putting thoughts on paper: where does TgX fit in? When do we start
calling something automated typesetting? When do we decide that we have quality?
Is TeX so much different from its predecessors? And when we see aspects of TeX (or
related font technology) in more modern programs, do we see points where we cross
qualitative or other boundaries? Is a program doing a better job than a human? Where
do we stand? There are fields where there is no doubt that machines outperform hu-
mans. It’s probably a bit more difficult in aesthetic fields except perhaps when we lower
the conditions and expectations (something that happens a lot).

For sure TgX will become obsolete, maybe even faster that we think, but so will other
typesetting technologies. Just look back and have no illusions. Till then we can have
our fun and eventually, when we have more free time than we need, we might use
it out of hobbyism. Maybe TgX will be remembered by probably its most important
side effect: the first large scale open source, the time when users met over programs,
Knuth'’s disciples gathered in user groups, etc. The tools that we use are just a step
in an evolution. And, as with evolution, most branches are pruned. So, when in the
far future one looks back, will they even notice TgX? The ancestor’s tail turns the tree
upside down: at the end of the successful branch one doesn’t see the dead ends.

Just a thought: cds and media servers are recently being replaced (or at least accom-
panied) by Long Play records. In the shop where I buy my cds the space allocated to

Children of TgX 12

records grows at the cost of more modern media. So, maybe at some point retro-type-
setting will pop up. Of course it might skip TgX and end up at woodcutting or printing
with lead.

1.8 What mission

We rely on search engines instead of asking around or browsing libraries. Do students
really still read books and manuals or do they just search and listen to lectures. Harari
claims that instead of teaching kids facts in school we should just take for granted that
they can get all the data they want and that we should learn them how to deal with
data and adapt to what is coming. We take for granted that small devices with human
voices show us the route to drive to BacholIgX, for instance, although by now I can drive
it without help. In fact, kids can surprise you by asking if we're driving in Germany
when we are already in Poland.

We accept that computer programs help physicians in analyzing pictures. Some wear
watches that warn them about health issues, and I know a few people who monitor their
sugar levels electronically instead of relying on their own measurements. We seem to
believe and trust the programs. And indeed, we also believe that TeX does the job in
the best way possible. How many people really understand the way TgX works?

We still have mailing lists where we help each other. There are also wikis and forums
like stack exchange. But who says that even a moderate bit of artificial intelligence
doesn’t answer questions better. Of course there needs to be input (manuals, previous
answers, etc.) but just like we need fewer people as workforce soon, the number of ex-
perts needed also can be smaller. And we're still talking about a traditional system like
TEX. Maybe the social experience that we have on these media will survive somehow,
although: how many people are members of societies, participate in demonstrations,
meet weekly in places where ideas get exchanged, compared to a few decades ago?
That being said, I love to watch posts with beautiful ConTEXt solutions or listen to talks
by enthusiastic users who do things I hadn’t expected. I really hope that this property
survives, just like I hope that we will be able to see the difference between a real user’s
response and one from an intelligent machine (an unrealistic hope I fear). Satisfaction
wins and just like our neurological subsystems at some point permanently adapt to
thresholds (given that you trigger things often enough), we get accustomed to what
TEX provides and so we stick to it.

1.9 Intelligence versus consciousness

Much of what we do is automated. You don’t need to think of which leg to move and
what foot to put down when you walk. Reacting to danger also to a large extent is
automated. It doesn’t help much to start thinking about how dangerous a lion can be
when it’s coming after you, you'd better move fast. Our limbic system is responsible for
such automated behaviour, for instance driven by emotions. The more difficult tasks
and thoughts about them happen in the frontal cortex (sort of).

13 Children of TgX

& - AND WHAT THAT MEANS FOR
S S LIFE IN THE UNIVERSE,
4% %

astronomy informatics future science earth science

Figure 1.3

For most users TgX is like the limbic system: there is not much thinking involved, and
the easy solutions are the ones used. Just like hitting a nerve triggers a chain of reac-
tions, hitting a key eventually produces a typeset document. Often this is best because
the job needs to get done and no one really cares how it looks; just copy a preamble, key
in the text and assume that it works out well (enough). It is tempting to compare TeX’s
penalties, badness and other parameters with levels of hormones and neurotransmit-
ters. Their function depends on where they get used and the impact can be accumu-
lated, blocked or absent. It’s all magic, especially when things interact.

Existing TEX users, developers and user groups of course prefer to think otherwise, that
it is a positive choice by free will. That new users have looked around and arrived at
TeX for good reason: their frontal cortex steering a deliberate choice. Well, it might have
played a role but the decision to use TgX might in the end be due to survival skills: I
want to pass this exam and therefore I will use that weird system called TgX.

All animals, us included, have some level of intelligence but also have this hard to de-
scribe property that we think makes us what we are. Intelligence and consciousness
are not the same (at least we know a bit about the first but nearly nothing about the
second). We can argue about how well composed some music is but why we like it is a
different matter.

We can make a well thought out choice for using TgX for certain tasks but can we say
why we started liking it (or not)? Why it gives us pleasure or maybe grief? Has it
become a drug that we got addicted to? So, one can make an intelligent decision about
using TEX but getting a grip on why we like it can be hard. Do we enjoy the first time
struggle? Probably not. Do we like the folks involved? Yes, Don Knuth is a special and
very nice person. Can we find help and run into a friendly community? Yes, and a
unique one too, annoying at times, often stimulating and on the average friendly for all
the odd cases running around.

Artificial intelligence is pretty ambitious, so speaking of machine intelligence is prob-
ably better. Is TgX an intelligent program? There is definitely some intelligence built
in and the designer of that program is for sure very intelligent. The designer is also a
conscious entity: he likes what he did and finds pleasure in using it. The program on

Children of TgRX 14

the other hand is just doing its job: it doesn’t care how it’s done and how long it takes:
a mindless entity. So here is a question: do we really want a more intelligent program
doing the job for us, or do those who attend conferences like BachoIgX enjoy TgXing so
much that they happily stay with what they have now? Compared to rockets tumbling
down and/or exploding or Mars landers thrashing themselves due to programming
errors of interactions, TgX is surprisingly stable and bug free.

1.10 Individual versus group evolution

After listening for hours to Sapolsky you start getting accustomed to remarks about (un-
conscious) behaviour driven by genes, expression and environment, aimed at “spread-
ing many copies of your genes”. In most cases that is an individual’s driving force.
However, cooperation between individuals plays a role in this. A possible view is that
we have now reached a state where survival is more dependent on a group than on an
individual. This makes sense when we consider that developments (around us) can go
way faster than regular evolution (adaptation) can handle. We take control over evo-
lution, a mechanism that needs time to adapt and time is something we don’t give it
anymore.

Why does TgX stay around? It started with an individual but eventually it’s the groups
that keeps it going. A too-small group won’t work but too-large groups won't work ei-
ther. It’s a known fact that one can only handle some 150 social contacts: we evolved in
small bands that split when they became too large. Larger groups demanded abstract
beliefs and systems to deal with the numbers: housing, food production, protection.
The TEX user groups also provide some organization: they organize meetings, some-
how keep development going and provide infrastructure and distributions. They are
organized around languages. According to Diamond new languages are still discov-
ered but many go extinct too. So the potential for language related user groups is not
really growing.

Some of the problems that we face in this world have become too large to be dealt with
by individuals and nations. In spite of what anti-globalists want we cannot deal with
our energy hunger, environmental issues, lack of natural resources, upcoming tech-
nologies without global cooperation. We currently see a regression in cooperation by
nationalistic movements, protectionism and the usual going back to presumed better
times, but that won’t work.

Local user groups are important but the number of members is not growing. There is
some cooperation between groups but eventually we might need to combine the groups
into one which might succeed unless one wants to come first. Of course we will get the
same sentiments and arguments as in regular politics but on the other hand, we already
have the advantage of TEX systems being multi-lingual and users sharing interest in the
diversity of usage and users. The biggest challenge is to pass on what we have achieved.
We're justa momentary highlight and let’s not try to embrace some “TgX first” madness.

15 Children of TgX

DONALD E.KNUTH THE
WINDS

O

CHANGE

EUGENE LINDEN THETHIHD
BIBLE TEXTS - 0 CHIMPANZEE
[LLUMINATED) DOTHEEE
art history astronomy history
Figure 1.4
1.11 Sexes

Most species have two sexes but it is actually a continuum controlled by hormones and
genetic expression: we just have to accept it. Although the situation has improved there
are plenty of places where some gender relationships are considered bad even to the
extent that one’s life can be in danger. Actually having strong ideas about these issues
is typically human. But in the end one has to accept the continuum.

In a similar way we just have to accept that TgX usage, application of TEX engines, etc.
is a continuum and not a batch versus wysiwyg battle any more. It's disturbing to
read strong recommendations not to use this or that. Of the many macro packages that
showed up only a few were able to survive. How do users of outlines look at bitmaps,
how do dvi lovers look at pdf. But, as typesetting relates to esthetics, strong opinions
come with the game.

Sapolsky reports about a group of baboons where due to the fact that they get the first
choice of food the alpha males of pack got poisoned, so that the remaining suppressed
males who treated the females well became dominant. In fact they can then make sure
that no new alpha male from outside joins the pack without behaving like they do. A
sort of social selection. In a similar fashion, until now the gatherings of TpXies managed
to keep its social properties and has not been dominated by for instance commerce.

In the animal world often sexes relate to appearance. The word sexy made it to other
domains as well. Is TEX sexy? For some it is. We often don't see the real colors of birds.
What looks gray to us looks vivid to a bird which sees in a different spectrum. The same
is true for TgX. Some users see a command line (shell) and think: this is great! Others
just see characters and keystrokes and are more attracted to an interactive program.
When I see a graphic made by MetaPost, I always note how exact it is. Others don't care
if their interactive effort doesn’t connect the dots well. Some people (also present here)
think that we should make TEX attractive but keep in mind that like and dislike are not
fixed human properties. Some mindsets might as well be the result from our makeup,
others can be driven by culture.

Children of TgRX 16

1.12 Religion

One of Sapolsky’s lectures is about religion and it comes in the sequence of mental
variations including depression and schizophrenia, because all these relate to mental
states, emotions, thresholds and such (all things human). That makes it a tricky topic
which is why it has not been taped. AsI was raised in a moderate Protestant tradition I
can imagine that it’s an uncomfortable topic instead. But there are actually a few years
older videos around and they are interesting to watch and not as threatening as some
might expect. Here I just stick to some common characteristics.

If you separate the functions that religions play into for instance explanation of the yet
unknown, social interactions, control of power and regulation of morals, then it’s clear
why at TEX user group meetings the religious aspect of TEX has been discussed in talks.
Those who see programs as infallible and always right and don’t understand the inner
working can see it as an almighty entity. In the Netherlands church-going diminishes
but it looks like alternative meetings are replacing it (and I'm not talking of football
matches). So what are our TpX meetings? What do we believe in? The reason that
I bring up this aspect is that in the TgX community we can find aspects of the more
extremist aspects of religions: if you don’t use the macro package that I use, you're
wrong. If you don’t use the same operating system as I do, you're evil. You will be
punished if you use the wrong editor for TeX? Why don’t you use this library (which,
by the way, just replaced that other one)? We create angels and daemons. Even for quite
convinced atheists (it’s not hard to run into them on youtube) a religion only survives
when it has benefits, something that puzzles them. So when we’re religious about TgX
and friends we have to make sure that it’s at least beneficial. Also, maybe we fall in
Dennett’s category of “believers who want to believe”: it helps us to do our job if we
just believe that we have the perfect tool. Religion has inspired visual and aural art and
keeps doing that. (Don Knuth’s current musical composition project is a good example
of this.)

Scientists can be religious, in flexible ways too, which is demonstrated by Don Knuth.
In fact, I'm pretty sure TeX would not be in the position it is in now if it weren't for his
knowledgeable, inspirational, humorous, humble, and always positive presence. And
for sure he’s not at all religious about the open source software that he sent viral.

I'm halfway through reading “The Good Book of Human Nature” (An Evolutionary
Reading of the Bible) a book about the evolution of the bible and monotheism which is
quite interesting. It discusses for instance how transitions from a hunter to a farmer so-
ciety demanded a change of rules and introduced stories that made sense in that chang-
ing paradigm. Staying in one place means that possessions became more important and
therefore inheritance. Often when religion is discussed by behavioral biologists, histo-
rians and anthropologists they stress this cultural narrative aspect. Also mentioned is
that such societies were willing to support (in food and shelter) the ones that didn’t nor-
mally fit it but added to the spiritual character of religions. The social and welcoming
aspect is definitely present in for instance BachoIgX conferences although a bystander

17 Children of TgX

WHY ZEBRAS DON'T
GET LEERS

(P 4) SVEs MGANEW &=
Z> & ol %\h\hv . v 2, a¢ -
BACTERIA TO BACH : LAGOON 3 GLElCK
AND BACK h ARMAND MARIE)

LEROI

FROM

The Evolution of Minds

DANIEL C. DENNETT

philosophy science history science behavioral
biology

Figure 1.5

can wonder what these folks are doing in the middle of the night around a campfire,
singing, drinking, frying sausages, spitting fire, and discussing the meaning of life.

Those who wrap up the state of religious affairs, do predictions and advocate the mes-
sage, are sometimes called evangelists. I remember a TEX conference in the usa where
the gospel of xml was preached (by someone from outside the TEX community). We
were all invited to believe it. I was sitting in the back of the crowded (!) room and that
speaker was not at all interested in who spoke before and after. Well, I do my share
of xml processing with ConTgXt, but believe me: much of the xml that we see is not
according to any gospel. It’s probably blessed the same way as those state officials get
blessed when they ask and pray for it in public.

It can get worse at TEX conferences. Some present here at BachoIgX might remember
the pdf evangelists that we had show up at TgX conferences. You see this qualification
occasionally and I have become quite allergic to qualifications like architect, innovator,
visionary, inspirator and evangelist, even worse when they look young but qualify as
senior. I have no problem with religion at all but let’s stay away from becoming one.
And yes, typography also falls into that trap, so we have to be doubly careful.

1.13 Chaotic solutions

The lectures on “chaos and reductionism” and “emergence and complexity” were the
highlights in Sapolsky’s lectures. I'm not a good narrator so I will not summarize them
but it sort of boils down to the fact that certain classes of problems cannot be split up in
smaller tasks that we understand well, after which we can reassemble the solutions to
deal with the complex task. Emerging systems can however cook up working solutions
from random events. Examples are colonies of ants and bees.

The TeX community is like a colony: we cook up solutions, often by trial and error.
We dream of the perfect solutions but deep down know that esthetics cannot be pro-
grammed in detail. This is a good thing because it doesn’t render us obsolete. At last
year’s BachoIEX, my nephew Teun and I challenged the anthill outside the canteen to

Children of TgX 18

typeset the TgX logo with sticks but it didn’t persist. So we don’t need to worry about
competition from that end. How do you program a hive mind anyway?

When chaos theory evolved in the second half of the previous century not every scientist
felt happy about it. Instead of converging to more perfect predictions and control in
some fields a persistent uncertainty became reality.

After about a decade of using TEX and writing macros to solve recurring situations I
came to the conclusion that striving for a perfect TeX (the engine) that can do every-
thing and anything makes no sense. Don Knuth not only stopped adding code when he
could do what he needed for his books, he also stuck to what to me seems reasonable
endpoints. Every hard-coded solution beyond that is just that: a hard-coded solution
that is not able to deal with the exceptions that make up most of the more complex doc-
uments. Of course we can theorize and discuss at length the perfect never-reachable
solutions but sometimes it makes more sense to admit that an able user of a desktop
publishing system can do that job in minutes, just by looking at the result and moving
around an image or piece of text a bit.

There are some hard-coded solutions and presets in the programs but with LuaTgX and
mplib we try to open those up. And that’s about it. Thinking that for instance adding
features like protrusion or expansion (or whatever else) always lead to better results is
just a dream. Just as a butterfly flapping its wings on one side of the world can have an
effect on the other side, so can adding a single syllable to your source completely con-
fuse an otherwise clever column or page break algorithm. So, we settle for not adding
more to the engine, and provide just a flexible framework.

A curious observation is that when Edward Lorenz ran into chaotic models it was par-
tially due to a restart of a simulation midway, using printed floating point numbers that
then in the computer were represented with a different accuracy than printed. Aware of
floating point numbers being represented differently across architectures, Don Knuth
made sure that TEX was insensitive to this so that its outcome was predictable, if you
knew how it worked internally. Maybe LuaTgX introduces a bit of chaos because the
Lua we use has only floats. In fact, a few months ago we did uncover a bug in the
backend where the same phenomena gave a chaotic crash.

In chaos theory there is the concept of an attractor. When visualized this can be the
area (seemingly random) covered by a trajectory. Or it can be a single point where for
instance a pendulum comes to rest. So what is our attractor? We have a few actually.
First there is the engine, the stable core of primitives always present. You often see
programs grow more complex every update and for sure that happened with e-TgX,
pdfTEX, XqIEX and LuaTgX. However there is always the core that is supposed to be
stable. After some time the new kid arrives at a stable state not much different from
the parent. The same is true for MetaPost. Fonts are somewhat different because the
technology changes but in the end the shapes and their interactions become stable as
well. Yet another example is TEX Live: during a year it might diverge from its route but
eventually it settles down and enters the area where we expect it to end up. The TgX
world is at times chaotic, but stable in the long run.

19 Children of TgX

So, how about the existence, the reason for it still being around? One can speculate
about its future trajectory but one thing is sure: as long as we break a text into para-
graphs and pages TgX is hard to beat. But what if we don’t need that any more? What if
the concept of a page is no longer relevant? What if justified texts no longer matter (of-
ten designers don’t care anyway)? What if students are no longer challenged to come
up with a nice looking thesis? Do these collaborative tools with remote TEX processing
really bring new long term users or is TgX then just one of the come-and-go tools?

1.14 Looking ahead

In an interview (“World of ideas”) Asimov explains that science fiction evolved rapidly
when people lived long enough to see that there was a future (even for their offspring)
that is different from today. Itis (atleast for me) mind boggling to think of an evolution
of hundreds of thousands of years to achieve something like language. Waiting for the
physical being to arrive at a spot where you can make sounds, where the brain is suitable
for linguistic patterns, etc. A few hundred years ago speed of any developments (and
science) stepped up.

TeX is getting near 40 years old. Now, for software that is old! In that period we have
seen computers evolve: thousands of times faster processing, even more increase in
memory and storage. If we read about spaceships that travel at a reasonable fraction of
the speed of light, and think that will not happen soon, just think back to the terminals
that were sitting in computer labs when TgX was developed: 300 baud was normal. I
actually spent quite some time on optimizing time-critical components of ConTEXt but
on this timescale that is really a waste of time. But even temporary bottlenecks can be
annoying (and costly) enough to trigger such an effort. (Okay, I admit that it can be a
challenge, a kind of game, too.)

Neil Tyson, in the video “Storytelling of science” says that when science made it possible
to make photos it also made possible a transition in painting to impressionism. Other
technology could make the exact snapshot so there was new room for inner feelings
and impressions. When the Internet showed up we went through a similar transition,
but TeX actually dates from before the Internet. Did we also have a shift in typesetting?
To some extent yes, browsers and real time rendering is different from rendering pages
on paper. In what space and time are TgXies rooted?

We get older than previous generations. Quoting Sapolsky “. .. we are now living well
enough and long enough to slowly fall apart.” The opposite is happening with our tools,
especially software: it’s useful lifetime becomes shorter and changes faster each year.
Just look at the version numbers of operating systems. Don Knuth expected TgX to last
for a long time and compared to other software its core concept and implementation is
doing surprisingly well. We use a tool that suits our lifespan! Let’s not stress ourselves
out too much with complex themes. (It helps to read “Why zebras don’t get ulcers”.)

Children of TgX 20

NESSA CAREY

DARK
MATTER
AND
THE
DINOSAURS

THF ASTOUNDING
INTERCONNECTEDNESS
CF /THE UNIVERSE

LISA RANDALL

ALAN WEISMAN

genetics physics history science

Figure 1.6

1.15 Memes

If you repeat a message often enough, even if it’s something not true, it can become a
meme that gets itself transferred across generations. Conferences like this is where they
can evolve. We tell ourselves and the audience how good TgX is and because we spend
so many hours, days, weeks, months using it, it actually must be good, or otherwise
we would not come here and talk about it. We're not so stupid as to spend time on
something not good, are we? We're always surprised when we run into a (potential)
customer who seems to know TgX. It rings a bell, and it being around must mean some-
thing. Somehow the TEX meme has anchored itself when someone attended university.
Even if experiences might have been bad or usage was minimal. The meme that TgX is
the best in math typesetting is a strong survivor.

There’s a certain kind of person who tries to get away with their own deeds and deci-
sions by pointing to “fake news” and accusations of “mainstream media” cheating on
them. But to what extent are our stories true about how easy TgX macro packages are
to use and how good their result? We have to make sure we spread the right memes.
And the user groups are the guardians.

Maybe macro packages are like memes too. In the beginning there was a bunch but
only some survived. It's about adaptation and evolution. Maybe competition was too
tierce in the beginning. Like ecosystems, organisms and cellular processes in biology
we can see the TpX ecosystem, users and usage, as a chaotic system. Solutions pop up,
succeed, survive, lead to new ones. Some look similar and slightly different input can
give hugely different outcomes. You cannot really look too far ahead and you cannot
deduce the past from the present. Whenever something kicks it off its stable course, like
the arrival of color, graphics, font technologies, pdf, xml, ebooks, the TgX ecosystem has
to adapt and find its stable state again. The core technology has proven to be quite fit
for the kind of adaptation needed. But still, do it wrong and you get amplified out of
existence, don’t do anything and the external factors also make you extinct. There is no
denial that (in the computer domain) TgX is surprisingly stable and adaptive. It’s also
hard not to see how conservatism can lead to extinction.

21 Children of TgX

1.16 Inspiration

I just took some ideas from different fields. I could have mentioned quantum biology,
which tries to explain some unexplainable phenomena in living creatures. For instance
how do birds navigate without visible and measurable clues. How do people arrive at
TeX while we don’t really advertise? Or I could mention epigenetics and explorations
in junk dna. It’s not the bit of the genome that we thought that matters, but also the
expression of the genes driven by other factors. Offspring not only gets genetic material
passed but it can get presets. How can the TEX community pass on Knuth’s legacy? Do
we need to hide the message in subtle ways? Or how about the quest for dark matter?
Does it really exist or do we want (need) it to exist? Does TgX really have that many
users, or do we cheat by adding the users that are enforced during college but don’t like
it at all? There’s enough inspiration for topics at TgX conferences, we just have to look
around us.

1.17 Stability

I didn’t go into technical aspects of TEX yet. I must admit that after decades of writing
macros I've reached a point where I can safely say that there will never be perfect au-
tomated solutions for really complex documents. When books about neural networks
show up I wondered if it could be applied (butI couldn’t). WhenIran into genetic algo-
rithms I tried to understand its possible impact (but I never did). So I stuck to writing
solutions for problems using visualization: the trial and error way. Of course, speaking
of ConTgXt, I will adapt what is needed, and others can do that as well. Is there a new
font technology? Fine, let’s support it as it’s no big deal, just a boring programming
task. Does a user want a new mechanism? No problem, as solving a reduced subset
of problems can be fun. But to think of TX in a reductionist way, i.e. solving the small
puzzles, and to expect the whole to work in tandem to solve a complex task is not triv-
ial and maybe even impossible. It’s a good thing actually, as it keeps us on edge. Also,
ConTgXt was designed to help you with your own solutions: be creative.

I mentioned my nephew Bram. He has seen part of this crowd a few times, just like
his brother and sister do now. He’s into artificial intelligence now. In a few years I'll
ask him how he sees the current state of TgX affairs. I might learn a few tricks in the
process.

In “The world without us” Weisman explores how fast the world would be void of
traces of humankind. A mere 10.000 years can be more than enough. Looking back,
that’s about the time hunters became farmers. So here’s a challenge: say that we want
an ant culture that evolves to the level of having archaeologists to know that we were
here at BachoIX ... what would we leave behind?

Sapolsky ends his series by stressing that we should accept and embrace individual dif-
ferences. The person sitting next to you can have the same makeup but be just a bit more
sensitive to depression or be the few percent with genes controlling schizophrenic be-
haviour. He stresses that knowing how things work or where things go wrong doesn’t

Children of TgX 22

mean that we should fix everything. So look at this room full of TgXies: we don’t need
to be all the same, use all the same, we don’t need some dominance, we just need to
accept and especially we need to understand that we can never fully understand (and
solve) everything forever.

Predictions, one of the themes, can be hard. It’s not true that science has the answer to
everything. There will always be room for speculation and maybe we will always need
metaphysics too. I just started to read “What we cannot know” by Sautoy. For sure
those present here can not predict how TgX will go on and/or be remembered.

1.18 Children of TEX

I mentioned “Children of time”. The author lets you see their spidery world through
spider eyes and physiology. They have different possibilities (eyesight, smell) than
we do and also different mental capabilities. They evolve rapidly and have to cope
conceptually with signals from a human surveillance satellite up in the sky. Eventually
they need to deal with a bunch of (of course) quarrelling humans who want their place
on the planet. We humans have some pre-occupation with spiders and other creatures.
In a competitive world it is sometimes better to be suspicious (and avoid and flee) that
to take a risk of being eaten. A frequently used example is that a rustle in a bush can be
the wind or a lion, so best is to run.

We are not that well adapted to our current environment. We evolved at a very slow
pace so there was no need to look ahead more than a year. And so we still don’t look
too far ahead (and choose politicians accordingly). We can also not deal that well with
statistics (Dawkins’s “Climbing Mount Probability” is a good read) so we make false
assumptions, or just forget.

Does our typeset text really look that good on the long run, or do we cheat with statis-
tics? It’s not too hard to find a bad example of something not made by TgX and extrap-
olate that to the whole body of typeset documents. Just like we can take a nice example
of something done by TgX and assume that what we do ourselves is equally okay. I still
remember the tests we did with pdfTEX and hz. When Han The Thanh and I discussed
that with Hermann Zapf he was not surprised at all that no one saw a difference be-
tween the samples and instead was focusing on aspects that TgXies are told to look at,
like two hyphens in a row.

A tool like TgX has a learning curve. If you don’t like that just don’t use it. If you
think that someone doesn’t like that, don’t enforce this tool on that someone. And
don’t use (or lie with) statistics. Much better arguments are that it’s a long-lived stable
tool with a large user base and support. That it's not a waste of time. Watching a
designer like Hermann Zapf draw shapes is more fun than watching click and point in
heavily automated tools. It’s probably also less fun to watch a TgXie converge towards
a solution.

Spiders are resilient. Ants maybe even more. Ants will survive a nuclear blast (mu-
tations might even bring them benefits), they can handle the impact of a meteorite, a

23 Children of TgX

change in climate won’t harm them much. Their biggest enemy is probably us, when
we try to wipe them out with poison. But, as long as they keep a low profile they're
okay. TgX doesn't fit into the economic model as there is no turnaround involved, no
paid development, it is often not seen at all, it’s just a hit in a search engine and even
then you might miss it (if only because no one pays for it being shown at the top).

We can learn from that. Keeping a low profile doesn't trigger the competition to wipe
you out. Many (open source) software projects fade away: some big company buys out
the developer and stalls the project or wraps what they bought in their own stuff, other
projects go professional and enterprise and alienate the original users. Yet others abort
because the authors lose interest. Just like the ideals of socialism don’t automatically
mean that every attempt to implement it is a success, so not all open source and free
software is good (natured) by principle either. The fact that communism failed doesn’t
mean that capitalism is better and a long term winner. The same applies to programs,
whether successful or not.

Maybe we should be like the sheep. Dennett uses these animals as a clever species.
They found a way to survive by letting themselves (unconsciously) be domesticated.
The shepherd guarantees food, shelter and protection. He makes sure they don'’t get
ill. Speaking biologically: they definitely made sure that many copies of their genes
survived. Cows did the same and surprisingly many of them are related due to the fact
that they share the same father (something now trying to be reverted). All TgX spin-
offs relate to the same parent, and those that survived are those that were herded by
user groups. We see bits and pieces of TEX end up in other applications. Hyphenation
is one of them. Maybe we should settle for that small victory in a future hall of fame.

When I sit on my balcony and look at the fruit trees in my garden, some simple math
can be applied. Say that one of the apple trees has 100 apples per year and say that
this tree survives for 25 years (it’s one of those small manipulated trees). That makes
2.500 apples. Without human intervention only a few of these apples make it into new
trees, otherwise the whole world would be dominated by apple trees. Of course that
tree now only survives because we permit it to survive, and for that it has to be humble
(something that is very hard for modern Apples). Anyway, the apple tree doesn’t look
too unhappy.

A similar calculation can be done for birds that nest in the trees and under my roof.
Given that the number of birds stays the same, most of energy spent on raising offspring
is wasted. Nevertheless they seem to enjoy life. Maybe we should be content if we get
one enthusiastic new user when we demonstrate TgX to thousands of potential users.

Maybe, coming back to the themes of the conference, we should not come up with these
kinds of themes. We seem to be quite happy here. Talking about the things that we like,
meeting people. We just have to make sure that we survive. Why not stay low under
the radar? That way nothing will see us as a danger. Let’s be like the ants and spiders,
the invisible hive mind that carries our message, whatever that is.

When Dennett discusses language he mentions (coined) words that survive in lan-
guage. He also mentions that children pick up language no matter what. Their minds

Children of TRX 24

are alone in the universe uier-all” ~The New York Times

LIFE AS. * 1 RARE EAHTH

AUSTERITY

THE HISTORY OF A DANGEROUS IDEA

JOHNJOE McFADDEN AND |
~JIM AL-KHALILI

The NASA Search far
(and Synthesis of) Alien Life

PETER D. WARD
DONALD BROWNLEE

astrobiology quantumbiology astrophysics economics

Figure 1.7

are made for it. Other animals don’t do that: they listen but don’t start talking back.
Maybe TgX is just made for certain minds. Some like it and pick it up, while for others
it’s just noise. There’s nothing wrong with that. Predilection can be a user property.

1.19 The unexpected

In a discussion with Dawkins the well-spoken astrophysicist Neil deGrasse Tyson brings
up the following. We differ only a few percent in dna from a chimp but quite a lot in
brain power, so how would it be if an alien that differs a few percent (or more) passes
by earth. Just like we don't talk to ants or chimps or whatever expecting an intelligent
answer, whatever passes earth won't bother wasting time on us. Our rambling about
the quality of typesetting probably sounds alien to many people who just want to read
and who happily reflow a text on an ebook device, not bothered by a lack of quality.

We tend to take ourselves as reference. In “Rare Earth” Ward and Brownlee extrapolate
the possibility of life elsewhere in the universe. They are not alone in thinking that
while on one hand applying statistics to these formulas of possible life on planets there
might also be a chance that we're the only intelligent species ever evolved. In a follow
up, “Life as we do not know it” paleontologist and astrobiologist Ward (one of my
favourite authors) discusses the possibility of life not based on carbon, which is not
natural for a carbon based species. Carl Sagan once pointed out that an alien species
looking down to earth can easily conclude that cars are the dominant species on earth
and that the thingies crawling in and out them are some kind of parasites. So, when
we look at the things that somehow end up on paper (as words, sentences, ornaments,
etc.), what is dominant there? And is what we consider dominant really that dominant
in the long run? You can look at a nice page as a whole and don't see the details of the
content. Maybe beauty hides nonsense.

When TgXies look around they look to similar technologies. Commands in shells and
solutions done by scripting and programming. This make sense in the perspective of
survival. However, if you want to ponder alternatives, maybe not for usage but just for
fun, a completely different perspective might be needed. You must be willing to accept
that communicating with a user of a wysiwyg program might be impossible. If mutual

25 Children of TgX

puzzlement is a fact, then they can either be too smart and you can be too dumb or
the reverse. Or both approaches can be just too alien, based on different technologies
and assumptions. Just try to explain TgX to a kid 40 years younger or to an 80 year old
grandparent for that matter. Today you can be very clever in one area and very stupid
in another.

In another debate, Neil deGrasse Tyson asks Dawkins the question why in science fic-
tion movies the aliens look so human and when they don’t, why they look so strange,
for instance like cumbersome sluggish snails. The response to that is one of puzzle-
ment: the opponent has no reference of such movies. In discussions old TgXies like to
suggest that we should convert young users. They often don’t understand that kids live
in a different universe.

How often does that happen to us? In a world of many billions TgX has its place and can
happily coexist with other typesetting technologies. Users of other technologies can be
unaware of us and even create wrong images. In fact, this also happens in the commu-
nity itself: (false) assumptions turned into conclusions. Solutions that look alien, weird
and wrong to users of the same community. Maybe something that I present as hip and
modern and high-TgX and promising might be the opposite: backward, old-fashioned
and of no use to others. Or maybe it is, but the audience is in a different mindset. Does
it matter? Let’s just celebrate that diversity. (So maybe, instead of discussing the con-
ference theme, I should have talked about how I abuse LuaTgX in controlling lights in
my home as part of some Iol' experiments.)

1.20 What drives us

I'm no fan of economics and big money talk makes me suspicious. I cannot imagine
working in a large company where money is the drive. It also means that I have not
much imagination in that area. We get those calls at the office from far away countries
who are hired to convince us by phone of investments. Unfortunately mentioning that
you're not at all interested in investments or that multiplying money is irrelevant to you
does not silence the line. You have to actively kill such calls. This is also why I probably
don’t understand today’s publishing world where money also dominates. Recently I
ran into talks by Mark Blyth about the crisis (what crisis?) and I wish I could argue like
he does when it comes to typesetting and workflows. He discusses quite well that most
politicians have no clue what the crisis is about.

I think that the same applies to the management of publishers: many have no clue what
typesetting is about. So they just throw lots of money into the wrong activities, just like
the central banks seem to do. It doesn’t matter if we TgXies demonstrate cheap and
efficient solutions.

Of course there are exceptions. We're lucky to have some customers that do under-
stand the issues at hand. Those are also the customers where authors may use the tools
themselves. Educating publishers, and explaining that authors can do a lot, might be
a premise, predilection and prediction in one go! Forget about those who don't get it:

Children of TRX 26

they will lose eventually, unfortunately not before they have reaped and wasted the
landscape.

Google, Facebook, Amazon, Microsoft and others invest a lot in artificial intelligence
(or, having all that virtual cash, just buy other companies that do). They already have
such entities in place to analyze whatever you do. It is predicted that at some point
they know more about you then you know yourself. Reading Luke Dormehl’s “The
Formula” is revealing. So what will that do with our so-called (disputed by some)
free will? Can we choose our own tools? What if a potential user is told that all his or
her friends use WhateverOffice so they’d better do that too? Will subtle pressure lead
them or even us users away from TEX? We already see arguments among TgXies, like
“It doesn’t look updated in 3 years, is it still good?” Why update something that is still
valid? Will the community be forced to update everything, sort of fake updates. Who
sets out the rules? Do I really need to update (or re-run) manuals every five years?

Occasionally I visit the Festo website. This is a (family owned) company that does
research at the level that used to be common in large companies decades ago. If I had
to choose a job, that would be the place to go to. Just google for “festo bionic learning
network” and you understand why. We lack this kind of research in the field we talk
about today: research not driven by commerce, short term profit, long term control, but
because it is fundamental fun.

Last year Alan Braslau and I spent some time on bibTgX. Apart from dealing with all
the weird aspects of the apa standard, dealing with the inconsistently constructed au-
thor fields is a real pain. There have been numerous talks about that aspect here at
BachoIgX by Jean-Michel Hufflen. We're trying to deal with a more than 30-year-old
flawed architecture. Just look back over a curve that backtracks 30 years of exponen-
tial development in software and databases and you realize that it’s a real waste of time
and a lost battle. It’s fine to have a text based database, and stable formats are great, but
the lack of structure is appalling and hard to explain to young programmers. Compare
that to the Festo projects and you realize that there can be more challenging projects.
Of course, dealing with the old data can be a challenge, a necessity and eventually even
be fun, but don’t even think that it can be presented as something hip and modern.
We should be willing to admit flaws. No wonder that Jean-Michel decided to switch to
talking about music instead. Way more fun.

Our brains are massively parallel bio-machinery. Groups of neurons cooperate and
compete for attention. Coming up with solutions that match what comes out of our
minds demands a different approach. Here we still think in traditional programming
solutions. Will new ideas about presenting information, the follow up on books come
from this community? Are we the innovative Festo or are we an old dinosaur that just
follows the fashion?

1.21 User experience

Here is a nice one. Harari spends many pages explaining that research shows that when
an unpleasant experience has less unpleasantness at the end of the period involved, the

27 Children of TgX

overall experience is valued according to the last experience. Now, this is something we
can apply to working with TEX: often, the more you reach the final state of typesetting
the more it feels as all hurdles are in the beginning: initial coding, setting up a layout,
figuring things out, etc.

It can only get worse if you have a few left-over typesetting disasters but there adapting
the text can help out. Of course seeing it in a cheap bad print can make the whole
experience bad again. It happens. There is a catch here: one can find lots of bad-looking
documents typeset by TgX. Maybe there frustration (or indifference) prevails.

I sometimes get to see what kind of documents people make with ConTgXt and it’s nice
to see a good looking thesis with diverse topics: science, philosophy, music, etc. Here
TEX is just instrumental, as what it is used for is way more interesting (and often also
more complex) than the tool used to get it on paper. We have conferences but they're
not about rocket science or particle accelerators. Proceedings of such conferences can
still scream TgX, but it’s the content that matters. Here somehow TgX still sells itself,
being silently present in rendering and presentations. It’s like a rootkit: not really ap-
preciated and hard to get rid of. Does one discuss the future of rootkits other than in
the perspective of extinction? So, even as an invisible rootkit, hidden in the workings
of other programs, TgX’s future is not safe. Sometimes, when you install a Linux sys-
tem, you automatically get this large TEX installation, either because of dependencies
or because it is seen as a similar toolkit as for instance Open (or is it Libre) Office. If
you don’t need it, that user might as well start seeing it as a (friendly) virus.

1.22 Conclusion

At some point those who introduced computers in typesetting had no problem throw-
ing printing presses out of the window. So don’t pity yourself if at some point in the near
future you figure out that professional typesetting is no longer needed. Maybe once we
let machines rule the world (even more) we will be left alone and can make beautiful
documents (or whatever) just for the joy, not bothering if we use outdated tools. After
all, we play modern music on old instruments (and the older rock musicians get, the
more they seem to like acoustic).

There are now computer generated compositions that experienced listeners cannot dis-
tinguish from old school. We already had copies of paintings that could only be de-
termined forgeries by looking at chemical properties. Both of these (artificial) arts can
be admired and bring joy. So, the same applies to fully automated typeset novels (or
runtime rendered ebooks). How bad is that really? You don’t dig channels with your
hand. You don’t calculate logarithmic tables manually any longer.

However, one of the benefits of the Internet is watching and listening to great minds.
Another is seeing musicians perform, which is way more fun that watching a computer
(although googling for “animusic” brings nice visuals). Recently I ran into a wooden
musical computer made by “Wintergatan” which reminded me of the “Paige Composi-
tor” that we use in a LuaTgX cartoon. Watching something like that nicely compensates

Children of TgX 28

for a day of rather boring programming. Watching how the marble machine x (mmx)
evolves is yet another nice distraction.

Now, the average age of the audience here is pretty high even if we consider that we get
older. When I see solutions of ConTEXt users (or experts) posted by (young) users on
the mailing list or stack exchange I often have to smile because my answer would have
been worse. A programmable system invokes creative solutions. My criterion is always
that it has to look nice in code and has some elegance. Many posted solutions fit. Do
we really want more automation? It’s more fun to admire the art of solutions and I'm
amazed how well users use the possibilities (even ones that I already forgot).

One of my favourite artists on my weekly “check youtube” list is Jacob Collier. Right
from when I ran into him I realized that a new era in music had begun. Just google
for his name and “music theory interview” and you probably understand what I mean.
When Dennett comments on the next generation (say up to 25) he wonders how they
will evolve as they grow up in a completely different environment of connectivity. I can
see that when I watch family members. Already long ago Greg Bear wrote the novel
“Darwin’s Children”. It sets you thinking and when looking around you even wonder
if there is a truth in it.

There are folks here at BachoIgX who make music. Now imagine that this is a con-
ference about music and that the theme includes the word “future”. Then, imagine
watching that video. You see some young musicians, one of them probably one of the
musical masterminds of this century, others instrumental to his success, for instance by
wrapping up his work. While listening you realize that this next generation knows per-
tectly well what previous generations did and achieved and how they influenced the
current. You see the future there. Just look at how old musicians reflect on such videos.
(There are lots of examples of youth evolving into prominent musicians around and I
love watching them). There is no need to discuss the future, in fact, we might make a
fool of ourselves doing so. Now back to this conference. Do we really want to discuss
the future? What we think is the future? Our future? Why not just hope that in the flow
of getting words on a medium we play our humble role and hope we're not forgotten
but remembered as inspiration.

One more word about predicting the future. When Arthur Clarke’s “2001: A Space
Odyssey” was turned into a movie in 1968, a lot of effort went into making sure that
the not so far ahead future would look right. In 1996 scientists were asked to reflect
on these predictions in “Hal’s Legacy”. It turned out that most predictions were plain
wrong. For instance computers got way smaller (and even smaller in the next 20 years)
while (self-aware) artificial intelligence had not arrived either. So, let’s be careful in
what we predict (and wish for).

1.23 No more themes

We're having fun here, that’s why we come to BachoIEX (predilection). That should
be our focus. Making sure that TgX’s future is not so much in the cutting edge but in

29 Children of TgX

providing fun to its users (prediction). So we just have to make sure it stays around
(premise). That’s how it started out. Just watch at Don Knuth’s 3:16 poster: via TgX
and MetaFont he got in contact with designers and I wouldn’t be surprised if that sub-
project was among the most satisfying parts. So, maybe instead of ambitious themes
the only theme that matters is: show what you did and how you did it.

Children of TgX 30

31 Children of TgX

Advertising TEX 2

I can get upset when I hear TgXies boast about the virtues of TgX compared to for in-
stance Microsoft Word. Not that I feel responsible for defending a program that I never
use(d) but attacking something for no good reason makes not much sense to me. It is
especially annoying when the attack is accompanied by a presentation that looks pretty
bad in design and typography. The best advertisements for TgX should of course come
from outside the TEX community, by people impressed by its capabilities. How many
TEXies can really claim that Word is bad when they never tried to make something in it
with a similar learning curve as they had in TgX or the same amount of energy spent in
editing and perfecting a word-processor-made document.

In movies where computer technology plays a role one can encounter weird assump-
tions about what computers and programs can do. Run into a server room, pull one
disk out of a raid-5 array and get all information from it. Connect some magic device to
a usb port of a phone and copy all data from it in seconds. Run a high speed picture or
fingerprint scan on a computer (probably on a remote machine) and show all pictures
flying by. Okay, it’s not so far from other unrealistic aspects in movies, like talking ani-
mals, so maybe it is just a metaphor for complexity and speed. When zapping channels
on my television I saw figure 2.1 and as the media box permits replay I could make a
picture. I have no clue what the movie was about or what movie it was so a reference is
lacking here. Anyway it’s interesting that seeing a lot of TgX code flying by can impress
someone: the viewer, even if no TgXie will ever see that on the console unless in some
error or tracing message and even then it’s hard to get that amount. So, the viewer will
never realize that what is seen is definitely not what a TgXie wants to see.

L -.f T) "2 }'. left a \zight, < 1
el : RYLY/ J"m l) \lef zight

tort \righe {2 iatTERIes
(“H(‘d' ib‘fgl ;-{o-.g. } 1} \left| a \ri‘%h?\< 2y

e TS O f\-uﬁ“»fu }}\ms.u{mm—\a.zm

{‘g%- w}; Mzac{i}((2\ny N \ise\limies § ~-\pi Jl\e:

%’\%mga ;ht \t:ncg{\lin (%Ml I/!)e{g\l (\c..ga /2)}}.

e!a\ frec(a} }-\v
l {k = - \1n!ty "\infty {\delta (\omega + 2\91 k) .(- \:

}‘:}:‘?!Pghcr‘z“ 12 \Biiega®_§ \iqee 13 Nt 1TE(40°F T}

2m} } ek Afightf keos 1 }'e ¥\ ric
u:i%all.f § s\l:u (x.L)}}'{ \m }a ; i}im} pﬁz xe‘t; -
=0x, (a +.1la"8 u(N -\w:ttﬂgww \:;.g().}((ub: _ae {5

aquusww
= uyuzxum Mn{x‘{{ (1 - ae”*{ - j\o

L T .
—— ———- -

Figure 2.1 TgXin a movie

Advertising TEX 32

So, as that kind of free advertisement doesn’t promote TgX well, what of an occasional
mentioning of TeX in highly-regarded literature? When reading “From bacteria to Bach
and back, the evolution of minds” by Daniel Dennett I ran into the following:

“In Microsoft Word, for instance, there are the typographical operations of super-
script and subscript, as illustrated by

basepower

and
humange e

But try to add another superscript to baseP®"¢'—it should work, but it doesn’t!
In mathematics, you can raise powers to powers to powers forever, but you can’t
get Microsoft Word to display these (there are other text-editing systems, such
as TeX, that can). Now, are we sure that human languages make use of true
recursion, or might some or all of them be more like Microsoft Word? Might
our interpretation of grammars as recursive be rather an elegant mathematical
idealization of the actual “moving parts” of a grammar?”

Now, that book is a wonderfully interesting read and the author often refers to other
sources. When one reads some reference (with a quote) then one assumes that what
one reads is correct, and I have no reason to doubt Dennett in this. But this remark
about TgX has some curious inaccuracies.!

First of all a textual raise or lower is normally not meant to be recursive. Nesting would
have interesting consequences for the interline space so one will avoid it whenever pos-
sible. There are fonts that have superscript and subscript glyphs and even Unicode has
slots for a bunch of characters. I'm not sure what Word does: take the special glyph or
use a scaled down copy?

Then there is the reference to TEX where we can accept that the “E” is not lowered but
just kept as a regular “e”. Actually the mentioning of nested scripts refers to typesetting
math and that’s what the superscripts and subscripts are for in TgX. In math mode how-
ever, one will normally raise or lower symbols and numbers, not words: that happens
in text mode.

While Word will use the regular text font when scripting in text mode, a TeX user will
either have to use a macro to make sure that the right size (and font) is used, or one can
revert to math mode. But how to explain that one has to enter math and then explicitly
choose the right font? Think of this:

efficient\high{efficient} or
efficient$ " {\text{efficient}}$ or \par

Of course one can wonder in general that when one encounters such an inaccuracy, how valid other
examples and conclusions are. However, consistency in arguments and confirmation by other sources
can help to counter this.

33 Advertising TEX

{\bf efficient\high{efficient} or
efficient$ " {\text{efficient}}$>
Which gives (in Cambria)

tefficient tefﬁcient

efficien or efficien or
efficientefficient 5y offjcjentefficient
Now this,

efficient\high{efficient\high{efficient}} or

efficient$ " {\text{efficient$ " {\text{efficient}}$}}$ or \par
{\bf efficient\high{efficient\high{efficient}} or
efficient$ " {\text{efficient$ "{\text{efficient}}$}}$}

will work okay but the math variant is probably quite frightening at a glance for an
average Word user (or beginner in TgX) and I can understand why someone would
rather stick to click and point.

tefficientefﬁaent tefﬁcientefﬁcient

efficien or efficien or

efficierlt‘afﬁd’e“teffiCient or efficientefficienteicient

Oh, and it’s tempting to try the following:
efficient{\addff{f:superiorstefficient}

but that only works with fonts that have such a feature, like Cambria:

efficienteicient

To come back to Dennett’s remark: when typesetting math in Word, one just has to
switch to the math editing mode and one can have nested scripts! And, when using
TEX one should not use math mode for text scripts. So in the end in both systems one
has to know what one is doing, and both systems are equally capable.

The recursion example is needed in order to explain how (following recent ideas from
Chomsky) for modern humans some recursive mechanism is needed in our wetware.
Now, I won’t go into details about that (as I can only mess up an excellent explanation)
but if you want to refer to TgX in some way, then expansion? of (either combined or not)
snippets of knowledge might be a more interesting model than recursion, because much
of what TgX is capable of relates to expansion. But I leave that to others to explore.?

Now, comparing TgX to Word is always kind of tricky: Word is a text editor with typeset-
ting capabilities and TEX is a typesetting engine with programming capabilities. Recur-
sion is not really that relevant in this perspective. Endless recursion in scripts makes

2 Expanding macros actually works well with tail recursion.
One quickly starts thinking of how expandafter, noexpand, unexpanded, protected and other primiti-
ves can be applied to language, understanding and also misunderstanding.

Advertising TpX 34

little sense and even TEX has its limits there: the TEX math engine only distinguishes
three levels (text, script and scriptscript) and sometimes I'd like to have a level more.
Deeper nesting is just more of scriptscript unless one explicitly enforces some style. So,
it’s recursive in the sense that there can be many levels, but it also sort of freezes at level
three.

Figure 2.2 Nicer than TeX

I'love TgX and I like what you can do with it and it keeps surprising me. And although
mathematics is part of that, I seldom have to typeset math myself. So, I can’t help that
figure 2.2 impresses me more. It even has the so-familiar-to-TXies dollar symbols in
it: the poem “Poetry versus Orchestra” written by Hollie McNish, music composed by
Jules Buckley and artwork by Martin Pyper (I have the dvd but you can also find it on
YouTube). It reminds me of Don Knuth'’s talk at a tug meeting. In TugBoat 31:2 (2010)
you can read Don’s announcement of his new typesetting engine iIgX: “Output can
be automatically formatted for lasercutters, embroidery machines, 3D printers, milling
machines, and other cnc devices . . .”. Now that is something that Word can’t do!

35 Advertising TEX

Why use TEX? 3

Hans Hagen
Hasselt NL
July 2021 (public 2023)

3.1 Introduction

Let’s assume that you know what TgX is: a program that interprets a language with
the same name that makes it possible to convert (tagged) input into for instance pdf.
For many of its users it is a black box: you key in some text, hit a button and get some
typeset result in return. After a while you start tweaking this black box, meet other
users (on the web), become more fluent and stick to it forever.

But now let’s assume that you don’t know TgX and are in search of a system that helps
you create beautiful documents in an efficient way. When your documents have a com-
plex structure you are probably willing to spend some time on figuring out what the
best tool is. Even if a search lets you end up with something called TgX, a three letter
word with a dropped E, you still don’t know what it is. It helps to search for \TeX which
is pronounced as tech. Advertisement for TEX is often pretty weak. It’s rather easy to
point to the numerous documents that can be found on the web. But what exactly does
TeX do and what are its benefits? In order to answer this we need to know who you
are: an author, editor, an organization that deals with documents or needs to generate
readable output, like publishers do.

3.2 Authors

We start with authors. Students of sciences that use mathematics don’t have much of a
choice. But most of these documents hardly communicate the message that “Everyone
should use TgX.” or that “All documents produced by TgX look great.” but they do
advocate that for rendering math it is a pretty good system. The source code of these
documents often look rather messy and unattractive and for a non-math user it can be
intimidating. Choosing some lightweight click-and-ping alternative looks attractive.

Making TgX popular is not going to happen by convincing those who have to write an
occasional letter or report. They should just use whatever suits them. On the other
hand if you love consistency, long term support, need math, are dealing with a rare
language or script, like to reuse content, prefer different styling from one source, use
one source for multiple documents, or maybe love open source tools, then you are a
candidate. Of course there is a learning curve but normally you can master TgX rather
fast and once you get the hang of it there’s often no way back. But you always need to
invest a bit beforehand.

Why use TEX? 36

So what authors are candidates for TEX? It could be that TgX is the only tool that does
the job. If so, you probably learned that from someone who saw you struggle or had
the same experience and wrote or talked about it somewhere. In that case using TgX for
creating just one document (like a thesis) makes sense. Otherwise, you should really
wonder if you want to invest time in a tool that you probably have to ditch later on as
most organizations stick to standard (commercial) word processing tools.

Talking to customers we are often surprised that people have heard about TgX, or even
used it for a few documents in college. Some universities just prescribe the use of TeX
for reporting, so not much of a choice there. Memories are normally rather positive in
the sense that they know that it can do the job and that it’s flexible.

User group journals, presentations at TeX meetings, journals, books and manuals that
come with TgX macro packages can all be used to determine if this tool suits an author.
Actually, I started using TeX because the original TeXbook had some magic, and reading
it was just that: reading it, as had no running implementation. A few years later, when
I had to write (evolving) reports, I picked up again. But I'm not a typical user.

3.3 Programmers

When you are a programmer who has to generate reports, for instance in pdf, or write
manuals, then TEX can really be beneficial. Of course TgX is not always an obvious
choice, but if you're a bit able to use it it’s hard to beat in quality, flexibility and effi-
ciency. I'm often surprised that companies are willing to pay a fortune for functionality
that basically comes for free. Programmers are accustomed to running commands and
working in a code editor with syntax highlighting so that helps too. They also recognize
when something can be done more efficiently.

When you need to go from some kind of input (document source, database, generated)
to some rendered output there currently are a few endpoints: a (dynamic) html page,
a pdf document, something useable in a word processor, or a representation using the
desktop user interface. It’s the second category where TgX is hard to beat but even using
TeX and MetaPost for creating a chart can make sense.

There are of course special cases where TgX fits in nicely. Say that you have to combine
pdf documents. There are numerous tools to do that and TgX is one. The advantage
of TEX over other tools is that it’s trivial to add additional text, number pages, provide
headers and footers. And it will work forever. Why? Because TgX has been around
for decades and will be around for decades to come. It’s an independent component.
The problem with choosing for TgX is that the starting point is important. The question
is not “What tool should I use?” but “What problem do I need to solve?”. An open
discussion about the objectives and possibilities is needed, not some checklist based
on assumptions. If you don’t know TgX and have never worked with a programmable
typesetting environment, you probably don’t see the possibilities. In fact, you might
even choose for TgX for the wrong reasons.

37 Why use TgX?

The problem with this category of users is that they seldom have the freedom to choose
their tools. There are not that many jobs where the management is able to recognize the
clever programmer who can determine that TgX is suitable for a lot of jobs and can save
money and time. Even the long term availability and support is not an argument since
not only most tools (or even apis) changes every few years but also organizations them-
selves change ownership, objectives, and personnel on a whim. The concept of ‘long
term’ is hard to grasp for most people (just look at politics) and it’s only in retrospect
that one can say “We used that toolkit for over a decade.’

3.4 Organizations

Authors (often) have the advantage that they can choose themselves: they can use what
they like. In practice any decent programmer is able to find the suitable tools but con-
vincing the management to use one of them can be a challenge. Here we're also talking
of ‘comfort zones”: you have to like a tool(chain). Organizations normally don’t look
for TEX. Special departments are responsible for choosing and negotiating whatever is
used in a company. Unfortunately companies don’t always start from the open question
“We have this problem, we want to go there, what should we do?” and then discuss op-
tions with for instance those who know TgX. Instead requirements are formulated and
matches are found. The question then is “Are these requirements cut in stone?” and if
not (read: we just omit some requirements when most alternatives don’t meet them),
were other requirements forgotten? Therefore organizations can end up with the wrong
choice (using TgX in a situation where it makes no sense) or don’t see opportunities (not
using TgX while it makes most sense). It doesn’t help that a hybrid solution (use a mix
of TEX and other tools) is often not an option. Where an author can just stop using a
tool after a few days of disappointment, and where a programmer can play around a
bit before making a choice, an organization probably best can start small with a proof
of concept.

Let’s take a use case. A publisher wants to automatically convert xml files into pdf. One
product can come from multiple sources (we have cases where thousands of small xml
files combine into one final product). Say that we have three different layouts: a theory
book, a teachers manual and an answer book. In addition special proofing documents
have to be rendered. The products might be produced on demand with different topics
in any combination. There is at least one image and table per page, but there can be
more. There are color and backgrounds used, tables of contents generated, there is
extensive cross referencing and an index. Of course there is math.

Now let’s assume an initial setup costs 20K Euro and, what happens often when the real
products show up, a revision after one year takes the same amount. We also assume
10K for the following eight years for support. So, we end up with 120K over 10 years.
If one goes cheap we can consider half of that, or we can be pessimistic and double the
amount.

The first year 10K pages are produced, the second year 20K and after that 30K per year.
So, we're talking of 270K pages. If we include customer specific documents and proof-
ing we might as well end up with a multiple of that.

Why use TEX? 38

So, we have 120K Euro divided by 270K pages or about half an Euro per page. But
likely we have more pages so it costs less. If we double the costs then we can assume
that some major changes took place which means more pages. In fact we had projects
where the layout changed, all documents were regenerated and the costs were included
in the revision, so far from double. We also see many more pages being generated so in
practice the price per page drops below half an Euro. The more we process the cheaper
it gets and one server can produce a lot of pages!

Now, the interesting bit of such a calculation is that the costs only concern the hours
spent on a solution. A TgX based system comes for free and there are no license costs.
Whatever alternative is taken, even if it is as flexible, it will involve additional costs.
From the perspective of costs it’s very hard to beat TgX. Add to that the possibility for
custom extensions, long term usage and the fact that one can adapt the system. The
main question of course is: does it do the job. The only way to find out is to either
experiment (which is free), consult an expert (not free, but then needed anyway for any
solution) or ask an expert to make a proof of concept (also not free but relatively cheap
and definitely cheaper than a failure). In fact, before making decisions about what
solution is best it might be a good idea to check with an expert anyway, because more
or less than one thinks might be possible. Also, take into account that the TgX ecosystem
is often one of the first to support new technologies, and normally does that within its
existing interface. And there is plenty of free support and knowledge available once
you know how to find it. Instead of wasting time and money on advertisement and
fancy websites, effort goes into support and development. Even if you doubt that the
current provider is around in the decade to come, you can be sure that there will be
others, simply because TgX attracts people. Okay, it doesn’t help that large companies
like to out source to far-far-away and expect support around the corner, so in the end
they might kill their support chain.

When talking of TgX used in organizations we tend to think of publishers. But this is
only a small subset of organizations where information gets transformed into some-
thing presentable. For small organizations the choice for TgX can be easy: costs, long
term stability, knowing some experts are driving forces. For large organizations these
factors seem (at least to us) hardly relevant. We’ve (had) projects where actually the
choice for using a TgX based solution was (in retrospect) a negative one: there was
no other tool than this relatively unknown thing called TgX. Or, because the normal
tools could not be used, one ended up with a solution where (behind the scenes) TeX
is used, without the organization knowing it. Or, it happened that the problem at hand
was mostly one that demands in-depth knowledge of manipulating content, cleaning
up messy data, combining resources (images or pdf documents), all things that hap-
pen to be available in the perspective of TgX. If you can solve a hard to solve problem
for them then an organization doesn’t care what tool you use. What does matter is that
the solution runs forever, that costs are controllable and above all, that it “Just works.”
And if you can make it work fast, that helps too. We can safely claim that when TgX is
evaluated as being a good option, that in the end it always works out quite well.

Among arguments that (large) organizations like to use against a choice for TgX (or
something comparable) are the size of the company that they buy their solution from,

39 Why use TgX?

the expected availability for support, and the wide-spread usage of the tool at hand.
One can wonder if it also matters that many vendors change ownership, change prod-
ucts every few years, change license conditions when they like, charge a lot for sup-
port or just abort a tool chain. Unfortunately when that happens those responsible for
choosing such a system can have moved on to another job, so this is seldom part of an
evaluation. For the supplier the other side of the table is just as much of a gamble. In
that respect, an organization that wants to use an open source (and/or free) solution
should realize that getting a return on investment on such a development is pretty hard
to achieve. So, who really takes the risk for writing open source?

For us, the reason to develop ConTgXt and make it open is that it fits in our philosophy
and we like the community. It is actually not really giving us an advantage commer-
cially: it costs way more to develop, support and keep up-to-date than it will ever return.
We can come up with better, faster and easier solutions and in the end we pay the price
because it takes less time to cook up styles. So there is some back slash involved because
commercially a difficult solution leads to more billable hours. Luckily we tend to avoid
wasting time so we improve when possible and then it ends up in the distributed code.
And, once the solution is there, anyone can use it. Basically also for us it’s just a tool,
like the operating system, editor and viewer are. So, what keeps development going is
mostly the interaction with the community. This also means that a customer can’t really
demand functionality for free: either do it yourself, wait for it to show up, or pay for
it (which seldom happens). Open source is not equivalent with “You get immediately
what you want because someone out there writes the code.”. There has to be a valid
reason and often it’s just users and meetings or just some challenge that drives it.

This being said, it is hard to convince a company to use TgX. It has to come from users in
the organization. Or, what we sometimes see with publishers, it comes with an author
team or acquired product line where it’s the only option. Even then we seldom see
transfer to other branches in the organizations. No one seems to wonder “How on
earth can that xml to pdf project produce whatever output in large quantities in a short
period of time” while other (past) projects failed. It probably relates to the abstraction
of the process. Even among TgX users it can be that you demonstrate something with
a click on a button and that many years afterwards someone present at that moment
tells you that they just discovered that this or that can be done by hitting a button. I'm
not claiming that TgX is the magic wand for everything but in some areas it’s pretty
much ahead of the pack. Go to a TgX user meeting and you will be surprised about
the accumulated diverse knowledge present in the room. It's user demand that drives
ConTgXt development, not commerce.

3.5 Choosing

So, where can one find information about TgX and friends? On the web one has to use
the right search keys, so adding tex helps: context tex or xml tex pdf and so on.
Can one make a fancy hip website, sure, but it being a life-long, already old and mature
environment, and given that it comes for free, or is used low-budget, not much effort

Why use TEX? 40

and money can be spent on advertising it. A benefit is that no false promises and hypes
are made either. If you want to know more, just ask the right folks.

For all kind of topics one can find interesting videos and blogs. One can subscribe to
channels on YouTube or join forums. Unfortunately not that many bloggers or vloggers
or podcasters come up with original material every time, and often one starts to recog-
nize patterns and will get boring by repetition of wisdom and arguments. The same is
true for manuals. Is a ten year old manual really obsolete? Should we just recompile it
to fake an update while in fact there has been no need for it? Should we post twenty
similar presentations while one can do? (If one already wants to present the same topic
twenty times in the first place?) Maybe one should compare TgX with cars: they became
better over time and can last for decades. And no new user manual is needed.

As with blogs and vlogs advertising TgX carries the danger for triggering political dis-
cussions and drawing people into discussions that are not pleasant: TgX versus some
word processor, open versus closed source, free versus paid software, this versus that
operating system, editor such or editor so.

To summarize, it’s not that trivial to come up with interesting information about TgX,
unless one goes into details that are beyond the average user. And those who are in-
volved are often involved for a long time so it gets more complex over time. User group
journals that started with tutorials later on became expert platforms. This is a side effect
of being an old and long-term toolkit. If you run into it, and wonder if it can serve your
purpose, just ask an expert.

Most TgX solutions are open source and come for free as well. Of course if you want a
specific solution or want support beyond what is offered on mailing lists and forums
you should be willing to pay for the hours spent. For a professional publisher (of what-
ever kind) this is not a problem, if only because any other solution also will cost some-
thing. It is hard to come up with a general estimate. A popular measure of typesetting
costs is the price per page, which can range from a couple of euro’s per page to two
digit numbers. We’ve heard of cases where initial setup costs were charged. If not
much manual intervention is needed a TEX solution mostly concerns initial costs.

Let’s return to the main question “Why use TgX?” in which you can replace TgX by one
of the macro packages build on top of it, for instance ConIgXt. If an (somewhat older)
organization considers using TEX it should also ask itself, why it wasn’t considered long
ago already? For sure there have been developments in TeX engines (in ConIgXt we
use LuaTgX) as well as possibilities of macro packages but if you look at the documents
produced with them, there is not that much difference with decades ago. Processing
has become faster, some things have become easier, but new technologies have always
been supported as soon at they showed up. Advertising is often just repeating an old
message.

The TgX ecosystem was among the first in supporting for instance OpenType, and the
community even made sure that there were free fonts available. A format like pdf was
supported as soon as it showed up and TgX was the first to demonstrate what advanced

41 Why use TeX?

features were there and it shows again how it is possible to adapt TgX to changes in its
environment. Processing xml using TEX has never been a big deal and if that is a reason
to look at this already old and mature technology, then an organization can wonder if
years and opportunities (for instance for publishing on demand or easy updating of
manuals) have been lost. Of course there are (and have been) alternative tools but the
arguments for using TEX or not are not much different now. It can be bad marketing of
open and free software. It can be that TEX has been around too long. It can also be that
its message was not understood yet. On the other hand, in software development it’s
quite common to reinvent wheels and present old as new. It’s never too late to catch on.

Why use TEX? 42

43 Why use TX?

What’s to stay, what’s to go 4

4.1 Introduction

The following text was written as preparation for a 2018 talk at BachoIgX, which has
this theme. It’s mostly a collection of thoughts. It was also more meant as a wrapup for
the presentation (possibly with some discussions) than an article.

4.2 Attraction

There are those movies where some whiz-kid sits down behind a computer, keys in a
few commands, and miracles happen. Ten fingers are used to generate programs that
work immediately. It's no problem to bypass firewalls. There is no lag over network
connections. Checking massive databases is no big deal and there’s even processing
power left for real time visualization or long logs to the terminal.

How boring and old fashioned must a regular edit-run-preview cycle look compared
to this. If we take this 2018 movie reality as reference, in a time when one can suck
a phone empty with a simple connection, pull a hard drive from a raid five array and
still get all data immediately available, when we can follow realtime whoever we want
using cameras spread over the country, it’s pretty clear that this relatively slow page
production engine TEX has no chance to survive, unless we want to impress computer
illiterate friends with a log flying by on the console (which in fact is used in movies to
impress as well).

On YouTube you can find these (a few hours) sessions where Jacob Collier harmonizes
live in one of these Digital Audio Workstation programs. A while later on another
channel June Lee will transcribe these masterpieces into complex sheets of music by
ear. Or you can watch the weekly Wintergatan episodes on building the Marble Ma-
chine from wood using drilling, milling, drawing programs etc. There are impressive
videos of multi-dimensional led arrays made by hand and controlled by small comput-
ers and robots that solve Rubic Cubes. You can be impressed by these Animusic videos,
musicians show their craftmanship and interesting informative movies are all over the
place. I simply cannot imagine millions of kids watching a TgX style being written in a
few hours. It’s a real challenge for an attention span. I hope to be proven wrong but I
fear that for the upcoming generation it’s probably already too late because the ‘whow’
factor of TgX is low at first encounter. Although: picking up one of Don Knuths books
can have that effect: a nice mixture of code, typesetting and subtle graphics, combined
with great care, only possible with a system like TEX.

: Biology teaches us that ‘cool” is not a recipe for ‘survival’. Not all designs by
nature look cool, and it’s only efficiency and functionality that matters. Beauty
sometimes matters too but many functional mechanisms can do without. So far

What's to stay, what’s to go 44

TeX and its friends were quite capable to survive so there must be something in
it that prevents it to be discarded. But survival is hard to explain. So far TgX just
stayed around but lack of visual attraction is a missing competitive trait.

4.3 Satisfaction

Biology also teaches us that chemistry can overload reason. When we go for short-
term pleasure instead of long-term satisfaction (Google for Simon Sinek on this topic),
addiction kicks in (for instance driven by crossing the dopamine thresholds too often,
Google for Robert Sapolsky). Cool might relate more to pleasure while satisfaction
relates to an effort. Using TEX is not that cool and often takes an effort. But the results
can be very satisfying. Where ‘cool’ is rewarding in the short term, ‘satisfaction” is more
a long term effect. So, you probably get the best (experience) out of TeX by using it a
lifetime. That’s why we see so many old TgXies here: many like the rewards.

If we want to draw new users we run into the problem that humans are not that good in
long term visions. This means that we cannot rely on showing cool (and easy) features
but must make sure that the long term reward is clear. We can try to be ‘cool” to draw
in new users, but it will not be the reason they stay. Instant success is important for
kids who have to make a report for school, and a few days “getting acquainted with
a program” doesn't fit in. It's hard to make kids addicted to TgX (which could be a
dubious objective).

: Aslong as the narrative of satisfaction can be told we will see new users. Meet-
ings like BachoIgX is where the narrative gets told. What will happen when we
no longer meet?

4.4 Survival

Survival relates to improvements, stability and discarding of weak aspects. Unfortu-
nately that does not work out well in practice. Fully automated multi-columns typeset-
ting with all other elements done well too (we just mention images) is hard and close
to impossible for arbitrary cases, so nature would have gotten rid of it. Ligatures can
be a pain especially when the language is not tagged and some kind of intelligence is
needed to selectively disable them. They are the tail of the peacock: not that handy
but meant to be impressive. Somehow it stayed around in automated typesetting, in
biology it would be called a freak of nature: probably a goodbye in wildlife. And how
about page breaks on an electronic device: getting rid of them would make the floating
figures go away and remove boundary conditions often imposed. It would also make
widows and clubs less of a problem. One can even wonder if with page breaks the
windows and clubs are the biggest problems, and if one can simply live with them. Af-
ter all, we can live with our own bodily limitations too. After all, (depending on what
country you live in) you can also live with bad roads, bad weather, polution, taxes, lack
of healthcare for many, too much sugar in food, and more.

45 What's to stay, what’s to go

: Animals or plants that can adapt to live on a specific island might not sur-
vive elsewhere. Animals or plants introduced in an isolated environment might
quickly dominate and wipe out the locals. What are the equivalents in our TgX
ecosystem?

4.5 Niches

But arguments will not help us determine if TgX is the fittest for survival. It’s not a ratio-
nal thing. Humans are bad in applying statistics in their live, and looking far ahead is
not a treat needed to survive. Often nature acts in retrospect. (Climbing mount prob-
ability by Richard Dawkins). So, it doesn’t matter if we save time in the future if it
complicates the current job. If governments and companies cannot look ahead and act
accordingly, how can we extrapolate software (usage) or more specifically typesetting
demands. Just look at the political developments in the country that hosts this confer-
ence. Could we have predicted the diminishing popularity of the eu (and disturbing
retrograde political mess in some countries) of 2018 when we celebrated the moment
Poland joining the eu at a BachoIEX campfire?

Extrapolating the future quality of versions of TEX or macro packages also doesn’t mat-
ter much. With machine learning and artificial intelligence around the corner and with
unavoidable new interfaces that hook into our brains, who knows what systems we
need in the future. A generic flexible typesetting system is probably not the most im-
portant tool then. When we discuss quality and design it gets personal so a learning
system that renders neutrally coded content into a form that suits an individual, de-
mands a different kind of tool than we have now.

On the short term (our live span) it makes more sense to look around and see how
other software (ecosystems) fare. Maybe we can predict TgX’s future from that. Maybe
we can learn from others mistakes. In the meantime we should not flatter ourselves
with the idea that a near perfect typesetting system will draw attention and be used by
a large audience. Factors external to the community play a too important role in this.

: It all depends on how well it fits into a niche. Sometimes survival is only pos-
sible by staying low on the radar. But just as we destroy nature and kill animals
competing for space, programs get driven out of the software world. On a pos-
itive note: in a project that provides open (free) math for schools students ex-
pressed to favour a printed book over web-only (one curious argument for web
was that it permits easier listening to music at the same time).

4.6 Dominance

Last year I installed a bit clever (evohome) heating control system. It’s probably the
only “working out of the box” system that supports 12 zones but at the same time it has
a rather closed interface as any other. One can tweak a bit via a web interface but that
one works by a proxy outside so there is a lock in. Such a system is a gamble because

What's to stay, what’s to go 46

it’s closed and we're talking of a 20 year investment. I was able to add a layer of control
(abusing LuaTgX as Lua engine and ConTgXt as library) so let’s see. When I updated the
boiler I also reconfigured some components (like valves) and was surprised how lim-
ited upgrading was supported. One ends up with lost settings and weird interference
and it’s because I know a bit of programming that I kept going and managed to add
more control. Of course, after a few weeks I had to check a few things in the manuals,
like how to enter the right menu.

So, as the original manuals are stored somewhere, one picks up the smart phone and
looks for the manual on the web. I have no problem with proper pdf as a manual but
why not provide a simple standard format document alongside the fancy folded A3
one. Is it because it’s hard to produce different instances from one source? Is it because
it takes effort? We're talking of a product that doesn’t change for years.

: The availability of flexible tools for producing manuals doesn’t mean that they
are used as such. They don’t support the survival of tools. Bad examples are a
threat. Dominant species win.

4.7 Extinction

When I was writing this I happened to visit a bookshop where I always check the SciFi
section for new publications. I picked out a pocket and wondered if I had the wrong
glasses on. The text was wobbling and looked kind of weird. On close inspection indeed
the characters were kind of randomly dancing on the baseline and looked like some 150
dpi (at most) scan. (By the way, I checked this the next time I was there by showing
the book to a nephew.) I get the idea that quite some books get published first in the
(more expensive) larger formats, so normally I wait till a pocket size shows up (which
can take a year) so maybe here I had to do with a scan of a larger print scaled down.

What does that tell us? First of all that the publisher doesn’t care about the reader:
this book is just unreadable. Second, it demonstrates that the printer didn’t ask for the
original pdf file and then scaled down the outline copy. It really doesn’t matter in this
case if you use some high quality typesetting program then. It’s also a waste of time to
talk to such publishers about quality typesetting. The printer probably didn’t bother to
ask for a pdf file that could be scaled down.

: In the end most of the publishing industry will die and this is just one of the
symptoms. Typesetting as we know it might fade away.

4.8 Desinterest

The newspaper that I read has a good reputation for design. But why do they need
to drastically change the layout and font setup every few years? Maybe like an animal
marking his or her territory a new department head also has to put a mark on the layout.
Who knows. For me the paper became pretty hard to read: a too light font that suits

47 What's to stay, what’s to go

none of the several glasses that I have. So yes, I spend less time reading the paper. In a
recent commentary about the 75 year history of the paper there was a remark about the
introduction of a modern look a few decades ago by using a sans serif font. I'm not sure
why sans is considered modern (most handwriting is sans) and to me some of these
sans fonts look pretty old fashioned compared to a modern elegant serif (or mix).

: If marketing and fashion of the day dominate then a wrong decision can result
in dying pretty fast.

4.9 Persistence

Around the turn of the century I had to replace my cd player and realized that it made
more sense to invest in ripping the cd’s to flac files and use a decent dac to render the
sound. This is a generic approach similar to processing documents with TgX and it looks
as future proof as well. So, I installed a virtual machine running SlimServer and bought
a few SlimDevices, although by that time they were already called SqueezeBoxes.

What started as an independent supplier of hardware and an open source program had
gone the (nowadays rather predictable) route of a buy out by a larger company (Log-
itech). That company later ditched the system, even if it had a decent share of users.
This “start something interesting and rely on dedicated users”, then “sell yourself (to
the highest bidder)” and a bit later “accept that the product gets abandoned” is where
open source can fail in many aspects: loyal users are ignored and offended with the
original author basically not caring about it. The only good thing is that because the
software is open source there can be a follow up, but of course that requires that there
are users able to program.

I have 5 small boxes and a larger transporter so my setup is for now safe from extinction.
And I can run the server on any (old) linux or MS Windows distribution. For the record,
when I recently connected the 20 year old Cambridge CD2 I was surprised how well it
sounded on my current headphones. The only drawback was that it needs 10 minutes
for the transport to warm up and get working.

In a similar fashion I can still use TgX, even when we originally started using it with
the only viable quality dvi to PostScript backend at that time (dvipsone). But I'm not
so sure what I'd done if I had not been involved in the development of pdfIEX and
later LuaTgX. As an average user I might just have dropped out. As with the cd player,
maybe someone will dust off an old TgX some day and maybe the only hurdle is to get
it running on a virtual retro machine. Although ... recently I ran into an issue with
a virtual machine that didn’t provide a console after a kvm host update, so I'm also
getting pessimistic about that escape for older programs. (Not seldom when a library
update is forced into the LuaTgX repository we face some issue and it’s not something
the average user want (or is able to) cope with.)

: Sometimes it’s hard to go extinct, even when commerce interfered at some
point. But it does happen that users successfully take (back) control.

What's to stay, what’s to go 48

410 Freedom

If you buy a book originating in academia written and typeset by the author, there
is a chance that it is produced by some flavour of TgX and looks quite okay. This is
because the author could iterate to the product she or he likes. Unfortunately the web
is also a source of bad looking documents produced by TgX. Even worse is that many
authors don’t even bother to set up a document layout properly, think about structure
and choose a font setup that matches well. One can argue that only content matters.
Fine, but than also one shouldn’t claim quality simply because TgX has been used.

I've seen examples of material meant for bachelor students that made me pretend that
I am not familiar with TgX and cannot be held responsible. Letter based layouts on A4
paper, or worse, meant for display (or e-book devices) without bothering to remove the
excessive margins. Then these students are forced to use some collaborative TEX envi-
ronment, which makes them dependent on the quality standards of fellow students.
No wonder that one then sees dozens of packages being loaded, abundant copy and
paste and replace of already entered formulas and interesting mixtures of inline and
display math, skips, kerns and whatever can help to make the result look horrible.

: Don’t expect enthusiast new users when you impose TgX but take away free-
dom and force folks to cooperate with those with lesser standards. It will not
help quality TEX to stay around. You cannot enforce survival, it just happens or
not, probably better with no competition or with a competition so powerful that
it doesn’t bother with the niches. In fact, keeping a low profile might be best! The
number of users is no indication of quality, although one can abuse that statistic
selectively?

4.11 Diversity

Diversity in nature is enormous. There are or course niches, but in general there are
multiple variants of the same. When humans started breeding stock or companion an-
imals diversity also was a property. No one is forcing the same dog upon everyone or
the same cow. However, when industrialization kicks in things become worse. Many
cows in our country share the same dad. And when we look at for instance corn, toma-
toes or whatever dominance is not dictated by what nature figures out best, but by what
commercially makes most sense, even if that means that something can’t reproduce by
itself any longer.

In a similar way the diversity of methods and devices to communicate (on paper) at
some point turns into commercial uniformity. The diversity is simply very small, also
in typesetting. And even worse, a user even has to defend her/himself for a choice of
system (even in the TEX community). It’s just against nature.

: Normally something stays around till it no longer can survive. However, we
humans have a tendency to destroy and commerce is helping a hand here. In
that respect it’s a surprise that TgX is still around. On the other hand, humans

49 What's to stay, what’s to go

also have a tendency to keep things artificially alive and even revive. Can we
revive TEX in a few hundred years given the complex code base and Make infra-
structure?

4.12 Publishing

What will happen with publishing? In the production notes of some of my recently
bought books the author mentions that the first prints were self-published (either or not
sponsored). This means that when a publisher “takes over” (which still happens when
one scales up) not much work has to be done. Basically the only thing an author needs
is a distribution network. My personal experience with for instance cd’s produced by a
group of musicians is that it is often hard to get it from abroad (if at all) simply because
one needs a payment channel and mail costs are also relatively high.

But both demonstrate that given good facilitating options it is unlikely that publishers
as we have now have not much change of survival. Add to the argument that while
in Gutenbergs time a publisher also was involved in the technology, today nothing in-
novative comes from publishers: the internet, ebook devices, programs, etc. all come
from elsewhere. And I get the impression that even in picking up on technology pub-
lishers lag behind and mostly just react. Even arguments like added value in terms of
peer review are disappearing with the internet where peer groups can take over that
task. Huge amounts of money are wasted on short-term modern media. (I bet similar
amounts were never spend on typesetting.)

: Publishers, publishing, publications and their public: as they are now they
might not stay around. Lack of long term vision and ideas and decoupling of
technology can make sure of that. Publishing will stay but anyone can publish;
we only need the infrastructure. Creativity can win over greed and exploitation,
small can win over big. And tools like TgX can thrive in there, as it already does
on a small scale.

4.13 Understanding

“Why do you use TeX?” If we limit this question to typesetting, you can think of “Why
don’t you use MS Word?” “Why don’t you use Indesign?”, “Why don’t you use that
macro package?”, “Why don’t you use this TgX engine?” and alike. I'm sure that most
of the readers had to answer questions like this, questions that sort of assume that you're
not happy with what you use now, or maybe even suggest that you must be stupid not
touse ...

It’s not that easy to explain why I use TgX and/or why TgX is good a the job. If you
are in a one-to-one (or few) sessions you can demonstrate its virtues but ‘selling” it to
for instance a publisher is close to impossible because this kind of technology is rather
unknown and far from the click-and-point paradigm. It’s even harder when students
get accustomed to these interactive books from wherein they can even run code snip-
pets although one can wonder how individual these are when a student has the web

What's to stay, what’s to go 50

as a source of solutions. Only after a long exposure to similar and maybe imperfect
alternatives books will get appreciated.

For instance speaking of “automated typesetting” assumes that one knows what type-
setting is and also is aware that automated has some benefits. A simple “it’s an xml to
pdf converter” might work better but that assumes xml being used which for instance
not always makes sense. And while hyphenation, fancy font support and proper justi-
fication might impress a TEX user it often is less of an argument than one thinks.

The “Why don’t you” also can be heard in the TEX community. In the worst case it’s
accompanied by a “. .. because everybody uses . ..” which of course makes no sense
because you can bet that the same user will not fall for that argument when it comes to
using an operating system or so. Also from outside the community there is pressure
to use something else: one can find defense of minimal markup over TgX markup or
even html markup as better alternative for dissemination than for instance pdf or TgX
sources. The problem here is that old-timers can reflect on how relatively wonderful a
current technique really is, given changes over time, but who wants to listen to an old-
timer. Progress is needed and stimulating (which doesn’t mean that all old technology
is obsolete). When I watched Endre eNerd’s “The Time Capsule” blu-ray I noticed an
Ensoniq Fizmo keyboard and looked up what it was. I ended up in interesting reads
where the bottom line was “Either you get it or you don’t”. Reading the threads rang a
bell. As with TgX, you cannot decide after a quick test or even a few hours if you (get
the concept and) like it or not: you need days, weeks, or maybe even months, and some
actually never really get it after years.

: Itis good to wonder why you use some program but what gets used by others
depends on understanding. If we can’t explain the benefits there is no future for
TeX. Or more exact: if it no longer provide benefits, it will just disappear. Just
walk around a gallery in a science museum that deals with computers: it can be
a bit pathetic experience.

Who knows ...

51 What's to stay, what's to go

Stability 5

Introduction

How stable is ConIgXt? This question is hard to answer. For instance MKII hasn't
changed for years and seems to work quite well: no changes equals stability. Those
who use it can do with what it offers. The potentially sensitive dependencies on for
instance fonts are probably absent because there is not much development in the 8 bit
fonts arena. As long as these are available we’re okay, in fact, OpenIype fonts are more
a moving target and therefore less stable.

What do we mean by stable? The fundamental differences between an 8 bit engine (and
fonts) and an Unicode aware engine able to handle OpenType fonts is substantial which
is why we dropped some functionality and added some relevant new. One can consider
that a problem but in practice using fonts has become easier so no one is hurt by it. Here
we need to keep in mind that pdfTEX is really stable: it uses fonts and technology that
doesn’t change. On the other hand XgIEX and LuaTgX follow new trends. Thereby XqIEX
uses libraries, which introduces a dependency and instability, while LuaTgX assumes
solutions in Lua which means that users and macro writers can tweak and thereby also
introduce instability (but at least one can adapt that code).

Due to the way the user interface is set up, it is unlikely that ConTgXt will change. But
the fact that we now have Lua available means that many commands have been touched.
Most behave compatible, some have more functionality, and of course we have a Lua
interface. We include a lot of support code which also lessens dependencies.

The user input is normally TeX but when you use xml the move to MkIV meant that we
dropped the MKII way of dealing with it in favour of a completely new mechanism. I
get the impression that those using xml don’t regret that change. Talking of stability
the MKIV xml interface is typically a mechanism that is stable and might change little.
We can add new trickery but the old stays as it is.

If we look at the output, there is dvi and pdf. In MKII the dvi could become PostScript.
As there are different dvi post-processors the backend code was using a plug-in model.
Contrary to other macro packages there was only one so called format that could adapt
itself to the required (engine specific) output. A ConTgXt run has always been managed
by a wrapper so users were not bothered much by what TgX engine they used and/
or what backend was triggered. This changed with MkIV where we use just LuaTgX,
always produce pdf and optionally can export xml. But again the run is managed by a
wrapper, which incidentally is written in Lua and thereby avoids dependencies on for
instance Perl, Ruby or Python, which are moving targets, use libraries and additional
user code, and thereby are potentially instable too.

Stability 52

The pdf code that is produced is a mix of what the engine spits out and what the macro
package injects. The code is normally rather simple. This means that it’s no big deal to
support the so called standards. It also means that we can support advanced interac-
tivity and other features but these also depends on the viewers used. So, stability here
is more fluent, for instance because the pdf standard evolves and/or we need to adapt
to viewers. Special demands like tagged pdf have been supported right from the start
but how that evolves depends mostly on input from users who need it. Again, that is
less important (and crucial) for stability than the rendering capabilities.

The fact that we use Lua creates a dependency on that language but the reason that we
use it is because it is so stable. We follow the updates and so far that worked out well.
Now, say that we had a frozen version of ConTgXt 2010 and LuaTgX 1.09 that uses Lua
5.3, would that work? First of all, in 2010 LuaTgX itself was evolving so the answer is
probably “no”, unless one adds a few compatibility patches. I'm not going to try it. The
change from 5.1 to 5.2 to 5.3 was not really a problem I think and the few issues could
be dealt with easily. If you want long term stability and use a lot of Lua code you can
take it into account when coding. Avoiding external libraries is a good start.

Fonts are more than before moving targets. So, if you want stability there you should
save them with your document source. The processing of them has evolved and has
been improved over time. By now it’s rather stable. More recent code can catch more
issues and fixes are relatively easy. But it’s an area that you always need to check when
you update an old distribution. The same is true for language related hyphenation
patterns and script specific support. The community is no longer leading in the math
department either (OpenType math is a Microsoft invention). But, the good news is that
the TEX ecosystem is always fast to adapt and can also often provide more functionality.

Vertical spacing, in fact spacing in general is an aera that can always be improved, so
there is where you can expect changed. The same is true for side floats or mechanisms
where content is somehow attached to other moving content, for instance marginal
notes.

But code dealing with fonts, color, scripts, structure, and specific features that once
written don’t need more, will not change that much. As mentioned for fonts, like any
resource, we also depend on third parties. Colors can relate to standards, but their main
properties are unchanged. Support for specific scripts can (and will) be improved due
to user input and demands so there the users also influence stability. Structure doesn’t
really influence the overall rendering, but the way you set it up does, but that’s user
styling. Of course during the transition from MKII to MKIV and the evolution of Lua-
TEX things could be broken, but fixing something structural seldom relates to rendering.
If for instance we improve the interpretation of bibTEX input , which can be real messy,
that involves data processing, nor rendering. When we improve support for the apa
standard, which is complex, it might involve rendering but then that’s asked for and
expected. One cannot do better than the input permits.

53 Stability

Publishers

When discussing stability and especially stability as requirement we need to look at the
way ConTgXt is used. So let’s look at a few scenarios. Say that a publisher gets a camera
ready book from an author in pdf format. In that case the author can do all tweaks
needed. Now say that the publisher also wants the source code in a format that makes
reuse possible.

But let’s face reality. Will that publisher really reformat the document in pdf again?
It’s very unlikely. First of all the original pdf can be kept, and second, a reformat only
makes sense after updating the content or going for a completely different layout. It’s
basically a new book then. In that case literal similarity of output is irrelevant. It is a
cheap demand without much substance.

When the source is used for a different purpose the tool used to make the pdf is irrele-
vant. In that case the coding of the source can matter. If it is in some dialect of TgX, fine,
one has to convert it anyway (to suit the other usage). If there is an xml export available,
fine too as it can be transformed, given that the structure is rich enough, something that
is unlikely to have been checked when the original was archived. Then there could have
been the demand for a document in some other format and who can guarantee stability
of the tools used there? Just look at how Microsoft Word evolved, or for that matter, its
competitors. On the average TEX is more stable as one can snapshot a TgX tree and run
binaries for years, if needed, in a virtual machine.

So, I don't think that a publisher is of any relevance in the discussion about stability.
Even if we can clearly define what a publisher is, I doubt if publishers themselves can
be considered long term stable organizations. Not today. I'm not sure if (especially the
large) publishers really deserve a place in the discussion about stability but I'm willing
to discuss that when I run into one.

The main problem that an author can face when being confronted with the stability
issue this way is that the times are long gone that publishers have a clue about what
TeXis, how it evolved and how it always had to and did adapt to changing requirements.
If you're lucky you will run into someone who does know all this. They’re normally a
bit older and have seen the organization from any angles and therefore are fun to work
with.

But even then, rendering issues are often not high on their agenda. Outsourcing often
has become the modus operandi which basically brings us to the second group involved
in this discussion: suppliers.

Suppliers

I don’t know many suppliers other than the ones we ran into over a few decades. At
least where I live the departments that are responsible for outsourcing typesetting like
to deal with only a few large suppliers, interestingly because they assume that they

Stability 54

are stable. However, in my experience hardly any of those seem to have survived. (Of
course one can wonder if long term commitment really is that important in a world
where companies change so fast.) This is somewhat obscured by the fact that pub-
lishers themselves merge, reorganize, move people around, etc. so who can check on
the stability of suppliers. It is definitely a fact that at least recently hardly any of them
played a rol of any relevance in the development of stable tools. In the past the mem-
bership of TEX user groups contained people working at publishers and suppliers but
that has changed.

Let’s focus on the suppliers that somehow use TEX and let’s consider two kind of sup-
pliers: small ones, one were only a few people work, and large ones. The small ones
depend on stable TEX distributions, like TEXLive where they can get the resources from:
styles, fonts, patterns, binaries. If they get the authors TgX files they need to have that
access. They have to rework that input into what the customer demands and that likely
involves tweaks. So, maybe they have developed their own additional code. For that
code, stability is their own responsibility. Did they tweak core code of a macro package?
Fine, but you might have it coming when you update. You cannot expect the evolving
free meal world to stick to your commercial needs. A supplier can play safe and some-
how involve the developers of macro packages or consult them occasionally, but does
that really happen often? Interesting is that a few times that I was asked for input it
was also wrapped in obscurity, as if some holy grail of styling was involved, while it’s
quite likely that the developer of a macro package can write such a style (or extra code)
easily and probably also better. There really is not that much unique code around.

Small suppliers can be on mailing lists where they can contribute, get feedback, provide
testing, etc. They are part of a process and as such have some influence on stability. If
they charge by the page, then a change in their tools can be reflected in what they charge.
Basically redoing a book (or so) after a decade is doing a new job. And adapting to
some new options in a package, as part of a typesetting job is probably no big deal. Is
commercial really more stable than open source free software? Probably not, except
from open source software developers whose real objective is to eventually sell their
stuff to some company (and cash) and even accept it to be ditched. Small suppliers are
more flexible.

The large suppliers are a different group. They often guard their secrets and stay in
the dark. They probably seldom share (fundamental) code and information. If they
are present in a community it can be for marketing reasons. If at some point a large
supplier would demand stability, then my first response would be: sure I can make
you a stable setup and maybe even provide intermediate patches but put your money
where your mouth is. But that never happened and I've come to the conclusion that
we can safely ignore that group. The TEX user groups create distributions and have for
instance funded font development and it are the common users who paid for that, not
the scale ones. To some extent this is actually good because large (software related)
organizations often have special agendas that can contradict what we aim at in the long
term.

55 Stability

From the authors perspective there is a dilemma here. When you submit to a publisher
who outsources, it can be a demand to deliver in a specific TEX format. Often a pdf
comes with the source then, so that the intended rendering is known. Then that source
goes to a supplier who then (quite likely) redoes a lot of the coding in some stable
subset, maybe even in a very old version of the macro package. If I were such an author
I'd render the document in “as stupid as possible mode’ because you gain nothing by
spending time on the looks. So, stability within the package that you use is easy and
translation from one to another probably also. It’s best to check beforehand what will
happen with your source and let stability, if mentioned, be their problem. After all they
get paid for it.

Suppliers seldom know ConTgXt. An interesting question is if they really know the
alternatives well, apart from the bit they use. A well structured ConIEXt source (or
probably any source) is often easy to convert to another format. You can assume that
a supplier has tools for that (although we’re often surprised about the poor quality of
tools used). Often the strict demand for some kind of format is an excuse for lack of
knowledge. Unfortunately you need a large author base to change that attitude.

Authors

Before we move to some variants of the above, first I will look at stability from the
authors perspective. When a book is being written the typesetting more or less happens
as part of the process. The way it looks can influence the way you write and vise versa.
Once the book is done it can go in print and, unless you were using beta versions of
ConTgXt and updated frequently. Normally you will try to work in a stable setup. Of
course when a user asks for additional features while working on a project, he or she
should also accept other beta features and side effects.

After a few years an author might decide to update the book. The worst that can hap-
pen is that the code doesn’t run with the latest ConTgXt. This is not so likely because
commands are upward compatible. However, the text might come out a bit different,
for instance because different fonts or patterns are used. But on the average paragraphs
will come out the same in TEX. You can encounter differences in the vertical spacing and
page breaks, because that is where improvements are still possible. If you use concep-
tually and implementation wise complex mechanism like side floats, you can also run
into compatibility issues. But all these don't really matter much because the text will
be updated anyway and fine-tuning of page breaks (if at all) happens at the end. The
more you try to compete with desk top publishing, and the more tweaks you apply, the
greater is the risk that you introduce instability. It is okay for a one-time job, but when
you come back to it after a decade, be prepared for surprises.

Even if you stick to the original coding, it makes sense to sacrifice some of that stability
if new mechanisms have become available. For instance, if you use MetaPost, better
ways to solve your problem might have become available. Or if you document is 15
years old, a move from MKII to MKIV is a valid option, in which case you might also
consider using the latest fonts.

Stability 56

Of course, when you made a style where you patched core code, you can expect prob-
lems, because anything not explicitly mentioned in the interface definition files is sub-
jected to change. But you probably see that coming anyway.

So, is an author (or stand alone user) really dependent on stability? Probably less
than thought. In fact, the operating system, internet and browsers, additional tools:
all change over time and one adapts. It's something one can live with. Just see how
people adapt to phones, tablets, social media, electric cars, etc. As long as the docu-
ment processes and reasonable output is generated it’s fine. And that is always what
we aim at! After all we need to be able to use it ourselves, don’t we?

Projects

Although it is often overlooked as valid alternative in rendering in large scale projects,
ConTgXtis perfect as component in a larger whole. Something goes in, something comes
out. In a long term project one can just install a minimal distribution, write styles, and
run it for ages. Use a virtual machine and we’re talking decades without any change.
And, when one updates, it’s easy to check if all still works. Often the demands and
styles are simple and predictable. It's way more likely that a hard coded solution in
some large programming environment has stability issues than that the ConTgXt bit
has.

If ConTgXtis used in for instance documentation of (say) software, again there is no real
issue. Such documents are simple, evolve and therefore have no stable page flow, and
updating ConTgXt is not needed if the once decided upon coding is stable. You don't
need the latest features. We’ve written styles and setups for such tasks and indeed they
run for ages.

It can make me smile to see how much effort sometimes goes in low quality rendering
where ConIgXt could do a way better job with far less investment in time and money
but where using some presumed stable toolkit is used instead, one that comes with
expensive licensing, from companies that come and go but shine in marketing. (A valid
question is to what extent the quality of and care for documentation reflects the core
products that a company produces, at least under the hood.)

The biggest hurdle in setting up a decent efficient workflow is that it has to be seen as a
project: proper analysis, proper planning, prototyping and testing, etc. You invest first
and gain later. When dealing with paper many publishers still think in price per page
and have problems seeing that a stable mostly automated flow in the end can result in
a ridiculous low price per page, especially in typesetting on demand.

Hybrids

Last I will mention a setup that we sometimes are involved in. An author writes books
and uses TgX. The publisher is okay with that and adds some quality assurance but in
the end the product comes from the author. Maybe images are oursourced (not always

57 Stability

for the better) but these can be handled easily. It can be that a copy-editor is involved
and that person also then has to use TgX of course, or feedback to the author.

Publishers, and this really depends on knowledgeable persons, which as said can be
fun to work with, can look beyond paper and also decide for additional materials, for
instance web pages, interactive exercises, etc. In that case either ConIgXt input has to
be available as xml (an export) or (often better) xml is the starting point for multiple
output. Contrary to what is believed, there are authors out there who have no problem
coding in xml directly. They think in structured content and reuse! The fact that they
can hit a button in the editor and see the result in pdf helps a lot. It just works.

Here stability is either achieved by simply not updating during a project. There are
however cases where an update is needed, for instance because demands changed. An
example is a project where AsciiMath is used which is a moving target. Of course one
can update just that module, and often that works, but not when a module uses some
new improved core helpers. Another example is additional proofing options.

The budget of such projects seldom permit patching an existing distribution, so we
then just update to the latest but not after checking if the used style works okay. There
is no author involvement in this. Depending on the workflow, it can even be that the
final rendering which involves fine tuning (side) float placement or page breaks (often
educational documents have special demands) is done by us using special directives.

Such hybrid workflows are quite convenient for all parties. The publisher works with
the author who likes using these tools, the author can do her or his thing in the preferred
way, and we do what we’re best in: supporting this. And it scales up pretty well too if
needed, without much costs for the publishers.

Conclusion

So what can we conclude with respect to the demand for stability? First of course that
it’s important that our files keep running well. So, functionality should be stable. Freez-
ing a distribution will make sure that during project you don’t run into issues. Many
ConTgXt users update frequently in order to benefit from the latest additions. Most will
not be harmed by this, but when something really breaks it’s users like those on the
ConIgXt support list (who often also contribute in helping out other users) that are lis-
tened to first. Publishers demands play no role in this, if only because they also play no
role in typesetting, and if they want to they should also contribute. The same is true for
large suppliers. We're talking of free software often written without any compensation
so these parties have no say in the matter unless they pay for it. It's small suppliers,
authors and general users that matter most. If ConIEXt is part of a workflow that we
support, of course stability is guaranteed quite well, and those paying for that never
have an issue with better solutions popping up. In fact, ConTgXt is often just a tool
then, one that does the job and questions about stability don’t matter much in practice,
as long as it does the job well.

Stability 58

The main engine we use, LuaTgX, will be quite stable from version 1.10 and we'll try to
make sure that newer versions are capable of running an older ConTEXt, which is easier
when no fundamental changes happen in the engine. Maybe a stripped down version
of LuaTgX for ConTgXt can facilitate that objective even more.

Users themselves can try to stick to standard ConTgXt features. The more tricks you
apply, the less stable your future might be. Most mechanism are not evolving but some,
like those that deal with columns, might become better over time. But typesetting in
columns is often a one-shot adventure anyway (and who needs columns in the future).

Of one thing users can be sure. There will never be a ConTgXt professional or ConTEXt
enterprise. There is only one variant. All users get the same functionality and policies
don’t change suddenly. There will be no lock in to some cloud or web based service
either. Of course one can hire us for support of any kind but that’s independent of
the distributed package. There is support by users for users on mailing lists and other
media. That itself can also guard stability.

But, always keep in mind that stability and progress, either of not driven by the envi-
ronment that we operate in, can be in conflict.

59 Stability

MetaTgX, a roadmap 6

6.1 Introduction

Here I will shortly wrap up the state of LuaTgX and ConIgXt in fall 2018. I made the
first draft of this article as preparation for the ConTgXt meeting where we also discussed
the future. I updated the text afterwards to match the decisions made there. It’s also
a personal summary of thoughts and discussions with team members about where to
move next.

6.2 The state of affairs

After a dozen years the development of LuaTEX has reached a state where adding more
functionality and/or opening up more of the internals makes not much sense. Apart
from fixes and maybe some minor extensions, version 1.10 is what you get. Users can do
enough in Lua and there is not much to gain in convenience and performance. Of course
some of the code can and will be cleaned up, as we still see the effects of going from
Pascal to cweb to C. In the process consistency is on the radar so we might occasionally
add a helper. But we also don’t want to move too far away from the original code,
which is for instance why we keep names, keys and other properties found in original
TgX, which in turn leads to some inconsistencies with extensions added over time. We
have to accept that.

Because LuaTgX development is closely related to ConIEXt development, especially
MKIV, we've also reached the moment that we can get rid of some older code and as-
sume the latest LuaTgX to be used. Because we do so much in Lua the question is always
to what extent the benefits outweigh the drawbacks. Just in case you wonder why we
use Lua extensively, the main reason is that it is easier and more efficient to manage
data in this language and modern typesetting needs much data. It also permits us to
extend regular TgX functionality. But, one should not overrate the impact: we still let
TEX do what TgX is best at!

Performance is quite important. It doesn’t make sense to create a powerful typesetting
system where processing a page takes a second. We have discussed performance before
since one of the complaints about LuaTgX is that it is slow. A simple, basic test is this:

\starttext
\dorecurse{1000}{\input tufte \par}
\stoptext

This involves 1000 times loading a file (and reporting that on the console, which can
influence runtime), typesetting paragraphs, splitting of a page and of course loading

MetaTgX, a roadmap 60

fonts and saving to the pdf file. When I run this on a modest machine, I get these
(relative) timings for the (about) 225 pages:

TEX engine used pdfTEX LuaTgX LuajitTEX XqIEX
runtime in seconds 2.0 3.9 3.0 8.4

Now, as expected the 8 bit pdfTgX is the winner here but LuaTgX is not doing that bad. I
don’t know why XgIEX is so much slower, maybe because its 64 bit binary is less optimal.
I once noticed that a 64 bit pdfTEX performed worse on such a test than LuaTgX, for
which I always use 64 bit binaries.

If you consider that often much more is done than in this example, you can take my
word that LuaTgX quickly outpaces pdfTEX on more complex tasks. In that sense it is
now our benchmark. It must be said that the MKIV code is probably a bit more efficient
than the MKII code but that doesn’t matter much in this simple test because hardly any
macro magic happens here; it mostly tests basic font processing, paragraph building
and page construction. I don’t think that I can squeeze out more pages per second, at
least not without users telling me where they encounter bottlenecks that don't result
from their style coding. It’s no problem to write inefficient macros (or styles) so nor-
mally a user should first carefully check her/his own work. Using a more modern cpu
with proper caching and an ssd helps too.

So, to summarize, we can say that with version 1.10 LuaTgX is sort of finished. Our
mission is now to make LuaTgX robust and stable. Things can be added and improved,
but these are small and mostly consistency related.

6.3 More in Lua

Till now I always managed to add functionality to ConTgXt without hampering per-
formance too much. Of course the biggest challenge is always in handling fonts and
common features like color because that all happens in Lua. So, the question is, what if
we delegate more of the core functionality to Lua? I will discuss a few options because
the ConIgXt developers and users need to agree on the path to follow. One question
there is, are the possible performance hits (which can be an inconvenience) compen-
sated by better and easier typesetting.

Fonts, colors, special typesetting features like spaced kerning, protrusion, expansion,
but also dropped caps, line numbering, marginal notes, tables, structure related things,
floats and spacing are not open for much discussion. All the things that happen in Lua
combined with macros is there and will stay. But how about hyphenation, paragraph
building and page building? And how about a leaner and meaner, future safe engine?

Hyphenation is handled in the TgX core. But in ConIgXt already for years one can
also use a Lua based variant. There is room for extensions and improvements there.
Interesting is that performance is more or less the same, so this is an area where we
might switch to the Lua method eventually. It compares to fonts, where node mode is
more or less the standard and base mode the old way.

61 MetaTgX, a roadmap

Building the paragraphs in Lua is also available in MKIV, although it needs an update.
Again performance is not that bad, so when we add features not possible (or hard to
do) in regular TgX, it might actually pay of to default to the par builder written in Lua.

The page builder is also doable in Lua but so far I only played a bit with a Lua based
variant. I might pick up that thread. However, when we would switch to Lua there, it
might have a bit of a penalty, unless we combine it with some other mechanisms which
is not entirely trivial, as it would mean a diversion from the way TgX does it normally.

How about math? We could at some point do math rendering in Lua but because the
core mechanism is the standard, it doesn’t really makes much sense. It would also touch
the soul of TEX. But, I might give it a try, just for fun, so that I can play with it a bit. It’s
typically something for cold and rainy days with some music in the background.

We already use Lua in the frontend: locating and reading files in TgX, xml, Lua and
whatever input format. Normalization and manipulation is all active and available. The
backend is also depending on Lua, like support for special pdf features and exporting
to xml. The engine still handles the page stream conversion, font inclusion and object
management.

The inclusion of images is also handled by the engine, although in ConTEXt we can
delegate pdf inclusion to Lua. Interesting is that this has no performance hit.

With some juggling the page stream conversion can also be done in Lua, and I might
move that code into the ConTgXt distribution. Here we do have a performance hit: about
one second more runtime on the 14 seconds needed for the 300 page LuaTEX manual
and just over more than half a second on a 11 second LuajitTgX run. The manual has
lots of tables, verbatim, indices and uses color as well as a more than average number
of fonts and much time is spent in Lua. So there is a price to pay there. I tried to speed
that up but there is not much to gain there.

So, say that we default to Lua based hyphenation, which enables some new function-
ality, Lua based par building, which permits some heuristics for corner cases, and Lua
based page building, which might result in more control over tricky cases. A total per-
formance hit of some 5% is probably acceptable, especially because by that time I might
have replaced my laptop and won’t notice the degrade. This still fits in the normal
progress and doesn’t really demand a roadmap or wider acceptance. And of course we
would still use the same strategies as implemented in traditional TgX as default anyway.

6.4 A more drastic move

More fundamental is the question whether we delegate more backend activity to Lua
code. If we decide to handle the page stream in Lua, then the next question is, why not
also delegate object management and font inclusion to Lua. Now, keep in mind that this
is all very ConIgXt specific! Already for more than a decade we delegate a lot to Lua,

MetaTgX, a roadmap 62

and also we have a rather tight control over this core functionality. This would mean
that ConTgXt doesn't really need the backend code in the engine.*

That situation is actually not unique. For instance, already for a while we don’t need
the LuaTgX font loader either, as loading the OpenType files is done in Lua. So, we
could also get rid of the font loader code. Currently some code is shared with the font
inclusion in the backend but that can be isolated.

You can see a TEX engine as being made from several parts, but the core really concerns
only two processes: reading, storing and expanding macros on the one hand, and con-
verting a stream of characters into lines, paragraphs, pages etc. Fonts are mostly an
abstraction: they are visible in so called glyph nodes as font identifier (a number) and
character code (also a number) properties. The result, nowadays being pdf, is also an
abstraction: at some point the engine converts the to be shipped out box in pdf instruc-
tions, and in our case, relatively simple ones. The backend registers which characters
and fonts are used and also includes the right resources. But, the backend is not part
of the core as such! It has been introduced in pdfTEX and is a so called extension.

So, what does that all mean for a future version of ConIgXt and LuaTgX? It means that
we can decide to follow up with a ConIgXt that does more in Lua, which means not hard
coded in a binary, on the one hand, but that we can also decide to strip the engine from
non-core code. But, given that LuaTgX is also used in other macro packages, this would
mean a different engine. We cannot say that LuaTgX is stable when we also experiment
with core components.

We've seen folks picking up experimental versions assuming that it is a precursor to
official code. So, in order to move on we need to avoid confusion: we need to use
another name. Choosing a name is always tricky but as Taco already registered the
MetaTgX domain, and because in the ConTgXt distribution you will find references to
MetaTgX, we will use that name for the future engine. Adding Lua to that name makes
sense but then the name would become too long.

The main difference between MetaTgX and LuaTgX would be that the former has no
file lookup library, no hardcoded font loader, and no backend generator (but possibly
some helpers, and these need time to evolve). We're basically back where TgX started
but instead of coding these extensions in Pascal or C we use Lua. We're also kind of back
to when we first started experimenting with LuaTgX in ConTEXt where test, write and
rewrite were going in parallel. But, as said, we cannot impose that on a wide audience.

If we go for such a lean and mean follow up, then we can also do a more drastic cleanup
of obsolete code in ConTgXt (dating from e-TgX, pdfTEX, Aleph, etc.). We then are sort
of back to where it all started: we go back to the basics. This might mean dropping some
primitives (one can define them as dummy). Of course we could generalize some of the
ConIEXt code to provide the kicked out functionality but would that pay of? Probably
not.

For generic packages like TikZ we (can) provide some primitive emulators, which is rather trivial to
implement.

63 MetaTgX, a roadmap

Just for the record: replacing the handling of macros, registers, grouping, etc. to Lua
is not really an option as the performance hit would make a large system like ConTgXt
sort of unusable: it’s no option and not even considered (although I must admit that I
have some experimental Lua based TgX parser code around).

It is quite likely that building MetaTgX from source for the moment will be an option
to the build script. But we can also decide to simplify that process, which is possible
because we only need one binary. But in general we can assume that one can generate
MetaTgX and LuaTgX from the same source. A first step probably is a further isolation of
the backend code. The fontloader and file handling code already can be made optional.

Given that we only need one binary (it being LuaTgX or MetaTgX) and nowadays only
use OpenType fonts, one can even start thinking of a mini distribution, possibly with a
zipped resource tree, something we experimented with in the early days of LuaTgX.

Another though I have been playing with is a better separation between low level and
high level ConTgXt commands, and whether the low level layer should be more generic
in nature (so that one can run specific packages on top of it instead of the whole of
ConTgXt) but that might not be worth the trouble.

6.5 Interlude

If we look at the future, it’s good to also look at the past. Opening up TpX the way we
did has many advantages but also potential drawbacks. It works quite well in Con-
TEXt because we ship an integrated package. I don't think that there are many users
who kick in their own callbacks. It is possible but completely up to the user to make
sure things work out well. Performance hits, interference, crashes: those who interfere
with the internals can sort that out themselves. I'm not sure how well that works out
in other macro packages but it is a time bomb if users start doing that. Of course the
documented interfaces to use Lua in ConIgXt are supported. So far I think we’re not
yet bitten in the tail. We keep this aspect out of the discussion.

Another important aspect is stability of the engine. Sometimes we get suggestions for
changes or patches that works for a specific case but for sure will have side effects on
ConIgXt. Just as we don't test IATEX side effects, IXTgX users don’t check ConTgXt. And
we're not even talking of users who expect their code to keep working. A tight control
over the source is important but cannot be we will not be around for ever. This means
that at some point LuaTgX should not be changed any more, even when we observe side
effects we want to get rid of, because these side effects can be in use. This is another
argument for a stripped down engine. The less there is to mess with, the less the mess.

6.6 Audience

So how about ConTgXt itself? Of course we can make it better. We can add more ex-
amples and more documentation. We can try to improve support. The main question

MetaTgX, a roadmap 64

for us (as developers) is who actually is our audience. From the mails coming to the
ConTgXt support list it looks like a rather diverse group of users.

At TgX meetings there are often discussions about promoting TgX. I can agree on the
fact that even for simple documents it makes a lot of sense to use TgX, but who will
take the first hurdles? How many people really produce a lot of documents? And how
many need TgX after maybe a short period of (enforced) usage at the university?

It’s not trivial to recognize the possibilities and power of the LuaTgX-ConIgXt combina-
tion. We never got any serious requests for support from large organizations. In fact,
we do use this combination in a few projects for educational publishers, but there it’s
actually the authors and editors doing the work. It's seldom company policy to use
tools that efficiently automate typesetting. I dare to say that publishers are not really
an audience at all: they normally delegate the task. They might accept TEX documents
but let them rekey or adapt far-far-away and as cheap as possible. Thinking of it, the
main reason for Don Knuth for writing TgX in the first place was the ability to control
the look and feel and quality. It were developments at typesetters and publishers that
triggered development of TEX. It was user demand. And the success of TpX was largely
due to the unique personality and competence of the author.

System integrators qualify as audience but I fear that TX is not considered hip and
modern. It doesn’t seem to matter if you can demonstrate that it can do a wonderful
job efficiently and relatively cheap. Also the fact that an installation can be very stable
on the long run is of no importance. Maybe that audience (market place) is all about
“The more we have to program and update regularly, the merrier.”. Marketing TgX is
difficult.

Those who render multiple products, maintain manuals, have to render many docu-
ments automatically qualify as audience. But often company policies, preferred sup-
pliers, so called standard tools etc. are used as argument against TgX. It’s a missed op-
portunity.

One needs a certain mindset to recognize the potential and the question is, how do
we reach that audience. Drawing a roadmap for that is not easy but worth discussing.
We're open for suggestions.

6.7 Conclusion

At the ConTgXt user meeting those present agreed that moving forward this way makes
sense. This means that we will explore a lean and mean MetaTEX alongside LuaTgX.
There is no rush and it’s all volunteer work so we will take our time for this. It boils
down to some reshuffling of code so that we can remove the built-in font loader, file
handling, and probably also SyncTgX because we can emulate that. Then the backend
with its font inclusion code will be cleaned up a bit (we even discussed only supporting
modern wide fonts). It’s no big deal to adapt ConTgXt to this (so it can and will support
both LuaTgX and MetaTgX). Eventually the backend might go away but now we're talk-
ing years ahead. By then we can also explore the option to make MetaTgX start out as

65 MetaTgX, a roadmap

a Lua function call (the main control loop) and become reentrant. There will probably
not be many changes to the opened up TeX kernel, but we might extend the MetaPost
part a bit (some of that was discussed at the meeting) especially because it is a nice tool
to visualize big data.

As with LuaTEX development we will go in small steps so that we keep a working sys-
tem. Of course LuaTgX is always there as stable fallback. The experiments will mostly
happen in the experimental branch and binaries will be generated using the compile
farm on the ConTgXt garden, just as happens now. This also limits testing and explor-
ing to the ConTgXt community so that there are no side effects for mainstream LuaTgX
usage.

Nowadays, instead if roadmaps, we tend to use navigational gadgets that adapt them-
selves to the situation. On the road by car this can mean a detour and when walking
around it can be going to suggested points of interest. During the excursion at the meet-
ing, we noticed that after the drivers (navigators) synchronized their gadget with Jano,
the routes that were followed differed a bit. We saw cars in front of going a different
direction and cars behind us arriving from a different direction. So, even when we talk
about roadmaps, our route can be adapted to the situation.

Now here is something to think about. If you look at the TgX community you will
notice that it’s an aging community. User groups seem to loose members, although the
ConTgXt group is currently still growing. Fortunately we see a new generation taking
interest and the ConIEXt users are a pleasant mix and it makes me stay around. I see
it as an ‘old timers’ responsibility to have TgX and its environment in a healthy state
by the time I retire from it (although I have no plans in that direction). In parallel to
the upcoming development I think we will also see a change in TEX use and usage.
This aspect was also discussed at the meeting and for sure will get a follow up on the
mailing lists and future meetings. It might as well influence the decisions we make the
upcoming years. So far TgX has never failed us in it’s flexibility and capacity to adapt,
so let’s end on that positive note.

MetaTgX, a roadmap 66

67 MetaTgX, a roadmap

What's in a name 7

Hans Hagen
Hasselt NL
May 2019

7.1 TEX

I sometimes wonder how much the fact that English is the language mostly used in
programming environments influences the way one looks at a program. For instance,
translating the names of an operating system ‘windows’, an image manipulation pro-
gram ‘photoshop’ or a text editing program ‘wordperfect’ to Dutch makes them sound
kind of silly to me. The name can influence what you buy or are willing to use. These are
examples of commercial programs but there are plenty examples of such naming in the
open source universe too. I write this in my own bad English so that other non-English
speakers can try to do a similar exercise.

So, whenIwas reading an article about cpu technology called ‘thread-ripper’ and after a
while also saw the usual talk of yet another bunch of technologies marked as “stack” and
translated that to Dutch it again made me feel somewhat puzzled about such names.
From there it was a small step to wondering about programming languages, and espe-
cially the ones I use: TgX, MetaPost, and Lua.

One can even wonder to what extent the quality of programming is influenced by the
names of commands and keywords. A language name ‘Basic” sounds less serious than
‘C’. Ameaningless ‘Lua’ sounds different than ‘Python’. Does using your native tongue
make a difference? In Dutch and German words tend to get long. When I look at my
French dictionary it is rather thin, but we might need accented characters. Words in a
language like Polish can differ per usage. What if German or Spanish had been chosen
as the language for what is now the United States? How would we perceive program-
ming and what would look natural to us?

7.2 TEX

The TgX language comes with a lot of so called primitives built in. Many of these relate
to concepts in the program. For instance, a movement in horizontal or vertical direc-
tion that can stretch or shrink depending on what the boundary conditions demand,
is called ‘glue’. When discussing this in Dutch the word ‘lijm” can be used and after
seeing it a few times it might sound ok. We can probably use ‘elastiek” (“elastic”).

This internal concept is actually represented to the user via the interface name ‘skip’,
take: \abovedisplayskip and \belowdisplayskip. Here the word ‘display” refers

What’s in a name 68

to math that gets vertical space around it and is normally typeset in a somewhat larger
way compared to ‘inline’. The word ‘skip” can be translated to ‘sprong’ (translated
back we could as well get ‘jump”). But how to translate ‘display’? An internet trans-
lation can be ‘tentoonspreiding’ but apart from it being a long word it sounds pretty
weird for something math. The combined translation of such a command will not
work well I think so probably complete different words has to be made up to describe
these quantities. Taco suggested that \bovenuitstallingkortesprong might work
for \abovedisplayshortskip but luckily no ordinary TgX user will not set such pa-
rameters in a document source.

In ConTgXt we use the somewhat typographical term wit or witruimte for vertical
spacing. Some parameters like \baselineskip can be translated directly to the Dutch
\regelafstand which is a proper typographical term (TgX has no concept of line
height). Okay, it can become messy when we translate \1ineskip by \interline-
space as that could be seen as the baseline skip too (‘interlinie” comes to mind). Quite
a mess. In many cases we probably would not handle the skip part in parameter:
leftskip could become \1linkermarge and \parfillskip can become \paragraa-
fuitvulling.

Another concept is that of ‘penalty’, or in Dutch boete. It’s probably harder to get
the combinations right, simply because they have no typographical meanings, they're
more process controllers. I fear that most translations would sound pretty weird to me.
So, how do they sound to a native English speaker? Words like ‘club” or ‘widow” can
be translated to their Dutch gender neutral counterparts ‘wees” and “‘weduw’ but how
strange does weduwboete sound?

The counter variables are easier. When they end on char that can become karakter.
However, translating \escapechar with \ontsnappingskarakter might look a bit
weird, but as that one is used very seldom, a weird one doesn’t matter much. Operators
like \advance and \multiply can become \verhoog and \vermenigvuldig which
doesn’t sound that strange in this context.

There are ‘rule’s and ‘box’es. The first one can be translated to ‘lijn” which sounds quite
good. But what to do with the second one. We can use ‘blok’ (which translates back
to ‘block”) which is good when we start stacking things, but also with ‘doos” which is
more literal but sounds to me somewhat silly: \hdoos{whatever}. I'm not so sure if
I would have seen that in a book about TgX, I'd looked further into the language. The
optional keywords ‘width’ etc. can be translated well into ‘breedte’ etc., so no problem
there.

There are all kinds of very peculiar aspects that need a translation. For instance the
(for new users intimidating) primitive \futurelet. The ‘future’ part is no problem
as ‘toekomst” isn’t that weird but the ‘let” will for sure become something very long
in Dutch, so we end up with \toekomstigetoekenning, but seeing that long one, we
can consider kijkvooruit asreasonable alternative. It definitely leads to more verbose
programming.

69 What's in a name

Expansion is a tricky one. I have no clue what would make nice translations of the prim-
itives \noexpand and \expandafter. The Dutch “uitbreiden” simply is not sounding
good here. Taco Hoekwater came up with a good alternative ‘uitvouwen’ for ‘expand’
and I like that one because we then can let bookmaker (a somewhat dubious term in
itself) Willi Egger organize a workshop in unfolding (instead of folding).

Talking of ‘macros’ is less a problem because there is no Dutch word for it. There are
more words with no real translations: \kern for instance probably would need some
thinking but there might be a typographical equivalent that can be used.

The e-TgX and LuaTgX extensions introduce new names, like \detokenize, \boundary
and \attribute. The first one is hard to translate because again it relates to an internal
concept: tokens. I get the feeling that translating each occurrence of token by teken
kind of makes everything look less serious. To strip something from its special meaning,
which is actually what \detokenize does can give weird translations: \onttekenen
is not really a Dutch word so a complete different one has to be found that describes
what happens, like \ontwaarderen. On the other hand, \boundary and \attribute
can translate directly into \grens and \attribuut where the last one sounds mostly
okay.

Just to get you thinking: how would you translate \looseness (losheid, related
to linebreaking), \deadcycles (\zinlozelus, in the perspective of building pages),
\pretolerance (again line break related, here we can use something tolerantie)
and \prevgraf (which is actually even in English a weird one but hardly used any-
way, so Taco likes voorloopregels)? The easy ones are \omit, \meaning, \number,
maybe even \mark. The for users often difficult to grasp ‘catcode’ can be simplified to
‘code” which is proper Dutch. Concepts like ‘align” translate well to “uitlijnen’. Short
ones like \wd could be a problem but any two letter combination can look bad, so \br
could do. In the same fashion \def is ok as it is also the start of the Dutch “definitie’.
Mathematical terms like ‘text’, script” and “scriptscript” can be confusing: “tekst” will
do but ‘schrift’ is strange.

Conditionals are not the hardest part: \if becomes \als, \else becomes \anders and
\or is \of. However, turning \ifcase into \inhetgevaldat can be over the top. The
\every. .. register variables can also be translated quite well, by using the \elk or
\elke prefix. They are seldom seen at the user level so no real problem there.

The ‘group’ related commands are easy as ‘groep’ is a good Dutch equivalent. Even
‘global” operations translate well (globaal). A dubious one is \font because we can
use \lettertypebutit’'snotreally a translation. The internet translations tend towards
‘fountain” kind of things.

The concept of “discretionary” again needs a decent typographical translation although
\hyphenation can become \afbreking, translating \discretionary needs some
imagination. The concept of ‘leaders’ is again something that can best be bound to
something more typographical because \leaders turned \leidinggevende is not an
option nor is \leiders.

What’s in a name 70

The prefix \un as used in \unhbox can become \ont so that we get \ontdoos but I
get the feeling that this one can be source of jokes. The more verbose \pakdoosuit
(equivalent to \unpackbox) would do better. To translate \unvcopy into the gibberish
\ontdoosdecopie is simply ridiculous and \copieeruitgepaktedoos is a bit long.
The \lower and \raise on the other hand translate well to \verlaag and \verhoog.
Keeping \relax untranslated sounds ok to me, because \ontspan really makes a lan-
guage silly.

7.3 MetaPost

The TgX language is driving a macro system while Lua is a procedural language. The
MetaPost language sits somewhere in between. It is still expanding all along but it
looks a bit more like a programming language with its loops, assignments, conditionals,
expressions and (sort of) functions. As a consequence some of what I mentioned in the
previous section applies here.

Translation of for instance truecorners into echtehoeken can give the language a bit
less serious image. Words like 1inejoin, 1inecap and miterlimit relate directly to
the PostScript language so translating them also relates to translated PostScript.

The primary, secundary keywords can be nicely translated into serious counterparts
primaire and secundaire which are words that are not really of Dutch origin any-
way. The precontrol and postcontrol words relate to concepts but even there the
verbose controlepuntvoor and controlepuntachter could do. However punt as
translation for point can be confusing because we also use that for period. Trans-
lating controls and curl needs some imagination. Words like tension becoming
spanning is still acceptable soundwise. However:

voor i=1 stap 2 tot 10:

eindvanvoor; % or: eindvoor

Kind of interesting is translating if into als because fi then becomes sla which is
‘lettuce’ or, when see as verb, ‘hit’. The true and false keywords becoming goed and
fout is no problem.

Turning atleast into opzijnminst at first sight looks strange but actually I can ap-
preciate that one. And tussendoortje as translation of interim, I can live with that
one too as it sounds funny. Concepts like ‘suffixes’ need thinking but uitdr (ukking)
or more literal expr (essie) for expr (ession) are okay. The expandafter, scan-
tokens and similar keywords share the problem with TgX that they relate to concepts
that are hard to translate.

The redpart and similar keywords could be translated into rooddeel but roodka-
naal (meaning redchannel) might be better or maybe rodecomponent. As with TgX
grouping related keywords are no problem.

71 What's in a name

A pencircle becomes pencirkel, odd becomes oneven, reverse becomes omge-
keerd (or andersom or tegengesteld). For length we use lengte, and so on. All
these sound professional enough, just like ‘corner’ related keywords becoming ‘hoek’,
although there a clash with ‘angle’ is possible. I'm less sure about c1ipped becoming
afgeknepen or begrensd but bounded then needs some thinking as these all are more
or less the same. The concept of ‘stroke” maps onto ‘tekenen’ or ‘vegen” but lucky us
that one is not really used, contrary to draw that can map onto teken, while £i11 and
vul match well too I guess.

The transformations are no problem but I'd use a directive instead: rotated or roteer,
slantedor schuin,scaledorschaal,and transformor transformeer. As youcan
see, these have a reasonable word length too.

The concept of a picture is known in Dutch as plaatje or tekening: not an easy
choice. Using kleur for color is no problem at all. A coordinate pair becomes a
paar: close enough not to give subjective side effects. The inner and outer keywords
translate well to binnen and buiten but in code it might look a bit strange.

So, in general, the translated commands are not that weird but still a graphic defined
in Dutch keywords instead of English to me might look less serious.

7.4 Lua

We now arrived at a more traditional programming language. The Lua language only
has a few keywords. I suppose that it’s just a matter of time before one gets accustomed

toals ... dan ... anders ... eindinstead of if ... then ... else ... end. The
loops also translate rather well: zolang ... doe, herhaal .. totdat, voor ... in
. doe ... einde are all not that verbose. Also, with proper syntax highlighting

they stand out and become abstract words. But because examples for kids are normally
in Dutch, using a Dutch programming language might give a toy language feeling.

The local directive is a bit of a problem because it should be lokale variabele in
order to sound ok in a sentence. The goto should become ganaar which is also two
words with no space in between. The function keyword can become functie. A
coroutine is a challenge (also conceptually); we do have routine but how about the
co part?

Because Lua is such a clean language it doesn’t really end up bad. In C there are some
more issues due to the abbreviated struct, int, char, enum and typedef. A literal
translation of void to leegte to me sounds a bit strange. What to do with unsigned?
Coming up with something (short) Dutch for return is not easy either. Translating
switch into schakelaar looks like a bad idea but after consulting Taco using keuze
came up. The break then can be klaar which roundtrips to ‘finished” and default
can be anders which roundtrips to ‘otherwise” which is indeed what some languages
provide.. But, there are programming languages out there that have plenty keywords
and that are more challenging. But as I'm a happy Lua user I don’t have to worry about
them.

What’s in a name 72

7.5 Conclusion

Looking at a program source in Dutch the general feeling probably will be different.
A low level bit of TgX is the worst. For MetaPost it’s bearable and for Lua it is kind of
okay. But in all cases, I'm not convinced that it would give me the same feeling. The
abstraction of the language due to it not being my native tongue makes a difference.
This problem is not much different than what we have with popular music and songs:
for non-native speakers it’s basically sounds, but for a native speaker it is more clear
when nonsense is sung. The same can happen to me with movies, where watching some
scandinavian series is different from watching a Dutch one. In the last case one picks up
different nuances, not necessarily for the best. But it can be worse: post synchronized
(audio) translations can be pretty unbearable and might compare well to programs
translated to for instance Dutch. So let’s not discuss the way Germans would deal with
this.

7.6 Side notes

We now see monospaced fonts showing up that provide ligatures for e.g. <= and I've
seen examples where ligatures kicked in for £i. One can wonder about that but liga-
tures are definitely something to keep in mind when translating.

The ConIgXt macro package is normally used with the English user interface. But the
design is such that one can provide different ones too; after all it started out Dutch. Itis
beyond the scope of this musing to discuss the problems with translating typographical
concepts between languages, especially when there are no distinctive words. But it can
(and has) been done.

73 What’s in a name

About what ConTgXt isn’t

8.1 Introduction

It really puzzles me why, when someone someplace asks if ConIgXt is suitable for her
or is his needs, there are answers like: “You need to think of ConTgXt as being kind of
plain TEX: you have to define everything yourself.” That answer probably stems from
the fact that for I#TgX you load some style that defines a lot, which you then might need
to undefine or redefine, but that’s not part of the answer.

In the following sections I will go into a bit more detail of what plain TgX is and how
it influences macro packages, especially ConTgXt. I'm sure I have discussed this before
so consider this another go at it.

The plain. tex file start with the line:

% This is the plain TeX format that's described in The TeXbook.
A few lines later we read:

% And don't modify the file under any circumstances.

So, this format related to the TEX reference. It serves as a template for what is called
a macro package. Here I will not go into the details of macro programming but an
occasional snippet of code can be illustrative.

8.2 Getting started
The first code we see in the plain file is:

\catcode \{=1 % left brace is begin-group character

\catcode \}=2 % right brace is end-group character

\catcode \$=3 ¥ dollar sign is math shift

\catcode \&=4 7, ampersand is alignment tab

\catcode \#=6 7 hash mark is macro parameter character

\catcode \"=7 \catcode \""K=7 Y, circumflex and uparrow are for superscripts
\catcode _=8 \catcode \""A=8 7, underline and downarrow are for subscripts
\catcode \""I=10 % ascii tab is a blank space
\chardef\active=13 \catcode \~=\active % tilde is active

\catcode \""L=\active \outer\def~"L{\par} % ascii form-feed is "\outer\par"

Assigning catcodes to the braces and hash are needed in order to make it possible to
define macros. The dollar is set to enter math mode and the ampersand becomes a

About what ConTgXtisn't 74

separator in tables. The superscript and subscript also relate to math. Nothing demands
these bindings but they are widely accepted. In this respect ConTgXt is indeed like plain.

The tab is made equivalent to a space and a tilde is made active which means that later
on we need to give it some meaning. It is quite normal to make that an unbreakable
space, and one with the width of a digit when we’re doing tables. Now, nothing de-
mands that we have to assume ascii input but for practical reasons the formfeed char-
acter is made equivalent to a \par.

Now what do these ~“K and similar triplets represent? The ~~A represents character
zero and normally all these control characters below decimal 32 (space) are special.
The ~~1I is the ascii tab character, and ~~L the formfeed. But, the ones referred to as
uparrow and downarrow in the comments have only meaning on certain keyboards.
So these are typical definitions that only made sense for Don Knuth at that time and
are not relevant in other macro packages that aim at standardized input media.

% We had to define the \catcodes right away, before the message line, since
% \message uses the { and } characters. When INITEX (the TeX initializer) starts

% up, it has defined the following \catcode values:

% \catcode \""@=9 ¥ ascii null is ignored

% \catcode \""M=5 ¥, ascii return is end-line

% \catcode \\=0 % backslash is TeX escape character
% \catcode \%=14 7 percent sign is comment character
% \catcode™\ =10 7% ascii space is blank space

% \catcode \""7=15 7, ascii delete is invalid

% \catcode \A=11 ... \catcode \Z=11 7 uppercase letters
% \catcode \a=11 ... \catcode \z=11 % lowercase letters

% all others are type 12 (other)

The comments above speak for themselves. Changing catcodes is one way to adapt
interpretation. For instance, in verbatim mode most catcodes can best be made letter
or other. In ConTgXt we always had so called catcode regimes: for defining macros, for
normal text, for xml, for verbatim, etc. In MKIV this mechanism was adapted to the
new catcode table mechanism available in that engine. It was one of the first things we
added to LuaTgX. So, again, although we follow some standards (expectations) Con-
TEXt differs from plain.

% We make @ signs act like letters, temporarily, to avoid conflict between user

% names and internal control sequences of plain format.

\catcode @=11

In ConTgXt we went a step further and when defining macros also adapted the catcode
of ! and 7 and later in MkIV _. When we're in unprotected mode this applies. In
addition to regular text input math is dealt with:

% INITEX sets up \mathcode x=x, for x=0..255, except that

75 About what ConTgXt isn't

yA
% \mathcode x=x+"7100, for x
% \mathcode x=x+"7000, for x

A to "Z and "a to “z;
"0 to "9.

% The following changes define internal codes as recommended in Appendix C of
% The TeXbook:

\mathcode \""@="2201 % \cdot
\mathcode \""A="3223 % \downarrow
\mathcode \""B="010B % \alpha
\mathcode \""C="010C % \beta
\mathcode ™\ |="026A
\mathcode~\}="5267

\mathcode \""7="1273 % \smallint

Here we see another set of definitions but the alphabetic ones are not defined in Con-
TEXt, they are again bindings to the authors special keyboard.

% INITEX sets \sfcode x=1000 for all x, except that \sfcode X=999 for uppercase

% letters. The following changes are needed:
\sfcode \)=0 \sfcode \'=0 \sfcode \]=0

% The \nonfrenchspacing macro will make further changes to \sfcode values.

Definitions like this depend on the language. Because original TgX was mostly meant
for typesetting English, these things are hard coded. In ConIXt such definitions relate
to languages.

Ishow these definitions because they also illustrate what TeX is about: typesetting math:

% Finally, INITEX sets all \delcode values to -1, except \delcode” .=0

\delcode "\ (="028300
\delcode \)="029301
\delcode "\ [="05B302
\delcode \]="05D303
\delcode \<="26830A
\delcode \>="26930B
\delcode \/="02F30E
\delcode™\|="26A30C
\delcode " \\="26E30F

% N.B. { and } should NOT get delcodes; otherwise parameter grouping fails!

Watch the last comment. One of the complications of TgX is that because some char-
acters have special meanings, we also need to deal with exceptions. It also means that

About what ConTgXtisn't 76

arbitrary input is not possible. For instance, unless the percent character is made a
letter, everything following it till the end of a line will be discarded. This is an areas
where macro packages can differ but in MKII we followed these rules. In MkIV we
made what we called \nonknuthmode default which means that ampersands are just
that and scripts are only special in math (there was also \donknuthmode). So, ConTgXt
is not like plain there.

8.3 Housekeeping

The next section defines some numeric shortcuts. Here the fact is used that a defined
symbolic character can act as counter value. When the number is larger than 255 a math
character is to be used. In LuaTgX, which is a Unicode engine character codes can be
much larger.

% To make the plain macros more efficient in time and space, several constant
% values are declared here as control sequences. If they were changed, anything

% could happen; so they are private symbols.

\chardef\@ne=1
\chardef\tw@=2
\chardef\three=3
\chardef\sixt@0n=16
\chardef\@cclv=255
\mathchardef\@cclvi=256
\mathchardef\@m=1000
\mathchardef\@M=10000
\mathchardef\@MM=20000

In ConTgXt we still support these shortcuts but never use them ourselves. We have
plenty more variables and constants and nowadays always use verbose names. (There
was indeed a time when each extra characters depleted string memory more and more
so then using short command names made sense.) The comment is right that using
such variables is more efficient, for instance once loaded a macro is a sequence of tokens,
so \Qone takes one memory slot. In the case of the first three the saving is zero and
even interpreting a single character token 3 is not less efficient than \thr@@, but in the
case of \@cclv the three tokens 255 take more memory and also trigger the number
scanner which is much slower than simply taking the meaning of the \chardef’d token.
However, the ConTgXt variable \plusone is as efficient as the \@ne and it looks prettier
in code too (and I'm very sensitive for that). So, here ConIEXt is definitely different!

It makes no sense to show the next section here: it deals with managing registers, like
counters and dimensions and token lists. Traditional TgX has 255 registers per category.
Associating a control sequence (name) with a specific counter is done with \countdef
but I don’t think that you will find a macro package that expects a user to use that
primitive. Instead it will provide a \newcount macro. So yes, here ConTgXt is like
plain.

77 About what ConTgXt isn't

Understanding these macros is a test case for understanding TgX. Take the following
snippet:

\let\newtoks=\relax % we do this to allow plain.tex to be read in twice
\outer\def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}
\outer\def\newtoks{\alloc@5\toks\toksdef\Qcclvi}

The \outer prefix flags macros as to be used at the outermost level and because the
\newtoks is in the macro body of \newtoks it has to be relaxed first. Don’t worry if
you don't get it. In ConTEXt we have no outer macros so the definitions differ there.

The plain format assumes that the first 10 registers are used for scratch purposes, so best
also assume this to be the case in other macro packages. There is no need for ConTEXt
to differ from plain here. The definitions of box registers and inserts are special: there
is no \boxdef and inserts use multiple registers. Especially the allocation of inserts is
macro package specific. Anyway, ConTgXt users never see such details because inserts
are used as building blocks deep down.

Right after defining the allocators some more constants are defined:

% Here are some examples of allocation.

\newdimen\maxdimen \maxdimen=16383.99999pt 7 the largest legal <dimen>

We do have that one, as it’s again a standard but we do have more such constants. This
definition is kind of interesting as it assumes knowledge about what is acceptable for
TgX as dimension:

{\dimen0=16383.99999pt \the\dimenO \quad \number\dimenO}
{\dimen0=16383.99998pt \the\dimenO \quad \number\dimenO}

16383.99998pt 1073741823
16383.99998pt 1073741823

Indeed it is the largest legal dimension but the real largest one is slightly less. We could
also have said the following, which also indicates what the maximum cardinal is:

\newdimen\maxdimen \maxdimen=1073741823sp

We dropped some of the others defined in plain. So, ConIEXt is a bit like plain but
differs substantially. In fact, MKII already used a different allocator implementation
and MKIV is even more different. We also have more \new things.

The \newif definition also differs. Now that definition is quite special in plain TgX, so
if you want a challenge, look it up. It defines three macros as the comment says:

% For example, \newifl\iffoo creates \footrue, \foofalse to go with \iffoo.

The \iffooiseitherequivalentto \iftrue or \iffalse because thatis what TEX needs
to see in order to be able to skip nested conditional branches. In ConTgXt we have so

About what ConTgXtisn't 78

called conditionals, which are more efficient. So, yes, you will find such defined ifs
in the ConTEXt source but way less than you'd expect in such a large macro package:
ConIgXt code doesn’t look much like plain code I fear.

8.4 Parameters
A next stage sets the internal parameters:

% All of TeX's numeric parameters are listed here, but the code is commented out
% if no special value needs to be set. INITEX makes all parameters zero except

% where noted.

We use different values for many of them. The reason is that the plain TgX format is set
up for a 10 point Computer Modern font system, and for a particular kind of layout, so
we use different values for:

\hsize=6.5in
\vsize=8.9in

\maxdepth=4pt
and

\abovedisplayskip=12pt plus 3pt minus 9pt
\abovedisplayshortskip=0Opt plus 3pt
\belowdisplayskip=12pt plus 3pt minus 9pt
\belowdisplayshortskip=7pt plus 3pt minus 4pt

No, here ConTgXt is not like plain. But, there is one aspect that we do inherit and that
is the ratio. Here a 10 point relates to 12 point and this 1.2 factor is carried over in some
defaults in ConTgXt. So, in the end we're a bit like plain.

After setting up the internal quantities plain does this:

\newskip\smallskipamount \smallskipamount=3pt plus 1pt minus 1pt
\newskip\medskipamount \medskipamount=6pt plus 2pt minus 2pt
\newskip\bigskipamount \bigskipamount=12pt plus 4pt minus 4pt
\newskip\normalbaselineskip \normalbaselineskip=12pt
\newskip\normallineskip \normallineskip=1pt
\newdimen\normallineskiplimit \normallineskiplimit=0pt
\newdimen\jot \jot=3pt

\newcount\interdisplaylinepenalty \interdisplaylinepenalty=100

\newcount\interfootnotelinepenalty \interfootnotelinepenalty=100

The first three as well as the following three related variables are not internal quantities
but preallocated registers. These are not used in the engine but in macros. In ConTgXt
we do provide them but the first three are never used that way. The last three are not
defined at all. So, ConIgXt provides a bit what plain provides, just in case.

79 About what ConTgXt isn't

8.5 Fonts

The font section is quite interesting. I assume that one reason why some want to warn
users against using ConTgXt is because it supports some of the font switching com-
mands found in plain. We had no reasons to come up with different ones but they do
different things anyway, for instance adapting to situations. So, in ConIEXt you will not
tind the plain definitions:

\font\tenrm=cmr10 7, roman text
\font\preloaded=cmr9
\font\preloaded=cmr8
\font\sevenrm=cmr7
\font\preloaded=cmr6

\font\fiverm=cmr5

There is another thing going on here. Some fonts are defined \preloaded. So, cmr9 is
defined, and then cmr8 and cmr6. But they all use the same name. Later on we see:

\let\preloaded=\undefined % preloaded fonts must be declared anew later.

If you never ran into the relevant part of the TpX book or read the program source of
TEX, you won't realize that preloading means that it stays in memory which in turn
means that when it gets (re)defined later, the font data doesn’t come from disk. In fact,
as the plain format is normally dumped for faster reload later on, the font data is also
retained. So, preloading is a speed up hack. In ConTgXt font loading has always been
delayed till the moment a font is really used. This permits plenty of definitions and
gives less memory usage. Of course we do reuse fonts once loaded. All this, plus the
fact that we have a a system of related sizes, collections of families, support multiple
font encodings alongside, collect definitions in so called typescript, etc. makes that the
ConTgXt font subsystem is far from what plain provides. Only some of the command
stick, like \rm and \bf.

The same is true for math fonts, where we can have different math font setups in one
document. Definitely in MKII times, we also had to work around limitations in the
number of available math families, which again complicated the code. In MKkIV things
are even more different, one can even consider the implementation somewhat alien for
a standard macro package, but that’s for another article (if at all).

8.6 Macros

Of course ConTgXt comes with macros, but these are organized in setups, environments,
instances, etc. The whole process and setup is keyword driven. Out of the box all things
work: nothing needs to be loaded. If you want it different, you change some settings,
but you don’t need to load something. Maybe that last aspect is what is meant with
ConIgXt being like plain: you don't (normally) load extra stuff. You just adapt the
system to your needs. So there we proudly follow up on plain TgX.

About what ConTgXtisn't 80

In the plain macro section we find definitions like:

\def\frenchspacing{\sfcode \.\@m \sfcode \7\@m \sfcode \!\0m
\sfcode \:\@m \sfcode \;\@m \sfcode™\,\Gm}

\def\nonfrenchspacing{\sfcode \.3000\sfcode \73000\sfcode~\!3000%
\sfcode \:2000\sfcode \;1500\sfcode~\,1250 }

and:

\def\space{ }
\def\empty{}
\def\null{\hbox{}}

\let\bgroup={
\let\egroup=}

and:

\def\nointerlineskip{\prevdepth-1000\p@}
\def\offinterlineskip{\baselineskip-1000\p@
\lineskip\z@ \lineskiplimit\maxdimen}

Indeed we also provide these, but apart from the two grouping related aliases their
implementation is different in ConIgXt. There is no need to reinvent names.

For a while we kept (and did in MKII) some of the plain helper macros, for instance
those that deal with tabs, but we have several more extensive table models that are
normally used. We always had our own code for float placement, and we also have more
options there. Footnotes are supported but again we have multiple classes, placements,
options, etc. Idem for itemized lists, one of the oldest mechanisms in ConIgXt. We
don’t have \beginsection but of course we do have sectioning commands, and have
no \proclaim but provide lots of descriptive alternatives, so many that I forgot about
most of them by now (so plain is a winner in terms of knowing a macro package inside
out).

The fact that we use tables, floats and footnotes indeed makes ConTgXt to act like plain,
but that’s then also true for other macro packages. A fact is that plain sets the standard
for how to think about these matters! The same is true for naming characters:

\chardef\%="\%
\chardef\&="\&
\chardef\#="\#
\chardef\$="\$
\chardef\ss="19
\chardef\ae="1A
\chardef\oe="1B
\chardef\o="1C
\chardef\AE="1D

81 About what ConTgXt isn't

\chardef\QOE="1E
\chardef\0="1F
\chardef\i="10 \chardef\j="11 7 dotless letters

But we have many more and understandable the numbers are different in ConIEXt be-
cause we use different font (encodings). Their implementation is more adaptive. The
same is true for accented characters:

\def\ #1{{\accent18 #1}}
\def\'#1{{\accent19 #13}}

The definitions in MKII are different (in most cases we use native glyphs) and in MkIV
we use Unicode anyway. I think that the \accent command is only used in a few excep-
tional cases (like very limited fonts) in MkII and never in MKIV. The implementation of
for instance accents (and other pasted together symbols) in math is also quite different.

There are also definitions that seem to be commonly used in macro packages but that we
never use in ConTgXt because they interfere badly with all kind of other mechanisms,
so you will find no usage of

\def\leavevmode{\unhbox\voidb@x} % begins a paragraph, if necessary

in ConIgXt. In order to stress that we provide \dontleavehmode, a wink to not using
the one above.

The macro section ends with lots of math definitions. Most of the names used are kind
of standard so again here ConTgXt is like plain, but the implementation can differ as
does the level of control.

8.7 Output

Once a page isready it gets wrapped up and shipped out. Here ConIXt is very different
from plain. The amount of code in plain is not that large but the possibilities aren’t
either, which is exactly what the objectives demand: a simple (example) format that
can be described in the TpXbook. But, as with other aspects of plain, it steered the way
macro packages started out as it showed the way. As did many examples in the TgX
book.

8.8 Hyphenation

As an afterthought, the plain format ends with loading hyphenation patterns, that is
the English ones. That said it will be clear that ConIEXt is not like plain: we support
many languages, and the subsystem deals with labels, specific typesetting properties,
etc. too.

\lefthyphenmin=2 \righthyphenmin=3 % disallow x- or -xx breaks
\input hyphen

About what ConTgXtisn't 82

We don’t even use these patterns as we switched to utf long ago (also in MKII) if only
because we had to deal with a mix of font encodings. But we did preload the lot there.
In MKIV again things are much different.

8.9 Conclusion

The plain format does (and provides) what it is supposed to do. It is a showcase of
possibilities and part of the specification. In that respect it’s nice that ConTgXt is con-
sidered to be like plain. But if it wasn’t more, there was no reason for its existence. Like
more assumptions about ConIgXt it demonstrates that those coming up with answers
and remarks like that probably missed something in assessing ConIgXt. Just let users
find out themselves what suits best (and for some that actually might be plain TgX).

Let me make on thing clear. If you look at the documents that describe the development
of TeX, MetaFont and the related fonts, you can only awe at what was done on hardware
that doesn’t come close to what we hold now in the palm of our hand. And it was done
in a relative short time span. The fact that plain TgX ran on it the way it did is amazing.
Anyone who considers criticizing TgX and plain TgX should think (more than) twice.

83 About what ConTiXt isn’t

False promises 9

9.1 Introduction

Hans Hagen
Hasselt NL
July 2019 (public 2023)

The TgX typesetting system is pretty powerful, and even more so when you combine
it with MetaPost and Lua. Add an xml parser, a whole lot of handy macros, provide
support for fonts and advanced pdf output and you have a hard to beat tool. We're
talking ConTgXt.

Such a system is very well suited for fully automated typesetting. There are TgX lovers
who claim that TgX can do anything better than the competition but that’s not true.
Automated typesetting is quite doable when you accept the constraints. When the input
is unpredictable you need to play safe!

Some things are easy: turning complex xml into pdf with adaptive graphics, fast data
processing, colorful layouts, conditional processing, extensive cross referencing, you
can safely say that it can be done. But in practice there is some design involved and
those are often specified by people who manipulate a layout on the fly and tweak and
cheat in an interactive wysiwyg program. That is however not an option in automated
typesetting. Traditional thinking with manual intervention has to make place for sys-
tematic and consistent solutions. Limitations can be compensated by clever designs and
getting the maximum out of the system used.

Unfortunately in practice some habits are hard to get rid of. Inconsistent use of colors,
fonts, sectioning, image placements are just a few aspects that come to mind. When you
typeset educational documents you also have to deal with strong opinions about how
something should be presented and what students can’t (!) handle, like for instance
cross references. One of the most dominant demands in typesetting such documents
are so called side floats. In (for instance) scientific publishing references to content
typeset elsewhere (formulas, graphics) is acceptable but in educational documents this
is often not an option (don’t ask me why).

In the next sections I will mention a few aspects of side floats. I will not discuss the
options because these are covered in manuals. Here we stick to the challenges and the
main question that you have to ask yourself is: “How would I solve that if it can be
solved at all?”. It might make you a bit more tolerant for suboptimal outcome.

False promises 84

9.2 The basics

We start with a simple example. The result is shown in figure 9.1. We have figures, put
at the left, with enough text alongside so that we don’t have a problem running into the
next figure.

\dorecurse {8} {
\useMPlibrary [dum]
\setuplayout [middle]
\setupbodyfont [plex]
\startplacefigure[location=left]

\externalfigure [dummy] [width=3cm]

\stopplacefigure
\samplefile{sapolsky}
\par

Figure 9.1 A simple example with enough text in a sin-
gle paragraph.

Challenge: Anchor some boxed material to the running text and make sure that the
text runs around that material. When there is not enough room available on the page,
enforce a page break and move the lot to the next page.

But more often than not, the following paragraph is not long enough to go around the
insert. The worst case is of course when we end up with one word below the insert, for
which the solution is to adapt the text or make the insert wider or narrower. Forgetting
about this for now, we move to the case where there is not enough text: figure 9.2.

\dorecurse {8} {
\useMPlibrary [dum]
\setuplayout [middle]
\setupbodyfont [plex]
\startplacefigure[location=left]

85 False promises

\externalfigure [dummy] [width=3cm]
\stopplacefigure
\samplefile{ward} \par \samplefile{ward}
\par

Figure9.2 A simple example with enough text but mul-
tiple paragraphs.

Challenge: At every new paragraph, check if we're still not done with the blob we're
typesetting around and carry on till we are behind the insert.

The next example, shown in figure 9.3, has less text. However, the running text is still
alongside the figure, so this means that white space need to be added till we’re beyond.

\dorecurse {8} {
\useMPlibrary [dum]
\setuplayout [middle]
\setupbodyfont [plex]
\startplacefigure[location=1left]
\externalfigure [dummy] [width=3cm]
\stopplacefigure
\samplefile{ward}
\par
}

Challenge: When there is not enough content, and the next insert is coming, we add
enough whitespace to go around the insert and then start the new one. This is typically
something that can also be enforced by an option.

Before we move on to the next challenge, let’s explain how we run around the insert.
When TgX typesets a paragraph, it uses dimensions like \1eftskip and \rightskip
(margins) and shape directives like \hangindent and \hangafter. There is also the
possibility to define a \parshape but we will leave that for now. The with of the image

False promises 86

Figure 9.3 A simple example with less text

is reflected in the indent and the height gets divided by the line height and becomes
the \hangafter. Whenever a new paragraph is started, these parameters have to be
set again.’ In ConTgXt hanging is also available as basic feature.

\starthanging[location=left]
{\blackrule[color=maincolor,width=3cm,height=1cm]}
\samplefile{carrol}

\stophanging

- The fraction of fossil olfactory receptor genes is significantly higher in
all species with full color vision. This suggests that the evolution of
trichromatic vision — which allows these primates to detect food, mates, and danger
with visual cues — has reduced their reliance on the sense of smell.

\starthanging[location=right]
{\blackrule[color=maincolor,width=10cm,height=1cm]}
\samplefile{jojomayer}

\stophanging

separates us from machines, we
will be replaced by machines. The more advanced machines will be, the more human
we will have to become.

The hanging floats are not implemented this way but are hooked into the paragraph
start routines. The original approach was a variant of the macros by Daniel Comenetz
as published in TUGBoat Volume 14 (1993), No. 1: Anchored Figures at Either Margin.
In the meantime they are far from that, so ConIEXt users can safely blame me for any
issues.

I still consider playing with a third parameter representing hang height and add that to the line break
routine, but I have to admit that tweaking that is tricky. Do I really understand what is going on there?

87 False promises

9.3 Unpredictable dimensions

In an ideal world images will be sort of consistent but in practice the dimension will dif-
fer, even fonts used in graphics can be different, and they can have white space around
them. When testing a layout it helps to use mockups with a clear border. If these look
okay, one can argue that worse looking assemblies (more visual whitespace above of
below) is a matter of making better images. In figure 9.4 we demonstrate how different
dimensions influence the space below the placement.

\dostepwiserecurse {2} {8} {1} {
\useMPlibrary [dum]
\setuplayout [middle]
\setupbodyfont [plex]
\setupalign[tolerant,stretch]
\startplacefigure[location=left]

\externalfigure [dummy] [width=#1cm]

\stopplacefigure
\samplefile{sapolsky}
\par

Figure 7

equal stockpiling of them — stratific
Thus, it allowed for the invention of p
hen

orld,

Figure 9.4 Spacing relates to dimensions.

In ConTgXt there are plenty of options to add more space above or below the image.
You can anchor the image to the first line in different ways and you can move it some
lines down, either or not with text flowing around it. But here we stick to simple cases,
we only discuss the challenges.

Challenge: Adapt the wrapping to the right dimensions and make sure that the (op-
tional) caption doesn’t overlap with the text below.

False promises 88

9.4 Moving forward

When the insert doesn't fit it has to move, which is why it’s called a float. One solution is
do take it out of the page stream and turn it into a regular placement, normally centered
horizontally somewhere on the page, and in this case probably at the top of one of
the next pages. Because we can cross reference this is a quite okay solution. But, in
educational documents, where authors refer to the graphic (picture) on the left or right,
that doesn’t work out well. The following content is bound to the image.

Calculating the amount of available space is a bit tricky due to the way TgX works. But
let’s assume that this can be done, in ConIgXt we have seen several strategies for this, we
then end up at the top of the next page and there different spacing rules apply, like: no
spacing at the top at all. In our examples no whitespace between paragraphs is present.
The final solutions are complicated by the fact that we need to take this into account.

Challenge: Make sure that we never run off the page but also that we don’t end up with
weird situations at the top of the next page.

Another possibility is that images so tightly fit a whole number of lines, that a next one
can come too close to a previous one. Again, this demands some analysis. Here we use
examples with captions but when there are no captions, there is also less visual space
(no depth in lines).

Challenge: Make sure that a following insert never runs too close to a previous insert.

Solutions can be made better when we use multi-pass information. Because in a typi-
cal TEX run there is only looking back, storing information can actually make us look
forward. But, as in science fiction: when you act upon the future, the past becomes
different and therefore also the future (after that particular future). This means that
you can only go forward. Say you have 10 cases: when case 5 changes because of some
feedback, then case 6 upto 10 also can change. So, you might need more than 10 runs to
get things right. In a workflow where users are waiting for a result, and a few hundred
side floats are used this doesn’t sell well: processing 400 pages with a 20 page per sec-
ond rate takes 20 seconds per run. Normally one needs a few runs to get the references
right. Assuming a worst case of 60 seconds, 10 extra runs will bring you close to 15
minutes. No deal.

Of course one can argue for some load-in-memory and optimize in one go, but although
TEX can do that well for paragraphs, it won’t work for complex documents. Sure, it’s a
nice academic exercise to explore limited cases but those are not what we encounter.

9.5 Cooperation
When discussing (on YouTube) “Extending Darwin’s Revolution” David Sloan Wilson

and Robert Sapolsky touch on the fact that in some disciplines (like economics) evo-
lutionary principles are applied. One can apply for instance the concept of a “selfish

89 False promises

gene’. However, they argue that when doing that, one actually lags behind the now
accepted group selection (which goes beyond the individual benefits). An example is
given where aggressive behavior on the short term can turn one in a winner (who takes
it all) but which can lead to self destructive in the long run: cooperating seems to works
better than terminal competition.

In TEX we have glues and penalties. The machinery likes to break at a glue but a severe
penalty can prohibit that. The fact that we have penalties and no rewards is interesting:
a break can be stimulated by a negative penalty. I've forgotten most of what I learned
about cognitive psychology but I do remember that penalty vs reward discussions could
get somewhat out of hand.

So, when we have in the node list a mix of glue (you can break here), penalties (better
not break here) and rewards (consider breaking here) you can imagine that these nodes
compete. The optimal solution is not really a group process but basically a rather selfish
game. Building a system around that kind of cooperation is not easy. In ConIgXt a
lot of attention always went into consistent vertical spacing. In MKII there were some
‘look back” and ‘control forward” mechanisms in place, and in MkIV we use a model
of weighted glue: a combination of penalties and skips. Again we look back and again
we also try to control the future. This works reasonable well but what if we end up in
a real competition?

A section head should not end up at the bottom of a page. Because when it gets typeset
it is unknown what follows, it does some checking and then tries to make sure that
there is no page break following. Of course there needs to be a provision for the cases
that there are many (sub)heads and of course when there are only heads on a page (in
a concept for instance) you don’t want to run of the page.

Similar situations arise with for instance itemized lists and the tabulate mechanism.
There we have some heuristics that keep content together in a way that makes sense
given the construct: no single table line at the bottom of a page etc. But then comes the
side float. The available space is checked. When doing that the whitespace following
the section head has to collapse with the space around the image, but of course at the
top of a page spacing is different. So, calculations are done, but even a small difference
between what is possible and what is needed can eventually still trigger an unwanted
page break. This is because you cannot really ask how much has been accumulated so
far: the space used is influenced by what comes next (like whitespace, maybe interline
space, the previous depth correction, etc). That in turn means that you have to (sort
of) trigger these future space related items to be applied already.

Challenge: Let the side float mechanism nicely cooperate with other mechanisms that
have their own preferences for crossing pages, adding whitespace and being bound to
following content.

9.6 Easy bits

Of course, once there is such a mechanism in place, user demands will trigger more
features. Most of these are actually not that hard to deal with: renumbering due to

False promises 90

moved content, automatic anchoring to the inner or outer margin, horizontal placement
and shifting into margins, etc. Everything that doesn't relate to vertical placement is
rather trivial to deal with, especially when the whole infrastructure for that is already
present (as in ConIgXt). The problem with such extensions is that one can easily forget
what is possible because most are rarely used.

Challenge: Make sure that all fits into an understandable model and is easy to control.

9.7 Conclusion

The side float mechanism in ConIgXt is complex, has many low level options, and its
code doesn’t look pretty. It is probably the mechanism that has been overhauled and
touched most in the code base. It is also the mechanism that (still) can behave in ways
you don’t expect when combined with other mechanisms. The way we deal with this
(if needed) is to add directives to (in our case) xml files that tells the engine what to
do. Because that is a last resort it is only needed when making the final product. So in
the end, we're still have the benefits of automated typesetting.

Of course we can come up with a different model (basically re-implement the page
builder) but apart from much else falling apart, it will just introduce other constraints
and side effects. Thinking in terms of selfish nodes, glues and penalties, works ok for
a specific document where one can also impose usage rules. If you know that a section
head is always followed by regular text, things become easier. But in a system like Con-
TEXt you need to update your thinking to group selection: mechanisms have to work
together and that can be pretty complicated. Some mechanisms can do that better than
others. One outcome can be that for instance side floats are not really group players, so
eventually they might become less popular and fade away. Of course, as often, years
later they get rediscovered and the cycle starts again. Maybe a string argument can be
made that in fully automated typesetting concepts like side floats should not be used

anyway.

If I have to summarize this wrap up, the conclusion is that we should be realistic: we're
not dealing with an expert system, but with a bunch of heuristics. You need an intelli-
gent system to help you out of deadlock and oscillating solutions. Given the different
preferences you need a multiple personality system. You might actually need a system
that wraps your expectations and solutions and that adapts to changes in those over
time. But if there is such a system (some day) it probably doesn’t need you. In fact,
maybe even typesetting is not needed any more by then.

91 False promises

About manuals 1 0

10.1 Introduction

I'm always puzzled when I read that someone wonders if ConIgXt is still up to date or
maintained because some manual has a timestamp of a decade ago. I'm also puzzled
by some rants you can run into when searching the web. In the next few paragraphs
I'll comment on this.

10.2 Stability

Say that you're an enthusiastic user of console commands like 1s (dir), cp (copy) or
maybe ssh, rsync, curl. How often do you consult a manual on how they evolve?
And say that you, for some reason, do consult a manual, there is a good change that it
is pretty old. Does that mean that the commands are obsolete? The binaries probably
get fixed for bugs but the interface stays the same, which is what you expect. Every time
we generate a zip for the ConTgXt distribution, the related website also gets generated,
using a bunch of xml files that get transformed to html using xslt and a pretty ancient
version of xs1tproc (why should I update). I never check for a new manual as it keeps
doing the job. And additional manuals and reports get added.

So, once some functionality is stable, and a lot of macro code in ConTgXt is just that, there
isnoneed to update a manual! Putting a new time stamp on it is basically fake updating.
And often the more introductionary kind of manuals don’t need to be updated at all,
apart from maybe cultural changes that demand a (political correct) update. Them
being a bit old and not being updated is actually a good thing as it signals stability.

It is worth mentioning that the ConTEXt distribution is not the only source of informa-
tion. There are manuals written by others and there is the Wiki. All is the work of
volunteers and updating all that depends on how much time one can allocate.

10.3 Excuses

It is a fact that ConTEXt evolves. New functionality gets added and some mechanism
get extended. Often these are described in dedicated manuals or articles that end up
in collections, and there are plenty of them in the distribution. For some reason those
complaining about a beginners manual with an old time stamp don’t check if there is
more, and there is quite some more! Don’t only look at the ConTgXt garden (the wiki)
but also keep an eye on what gets distributed. Some users are very good in track of
what gets added, because sometimes I get fixes for typos send within a few hours after
uploading a zip.

About manuals 92

We appreciate that other users point out that writing manuals takes time and that in-
deed our time is not without limits. If I could sit down and write manuals whole day,
and it would get paid, I might do it. But it is a fact that development of ConTgXt is not
paid for at all. I can work on it in company time but much happens in spare time. Most
development is a gamble on future use or done because we want to be complete or be-
cause code can be improved. So, writing a manual then closely relates to what we like
doing: it determines the topics and priorities. If something gets explored and ends up
in new functionality then that gets documented in the process. It is the fun factor that
drives it. The same is true for LuaTEX development.

So, we have as valid excuse that new manuals relate to (new) functionality and old ones
stay as they are. Don Knuth remarks somewhere that writing a manual as part of the
development is a good thing. We fully agree with that.

10.4 Cutting edge

Does an old manual indicate that nothing happens? Definitely not. Over a decade
of LuaTgX development is closely related to ConIEXt and there is plenty of reporting
about that. Does that mean that we need to rewrite manuals? No, existing functionality
remains. And of course users are free to come up with more detailed manuals (which
they seldom do). Some developments get published in user group journals but we
don’t publish much about specific ConIEXt features and usage because it’s hard to do
that for a diverse audience.

Currently we have what is called ConIgXt MkXL (aka LMTX), but we also have the
prelude to that, MKkIV, and the frozen predecessor MKII. Apart from changes in tech-
nology (most noticeably fonts and encodings) the functionality is accumulative: most
old manuals (unless they are specialized into old school fonts for instance) apply to the
latest greatest version.

It is a misunderstanding that the development of ConTgXt, LuaTeX and LuaMetaTgX is
somehow funded by projects that we do. This is not true. We can apply both in projects
but as we charge by the hour (or day) no customer ever sees development on the bill.
Of course during a project we can gain on efficiency (so then development pays back)
and because we know the system style writing is efficient too. In fact, in most cases
our customers don’t know or care what tool we use because tools are expected to be
part of the deal. Most projects we can (and could) only do because we can use Con-
TEXt and that is a side effect of the fact that we do develop beforehand. We're often the
only technically and/or affordable way out. It’s a chicken-egg issue: we have a tool and
therefore get a project. We never get a projects where we can develop a tool. No one
pays for TgX development or at least no one ever came to us with specific TeX related
demands. It looks like the world takes it for granted that TgX is just there.®

There are a few subcomponents of ConIgXt that were partially sponsored by users and we do have some
support contracts that permit experiments and development.

93 About manuals

The reason for ConTgXt being cutting edge (in terms of TgX) is that we like challenges,
that users demand features that are interesting to explore and that we’ve been part of
the TEX scenery for a while now. We just like that.

It's good to know that ConTEXt was and is developed as a toolkit. We started long ago
because we needed a way to quickly create and update reports of meetings that we
chaired. Next we needed a way to efficiently produce high quality education materi-
als (of various kind) and support maintenance of sets of related (quality assurance)
manuals. We could have used wordstar, wordperfect or msword but liked the TgX way
much more. As said, most customers didn’t even know or care what tool was used be-
cause the (often highly interactive pdf) outcome mattered most. In fact, we would not
be interested in this kind of work if we were forced to use clumsy tools, but for sure a
lot can be done with those as well.

10.5 Continuity

Most development happens at Pragma ADE by me (Hans) with help from my two
colleagues (Ton and Kees) and the community (Aditya, Alan, Mikael, Mojca, Luigi,
Hraban, Taco, Thomas, Tomas, Willi, Wolfgang, and others).” I won’t mention those
on the mailing list who contribute with ideas, testing and support, but they can’t be
missed. The biggest danger for continuity is a polluted code base where everyone just
pushed code into a repository. So this is closely guarded. A user patch might work well
for that user but can break something else.

With TgX you need to keep in mind that once a solution works there is no need to update
code or manuals. As long as there is a working LuaTgX (LuaMetaTgX) binary you're
fine. Maybe if some specific fonts are used, a filename might need to be adapted.

An example. When we added a new xml subsystem to ConIgXt MKIV we knew that
some day we could use it. We now uses it in a few projects and I'm pretty sure that we
would not do these projects otherwise as it would demand writing quite complex xslt
style sheets that then would have to be applied to thousands of files per run. To some
extend what is available in ConIEXt sort of drives the kind of work you look for. That
said: if you consider using ConIgXt for simple or complex documents, either of not in
a collection, either or not using TgX or xml input you can be assured that this will work
(and might even get better) because we use it ourselves.

If you want to get an idea about development, just look at the (five) documents that
describe the development of LuaTgX (LuaMetaTgX). Locating them in the distribution
is a good opportunity to explore the documents. They will show you what happened
the last decade(s) and give you some trust in ConIgXt. Or come to a ConTgXt meeting
and meet those involved.

7 More names could be here as I write this in 2022.

About manuals 94

10.6 Closing remark

So next time someone asks if ConTgXt is maintained because some old manual stays
around, return the question if frequently updated manuals are a sign of stability. Also
ask if someone looked a bit in the documentation tree. The oldest manual in the TgX
world is the TeXbook that describes the oldest stable set of macros: plain TgX. There are
happy users out there who love that stability. If it were not for the wonderful person-
ality of Don Knuth this program would already been forgotten. I think that long term
stability and unchanged code and manuals are something that we need to cherish and
get accustomed to, which is not easy in a time when a phone and its operating system
are outdated as soon as you unbox it. It’s also not easy in a time of instant communi-
cation, more and more confused by what is called artificial intelligent mumbling, but
that’s for another wrapup.

Hans Hagen
Hasselt NL

(uncorrected so there’s something left to complain)

95 About manuals

Performance again 11

Hans Hagen
Hasselt NL
Februari 2020 (public 2023)

11.1 Introduction

In a Maps article of 2019 I tried to answer the question ‘Is TgX really slow?’. A while
after it was published on the Dutch TpX mailing list a user posted a comment stating
that in his experience the LuaTEX engine in combination with I4TEX was terribly slow:
one page per second for a Japanese text. It was also slower than pdfTEX with English,
but for Japanese it was close to unusable. The alternative, using a Japanese TgX engine
was no option due to lack of support for certain images.

In order to check this claim I ran a test in ConIgXt. Even on my 8 year old laptop I
could get 45 pages per second for full page Japanese texts (6 paragraphs with each 300
characters per page): 167 pages took just less than 4 seconds. Typesetting Japanese
involves specific spacing and line break handling. So, naturally the question arises:
why the difference. Frans Goddijn wondered if I could explain a bit more about that,
so here we go.

In the mentioned article I already have explained what factors play a role and the macro
package is one of them. It is hard to say to what extent inefficient macros or a complex
layout influence the runtime, but my experience is that it is pretty hard to get speeds
as low as 1 page per second. On an average complex document like the LuaTEX man-
ual (lots of verbatim and tables, but nothing else demanding apart from color being
used and a unique MetaPost graphic per page) I get at least a comfortable 20 pages per
second.

I can imagine that for a TEX user who sees other programs on a computer do com-
plex things fast, the performance of TgX is puzzling. But, where for instance rendering
videos can benefit from specific features of (video) processors, multiple cores, or just
aggressive optimization by compilers of (nested) loops and manipulation of arrays of
bytes, this is not the case for TgX. This program processes all in sequence, there is not
much repetition that can be optimized, it cannot exploit the processor in special ways
and the compiler can not do that many optimizations.

I can’t answer why a IXTEX run is slower than a ConIgXt run. Actually, one persistent
story has always been that ConIgXt was slow in comparison. But maybe it helps to
know a bit what happens deep down in TgX and how macro code can play a role in
performance. When doing that I will simplify things a bit.

Performance again 96

11.2 Text and nodes

The TgX machinery takes input and turns that into some representation that can be
turned into a visual representation ending up as pdf. So say that we have this:

hello

In a regular programming language this is a string with five characters. When the string
is manipulated it is basically still a sequence of bytes in memory. In TgX, if this is meant
as text, at some point the internal representation is a so called node list:

(h] -> [e] -> [1] -> [1] —> [o]

In traditional TEX these are actually character nodes. They have a few properties, like
what font the character is from and what the character code is (0 up to 255). At some
point TEX will turn that list into a glyph list. Say that we have this:

efficient
This will eventually become seven nodes:
le] —> [£fi] -> [c] -> [i] > [e] -> [n] -> [t]

The ffi ligature is a glyph node which actually also keeps information about this one
character being made from three.

In LuaTgX it is different, and this is one of the reasons for it being slower. We stick to
the first example:

[h] <-> [e]l <-> [1] <-> [1] <-> [o]

So, instead of pointing to the next node, we also point back to the previous: we have
a double linked list. This means that all over the program we need to maintain these
extra links too. They are not used by TgX itself, but handy at the Lua end. But, instead
of only having the font as property there is much more. The TgX program can deal with
multiple languages at the same time and this relates to hyphenation. In traditional TeX
there are language nodes that indicate a switch to another language. But in LuaTgX
that property is kept with each glyph node. Actually, even specific language properties
like the hyphen min, hyphen max and the choice if uppercase should be hyphenated
are kept with these nodes. Spaces are turned into glue nodes, and these nodes are also
larger than in regular TEX engines.

So, in LuaTgX, when a character goes from the input into a node, a more complex data
structure has to be set up and the larger data structure also takes more memory. That
in turn means that caching (close to the cpu) gets influenced. Add to that the fact that
we operate on 32 bit character values, which also comes with higher memory demands.

We mentioned that a traditional engine goes from one state of node list into another
(the ligature building). Actually this is an integrated process: a lot happens on the

97 Performance again

fly. If something is put into a \hbox no hyphenation takes place, only ligature building
and kerning. When a paragraph is typeset, hyphenation happens on demand, in places
where it makes sense.

In LuaTgX these stages are split. A node list is always hyphenated. This step as well as
ligature building and kerning are three separate steps. So, there’s always more hyphen-
ation going on than in a traditional TeX engine: we get more discretionary nodes and
again these take more memory than before; also the more nodes we have, the more it
will impact performance down the line. The reason for this is that each step can be in-
tercepted and replaced by a Lua driven one. In practice, with modern OpenType fonts
that is what happens: these are dealt with (or at least managed in) Lua. For Japanese
for sure the built-in ligature and kerning doesn’t apply: the work is delegated and this
comes at a price. Japanese needs no hyphenation but instead characters are treated with
respect to their neighbors and glue nodes are injected when needed. This is something
that Lua code is used for so here performance is determined by how well the plugged
in code behaves. It can be inefficient but it can also be so clever that it just takes a bit of
time to complete.

I didn’t mention another property of nodes: attributes. Each node that has some mean-
ing in the node list (glyphs, kerns, glue, penalties, discretionary, . . ., these terms should
ring bells for a TgX user) have a pointer to an attribute list. Often these are the same
for neighboring nodes, but they can be different. If a macro package sets 10 attributes,
then there will be lists of ten attributes nodes (plus some overhead) active. When val-
ues change, copies are made with the change applied. Grouping even complicates this
a little more. This has an impact on performance. Not only need these lists be managed,
when they are consulted at the Lua end (as they are meant as communication with that
bit of the engine) these lists are interpreted. It all adds up to more runtime. There is
nothing like that in traditional TgX, but there some more macro juggling to achieve the
same effects can cause a performance hit.

11.3 Macros and tokens

When you define a macro like this:
\def\MyMacro#1{\hbox{here: #1!}}

the TgX engine will parse this as follows (we keep it simple):

\def primitive token
\MyMacro user macro pointing to:
#1 argument list of length 1 and no delimiters
{ openbrace token
\hbox hbox primitive token
h letter token h
e letter token e
r letter token r

Performance again 98

e letter token e
other token :
space token

#1 reference to argument
! other token !
} close brace token

The \def is eventually lost, and the meaning of the macro is stored as a linked list of
tokens that get bound to the user macro \MyMacro. The details about how this list is
stored internally can differ a bit per engine but the idea remains. If you compare tokens
of a traditional TgX engine with LuaTgX, the main difference is in the size: those in
LuaTgX take more memory and again that impacts performance.

11.4 Processing

Now, for a moment we step aside and look at a regular programming language, like
Pascal, the language TEX is written in, or C that is used for LuaTgX. The high level def-
initions, using the syntax of the language, gets compiled into low level machine code:
a sequence of instructions for the cpu. When doing so the compiler can try to optimize
the code. When the program is executed all the cpu has to do is fetch the instructions,
and execute them, which in turn can lead to fetching data from memory. Successive ver-
sions of cpu’s have become more clever in handling this, predicting what might happen,
(pre) fetching data from memory etc.

When you look at scripting languages, again a high level syntax is used but after inter-
pretation it becomes compact so called bytecode: a sequence of instructions for a vir-
tual machine that itself is a compiled program. The virtual machine fetches the bytes
and acts upon them. It also deals with managing memory and variables. There is not
much optimization going on there, certainly not when the language permits dynami-
cally changing function calls and such. Here performance is not only influenced by the
virtual machine but also by the quality of the original code (the scripts). In LuaTgX
we're talking Lua here, a scripting language that is actually considered to be pretty fast.

Sometimes bytecode can be compiled Just In Time into low level machine code but for
LuaTgX that doesn’t work out well. Much Lua code is executed only once or a few times
so it simply doesn’t pay off. Apart from that there are other limitations with this (in
itself impressive) technology so I will not go into more detail.

So how does TEX work? It is important to realize that we have a mix of input and macros.
The engine interprets that on the fly. A character enters the input and TgX has to look at
it in the perspective of what it what it expects. It is just a character? Is it part of a control
sequence that started (normally) with a backslash? Does it have a special meaning,
like triggering math mode? When a macro is defined, it gets stored as a linked list of
tokens and when it gets called the engine has to expand that meaning. In the process
some actions themselves kind of generate input. When that happens a new level of
input is entered and further expansion takes place. Sometimes TgX looks ahead and

99 Performance again

when not satisfied, pushes something back into the input which again introduces a
new level. A lot can happen when a macro gets expanded. If you want to see this, just
add \tracingall at the top of your file: you will be surprised! You will not see how
often tokens get pushed and popped but you can see how much got expanded and how
often local changes get restored. By the way, here is something to think about:

\count4=123
\advance \count4 by 123

If this is in your running text, the scanner sees \count and then triggers the code that
handles it. That code expects a register number, here that is the 4. Then it checks if
there is an optional = which means that it has to look ahead. In the second line it checks
for the optional keyword by. This optional scanning has a side effect: when the next
token is not an equal or keyword, it has to push back what it just read (we enter a new
input level) and go forward. It then scans a number. That number ends with a space or
\relax or something not being a number. Again, some push back onto the input can
happen. In fact, say that instead of 4 we have a macro indicating the register number,
intermediate expansion takes place. So, even these simple lines already involve a lot of
action! Now, say that we have this

% \newcounter \scratchcounter 7 done once
\scratchcounter 123

\scratchcounter =123
\advance\scratchcounter by 123
\advance\scratchcounter 123

Can you predict what is more efficient? If this operation doesn’t happen frequently,
performance wise there is no real difference between the variants with and without =
and with and without b. This is because TgX is pretty fast in tokenizing its input and
interpreting its already stored token lists that have these commands. But given what
we said before, when you talk of millions of such assignments, adding the equal sign
and by could actually be faster because there is no pushing back onto the input stack
involved. It probably makes no sense to take this into account when writing macros
but just keep in mind that performance is in the details.

Actually, contrary to what you might expect, \scratchcounter is not even a counter
in ConTgXt, and in LuaMetaTgXwe can also do this:

% \newinteger\scratchcounter % done once
\scratchcounter 123

\scratchcounter =123
\advanceby\scratchcounter 123

Which means that because this counter is defined as so called “constant integer” it
avoids some indirectness (to a counter register) and because \advanceby doesn’t scan
for a keyword the code above runs faster anyway.

Performance again 100

This model of expansion is very different from compiled code or bytecode. To some
extent you can consider a list of tokens that make up a macro to be bytecode, but in-
stead of a sequence of bytes it is a linked list. That itself has a penalty in performance.
Depending on how macros expand, the engine can be hopping all over the token mem-
ory following that list. That means that quite likely the data that gets accessed is not
in your cpu cache and as a result performance cannot benefit from it apart of course
from the expanding machinery itself, but that one is not a simple loop messing around
with variables: it accesses code all over the place! Text gets hyphenated, fonts get ap-
plied, material gets boxed, paragraphs constructed, pages built. We're not moving a
blob of bits around (as in a video) but we’re constantly manipulating small amounts of
memory scattered around memory space.

Now, where a traditional TgX engine works on 8 bit characters and smaller tokens, the
32 bit LuaTEX works on larger chunks. Although macro names are stored as single sym-
bolic units, there are moments when its real (serialized to characters) name is used, for
instance when with \csname. When that happens, the singular token becomes a list,
so for instance the (stored) token \foo becomes a temporary three token list (actually
four if you also count the initial reference token). Those tree tokens become three char-
acters in a string that then is used in the hash lookup. There are plenty cases where
such temporary string variables are allocated and filled. Compare:

\def\foo{\hello}

Here the macro \foo has just a one token reference to \hello because that’s how a
macro reference gets stored. But in

\def\foo{\csname hello\endcsname}

we have two plus five tokens to access what effectively is \hello. Each character token
has to be converted to a byte into the assembled string. Now it must be said that in
practice this is still pretty fast but when we have longer names and especially when
we have utf8 characters in there it can come at a price. It really depends on how your
macro package works and sometimes you just pay the price of progress. Buying a faster
machine is then the solution because often we're not talking of extreme performance
loss here. And modern cpu’s can juggle bytes quite efficiently. Actually, when we go to
64 bit architectures, LuaTEX’s data structures fit quite well to that. As a side note: when
you run a 32 bit binary on a 64 bit architecture there can even be a price being paid for
that when you use LuaTgX. Just move on!

11.5 Management

Before we can even reach the point that some content becomes typeset, much can hap-
pen: the engine has to start up. It is quite common that a macro package uses a memory
dump so that macros are not to be parsed each run. In traditional engines hyphenation
patterns are stored in the memory dump as well. And some macro packages can put
fonts in it. All kind of details, like upper- and lowercase codes can get stored too. In

101 Performance again

LuaTgX fonts and patterns are normally kept out of the dump. That dump itself is much
larger already because we have 32 bit characters instead of 8 bit so more memory is used.
There are also new concepts, like catcode tables that take space. Math is 32 bit too, so
more codes related to math are stored. Actually the format is so much larger that Lua-
TEX compresses it. Anyway, it has an impact on startup time. It is not that much, but
when you measure differences on a one page document the overhead in getting LuaTgX
up and running will definitely impact the measurement.

The same is true for the backend. A traditional engine uses (normally) Typel fonts and
LuaTgX relies on OpenType. So, the backend has to do more work. The impact is nor-
mally only visible when the document is finalized. There can be a slightly larger hickup
after the last page. So, when you measure one page performance, it again pollutes the
page per second performance.

11.6 Summary

So, to come back to the observation that LuaTgX is slower than pdfTgX. At least for Con-
TEXt we can safely conclude that indeed pdfTgX is faster when we talk about a standard
English document, with TgX ascii input, where we can do with traditional small fonts,
with only some kerning and simple ligatures. But as soon as we deal with for instance
xml, have different languages and scripts, have more demanding layouts, use color and
images, and maybe even features that we were not aware of and therefore didn't re-
quire in former times the LuaTgX engine (and for ConTgXt it's LuaMetaTgX follow up)
performs way better than pdfIgX. And how about support for hyper links, protrusion
and expansion, tagging for the sake of accessibility, new layers of abstraction, etc. The
impact on performance can differ a lot per engine (and probably also per macro pack-
age). So, there is no simple answer and explanation for the fact that the observed slow
IXTEX run on Japanese text, apart from that we can say: look at the whole picture: we
have more complex tokens, nodes, scripts and languages, fonts, macros, demands on
the machinery, etc. Maybe it is just the price you are paying for that.

Performance again 102

103 Performance again

All those TEX's 12

Hans Hagen
Hasselt NL
February 2020

This is about TgX, the program that is used as part of the large suite of resources that
make up what we call a “TgX distribution’, which is used to typeset documents. There
are many flavors of this program and all end with tex. But not everything in a distribu-
tion that ends with these three characters is a typesetting program. For instance, latex
launches the a macro package IXTgX, code that feeds the program tex to do something
useful. Other formats are Plain (no tex appended) or ConTgXt (tex in the middle.
Just take a look at the binary path of the TpX distribution to get an idea. When you see
pdftex itis the program, when you see pdflatex it is the macro package IXTEX using
the pdfTgX program. You won't find this for ConIgXt as we don’t use that model of
mixing program names and macro package names.

Here I will discuss the programs, not the macro packages that use them. When you
look at a complete TeXLive installation, you will see many TgX binaries. (I will use the
verbatim names to indicate that we're talking of programs). Of course there is the orig-
inal tex. Then there is its also official extended version etex, which is mostly known
for adding some more primitives and more registers. There can be aleph, which is a
stable variant of omega meant for handling more complex scripts. When pdf became
popular the pdftex program popped up: this was the first TgX engine that has a back-
end built in. Before that you always had to run an additional program to convert the
native dvi output of TgX into for instance PostScript. Much later, xetex showed up,
that, like Omega, dealt with more complex scripts, but using recent font technologies.
Eventually we saw luatex enter the landscape, an engine that opened up the internals
with the Lua script subsystem; it was basically a follow up on pdftex and aleph.

The previous paragraph mentions a lot of variants and there are plenty more. For cjk
and especially Japanese there are ptex, eptex, uptex, euptex. Parallel to luatex we
have luajittex and luahbtex. As a follow up on the (presumed stable) 1uatex the
ConTgXt community now develops luametatex. A not yet mentioned side track is nts
(New TgX system), a rewrite of good old TgX in Java, which in the end didn’t take off
and was never really used.

There are even more TgX’s and they came and went. There was enctex which added
encoding support, there were emtex and hugeemtex that didn’t add functionality but
made more possible by removing some limits on memory and such; these were quite
important. Then there were vendors of TEX systems that came up with variants (some
had extra capabilities), like microtex, pctex, yandytex and vtex but they never be-
came part of the public effort.

All those TgX’s 104

For sure there are more, and I know this because not so long ago, when I cleaned up
some of my archives, I found eetex (extended e-IgX), and suddenly remembered that
Taco Hoekwater and I indeed had experimented with some extensions that we had in
mind but that never made it into e-TgX. I had completely forgotten about it, probably
because we moved on to LuaTgX. It is the reason why I wrap this up here.

In parallel there have been some developments in the graphic counterparts. Knuts
metafont program got a Lua enhanced cousin mflua while metapost (aka mpost or
mp) became a library that is embedded in LuaTgX (and gets a follow up in LuaMetaTEX).
I will not discuss these here.

If we look back at all this, we need to keep in mind that originally TeX was made by
Don Knuth for typesetting his books. These are in English (although over time due
to references he needed to handle different scripts than Latin, be it just snippets and
not whole paragraphs). Much development of successors was the result of demands
with respect to scripts other than Latin and languages other than English. Given the
fact that (at least in my country) English seems to become more dominant (kids use it,
universities switch to it) one can wonder if at some point the traditional engine can just
serve us as well.

The original tex program was actually extended once: support for mixed usage of mul-
tiple languages became possible. But apart from that, the standard program has been
pretty stable in terms of functionality. Of course, the parts that made the extension in-
terface have seen changes but that was foreseeable. For instance, the file system hooks
into the kpse library and one can execute programs via the \write command. Virtual
font technology was also an extension but that didn’t require a change in the program
but involved postprocessing the dvi files.

The first major ‘upgrade” was e-IgX. For quite a while extensions were discussed but at
some point the first version became available. For me, once pdfTgX incorporated these
extensions, it became the default. So what did it bring? First of all we got more than 256
registers (counters, dimensions, etc.). Then there are some extra primitives, for instance
\protected that permits the definition of unexpandable macros (although before that
one could simulate it at the cost of some overhead) and convenient ways to test the
existence of a macro with \ifdefined and \ifcsname. Although not strictly needed,
one could use \dimexpr for expressions. A probably seldom used extension was the
(paragraph bound) right to left typesetting. That actually is a less large extension than
one might imagine: we just signal where the direction changes and the backend deals
with the reverse flushing. It was mostly about convenience.

The Omega project (later followed up by Aleph) didn’t provide the additional pro-
gramming related primitives but made the use of wide fonts possible. It did extend the
number of registers, just by bumping the limits. As a consequence it was much more
demanding with respect to memory. The first time I heard of e-IgX and Omega was at
the 1995 eurolEX meeting organized by the ntg and I was sort of surprised by the some-
times emotional clash between the supporters of these two variants. Actually it was the
tirst time I became aware of TEX politics in general, but that is another story. It was also

105 All those TgX's

the time that I realized that practical discussions could be obscured by nitpicking about
speaking the right terminology (token, node, primitive, expansion, gut, stomach, etc.)
and that one could best keep silent about some issues.

The pdfTEX follow up had quite some impact: as mentioned it had a backend built in,
but it also permitted hyperlinks and such by means of additional primitives. It added
a couple more, for instance for generating random numbers. But it actually was a re-
search project: the frontend was extended with so called character protrusion (which
lets glyphs hang into the margin) and expansion (a way to make the output look better
by scaling shapes horizontally). Both these extensions were integrated in the para-
graph builder and are thereby extending core code. Adding some primitives to the
macro processor is one thing, adapting a very fundamental property of the typesetting
machinery is something else. Users could get excited: TEX renders a text even better (of
course hardly anyone notices this, even TgX users, as experiments proved).

In the end Omega never took off, probably because there was never a really stable ver-
sion and because at some time XgIEX showed up. This variant was first only available
on Apple computers because it depends on third party libraries. Later, ports to other
systems showed up. Using libraries is not specific for XJTgX. For instance pdfTEX uses
them for embedding images. But, as that is actually a (backend) extension it is not criti-
cal. Using libraries in the frontend is more tricky as it adds a dependency and the whole
idea about TEX was that is is independent. The fact that after a while XgIEX switched
libraries is an indication of this dependency. But, if a user can live with that, it’s okay.
The same is true for (possibly changing) fonts provided by the operating system. Not
all users care too strongly about long term compatibility. In fact, most users work on a
document, and once finished store some pdf copy some place and then move on and
forget about it.

It must be noted that where e-TEX has some limited right to left support, Omega sup-
ports more. That has some more impact on all kinds of calculations in the machinery
because when one goes vertical the width is swapped with the height/depth and there-
fore the progression is calculated differently.

Naturally, in order to deal with scripts other than Latin, X§TgX did add some primitives.
I must admit that I never looked into those, as ConTgXt only added support for wide
fonts. Maybe these extensions were natural for I4TEX, but I never saw a reason to adapt
the ConTEXt machinery to it, also because some pdfTEX features were lacking in XgIEX
that ConIgXt assumed to be present (for the kind of usage it is meant for). But we can
safely say that the impact of XJIEX was that the TEX community became aware that there
were new font technologies that were taking over the existing ones used till now. One
thing that is worth noticing is that XgIEX is still pretty much a traditional TEX engine:
it does for instance OpenType math in a traditional TgX way. This is understandable as
one realizes that the OpenType math standard was kind of fuzzy for quite a while. A
consequence is that for instance the OpenType math fonts produced by the Gust foun-
dation are a kind of hybrid. Later versions adopted some more pdfTgX features like
expansion and protrusion.

All those TgX’s 106

I'skip the Japanese TEX engines because they serve a very specific audience and provide
features for scripts that don’t hyphenate but use specific spacing and line breaks by
injecting glues and penalties. One should keep in mind that before Unicode all kinds
of encodings were used for these scripts and the 256 limitations of traditional TeX were
not suited for that. Add to that demands for vertical typesetting and it will be clear that
a specialized engine makes sense. It actually fits perfectly in the original idea that one
could extend TgX for any purpose. It is a typical example of where one can argue that
users should switch to for instance XqIEX or LuaTgX but these were not available and
therefore there is no reason to ditch a good working system just because some new (yet
unproven) alternative shows up a while later.

We now arrive at LuaTgX. It started as an experiment in 2005 where a Lua interpreter
was added to pdfTEX. One could pipe data into the TgX machinery and query some
properties, like the values of registers. At some point the project sped up because Idris
Hamid got involved. He was one of the few ConIgXt users who used Omega (which
it actually did support to some extent) but he was not satisfied with the results. His
oriental TEX project helped pushing the LuaTgX project forward. The idea was that by
opening up the internals of TEX we could do things with fonts and paragraph building
that were not possible before. The alternative, XJIEX was not suitable for him as it was
too bound to what the libraries provides (rendering then depends on what library gets
used and what is possible at what time). But, dealing with scripts and fonts is just one
aspect of LuaTgX. For instance more primitives were added and the math machinery got
an additional OpenType code path. Memory constraints were lifted and all became Uni-
code internally. Each stage in the typesetting process can be intercepted, overloaded,
extended.

Where the e-TEX and Omega extensions were the result of many years of discussion,
the pdfTeX, XqIEX and LuaTgX originate in practical demands. Very small development
teams that made fast decisions made that possible.

Let’s give some more examples of extensions in LuaTgX. Because pdfTgX is the starting
point there is protrusion and expansion, but these mechanisms have been promoted
to core functionality. The same is true for embedding images and content reuse: these
are now core features. This makes it possible to implement them more naturally and
efficiently. All the backend related functionality (literal pdf, hyperlinks, etc) is now
collected in a few extension primitives and the code is better isolated. This took a bit of
effort but is in my opinion better. Support for directions comes from Omega and after
consulting with its authors it was decided that only four made sense. Here we also
promoted the directionality to core features instead of extensions. Because we wanted
to serve Omega users too extended tfm fonts can be read, not that there are many of
them, which fits nicely into the whole machinery going 32 instead of 8 bits. Instead of
the e-TgX register model, where register numbers larger than 255 were implemented
differently, we adopted the Omega model of just bumping 256 to 65536 (and of course,
16K would have been sufficient too but the additional memory it uses can be neglected
compared to what other programs use and/or what resources users carry on their ma-
chines).

107 All those TgX’s

The modus operandi for extending TgX is to take the original literate web sources and
define change files. The pdfTEX program already deviated from that by using a mono-
lithic source. But still Pascal is used for the body of core code. It gets translated to C
before being compiled. In the LuaTgX project Taco Hoekwater took that converted code
and laid the foundation for what became the original LuaTgX code base.

Some extensions relate to the fact that we have Lua and have access to TgX’s internal
node lists for manipulations. An example is the concept of attributes. By setting an
attribute to a value, the current nodes (glyphs, kerns, glue, penalties, boxes, etc) get
these as properties and one can query them at the Lua end. This basically permits
variables to travel with nodes and act accordingly. One can for instance implement
color support this way. Instead of injecting literal or special nodes that themselves can
interfere we now can have information that does not interfere at all (apart from maybe
some performance hit). I think that conceptually this is pretty nice.

At the Lua one has access to the TgX internals but one can also use specific token scan-
ners to fetch information from the input streams. In principle one can create new prim-
itives this way. It is always a chicken-egg question what works better but the possibility
is there. There are many such conceptual additions in LuaTgX, which for sure makes
it the most ‘aggressive’ extension of TEX so far. One reason for these experiments and
extensions is that Lua is such a nice and suitable language for this purpose.

Of course a fundamental part of LuaTgX is the embedded MetaPost library. For sure
the fact that ConTgXt integrates MetaPost has been the main reason for that.

The ConTgXt macro package is well adapted to LuaTgX and the fact that its users are
always willing to update made the development of LuaTgX possible. However, we are
now in a stage that other macro packages use it so LuaTX has entered a state where
nothing more gets added. The IXTEX macro package now also supports LuaTgX, al-
though it uses a variant that falls back on a library to deal with fonts (like XgTEX does).

With LuaTgX being frozen (of course bugs will be fixed), further exploration and de-
velopment is now moved to LuaMetaTgX, again in the perspective of ConTgXt. I will
not go into details apart from saying that is is a lightweight version of LuaTgX. More
is delegated to Lua, which already happened in ConIgXt anyway, but also some extra
primitives were added, mostly to enable writing nicer looking code. However, a major
aspect is that this program uses a lean and mean code base, is supposed to compile out
of the box, and that sources will be an integral part of the ConTgXt code base, so that
users are always in sync.

So, to summarize: we started with tex and moved on to etex and pdftex. At some
point omega and xetex filled the Unicode and script gaps, but it now looks like luatex
is becoming popular. Although luatex is the reference implementation, IXTgX exclu-
sively uses luahbtex, while ConTgXt has a version that targets at luametatex. In par-
allel, the [e] [u] [p] tex engines fill the specific needs for Japanese users. In most cases,
good old tex and less old etex are just shortcuts to pdftex which is compatible but
has the pdf backend on board. That 8 bit engine is not only faster than the more recent

All those TgX’s 108

engines, but also suits quite well for a large audience, simply because for articles, thesis,
etc. (written in a Latin script, most often English) it fits the bill well.

I deliberately didn’t mention names and years as well as detailed pros and cons. A
user should have the freedom to choose what suits best. I'm not sure how well TgX
would have evolved or will evolve in these days of polarized views on operating sys-
tems, changing popularity of languages, many (also open source) projects being set
up to eventually be monetized. We live in a time where so called influencers play a
role, where experience and age often matters less than being fancy or able to target au-
diences. Where something called a standard today is replaced quickly by a new one
tomorrow. Where stability and long term usage of a program is only a valid argument
for a few. Where one can read claims that one should use this or that because it is todays
fashion instead of the older thing that was the actually the only way to achieve some-
thing at all a while ago. Where a presence on facebook, twitter, instagram, whatsapp,
stack exchange is also an indication of being around at all. Where hits, likes, badges,
bounties all play a role in competing and self promotion. Where today’s standards are
tomorrow’s drawbacks. Where even in the TEX community politics seem to creep in.
Maybe you can best not tell what is your favorite TgX engine because what is hip today
makes you look out of place tomorrow.

109 All those TgX’s

Hidden treasures 13

Hans Hagen
Hasselt 2020
February 2020

At ConTgXt meetings we always find our moments to reflect on the interesting things
that relate to TgX that we have run into. Among those we discussed were some of the
historic treasures one can run into when one looks at source files. I will show examples
from several domains in the ecosystem and we hereby invite the reader to come up with
other interesting observations, not so much in order to criticize the fantastic open source
efforts related to TgX, but just to indicate how decades of development and usage are
reflected in the code base and usage, if only to make it part of the history of computing.

I start with the plain TgX format. At the top of that file we run into this:

% The following changes define internal codes as recommended

% in Appendix C of The TeXbook:
\mathcode \""@="2201 % \cdot
\mathcode \""A="3223 7, \downarrow
\mathcode \""B="010B % \alpha
\mathcode \""C="010C % \beta
\mathcode \""D="225E %, \land
\mathcode \""E="023A % \lnot
\mathcode \""F="3232 7 \in
\mathcode \""Y="3221 % \rightarrow
\mathcode~\""Z="8000 7 \ne
\mathcode>\""[="2205 % \diamond
\mathcode \""\="3214 % \le
\mathcode \""]="3215 % \ge
\mathcode \"""="3211 % \equiv
\mathcode \""_="225F % \lor

This means that when you manage to key in one of these recommended character codes
that in ascii sits below the space slot, you will get some math symbol, given that you are
in math mode. Now, if you also consider that the plain TgX format is pretty compact
and that no bytes are wasted,® you might wonder what these lines do there. The answer
is simple: there were keyboards out there that had these symbols. But, by the time TgX
became popular, the dominance of the ibm keyboard let those memories fade away:.

8 Such definitions don’t take additional space in the format file.

Hidden treasures 110

This is just Don’s personal touch I guess. Of course the question remains if the sources
of TAOCP contain these characters.

There is another interesting hack in the plain TgX file, one that actually, when I first
looked at the file, didn’t immediately made sense to me.

\font\preloaded=cmti9
\font\preloaded=cmti8
\font\preloaded=cmti7

\let\preloaded=\undefined

What happens here is that a bunch of fonts get defined and they all use the same name.
Then eventually that name gets nilled. The reason that these definitions are there is
that when TgX dumps a format file, the information that comes from those fonts is
embedded to (dimensions, ligatures, kerns, parameters and math related) data. It is
an indication that in those days it was more efficient to have them preloaded (that is
why they use that name) than loading them at runtime. The fonts are loaded but you
can only access them when you define them again! Of course nowadays that makes less
sense, especially because storage is fast and operating systems do a nice job at caching
tiles in memory so that successive runs have font files available already.

Talking of fonts, one of the things a new TEX user will notice and also one of the things
users love to brag about is ligatures. If you run the tftopl program on a file like
cmr10.tfm you will get a verbose representation of the font. Here are some lines:

(LABEL C f) (LIG C i 0 14) (LIG C £ 0 13) (LIG C 1 0 15)
(LABEL 0 13) (LIG C i 0 16) (LIG C 1 0 17)

(LABEL C *) (LIGC -~ C\)

(LABEL C ') (LIGC " C ™

(LABEL C -) (LIGC-C{

(LABEL ¢ {) (@IGC-C)

(LABEL C !) (LIGC ~ C <)

(LABEL C ?) (LIGC ~ C >)

The C is followed by an ascii representation and the) by the position in the font 0 (a
number) or C (a character). So, consider the first two lines to be a puzzle: they define
the fi, ff, fl ligatures as well as the ffi and ffl ones. Do you see how ligatures are chained?

But anyway, what do these other lines do there? It looks like ~ ~ becomes the character
in the backslash slot and ' ' the one in the double quote. Keep in mind that TgX treats
the backslash special and when you want it, it will be taken from elsewhere. But still,
these two ligatures look familiar: they point to slots that have the left and right dou-
ble quotes.” They are not really ligatures but abuse the ligature mechanism to achieve
a similar effect. The last four lines are the most interesting: these are ligatures that

ConlIEgXt never assumed this and encourages users to use the quotation macros. Those ~ “quotes' ' look
horrible in a source anyway.

111 Hidden treasures

(probably) no TgX user ever uses or encounters. They are again something from the
past. Also, changes are low that you mistakenly enter these sequences and the follow
up Latin Modern fonts don’t have them anyway.

Actually, if you look at the MetaFontand MetaPost sources you can find lines like these
(here we took from mp . w in the LuaTgX repository):

@ O<Put each...0>=

mp_primitive (mp, "=:", mp_lig_kern_token, 0);
@:=:_}\.{=:} primitive®>;

mp_primitive (mp, "=:|", mp_lig kern_token, 1);
Q@:=:/_}{\.{=:\char'174} primitive@>;

mp_primitive (mp, "=:|>", mp_lig _kern_token, 5);
@:=:/>_F\.{=:\char'174>} primitive@>;
mp_primitive (mp, "[=:", mp_lig kern_token, 2);
@:=:/_}{\.{\char'174=:} primitive@>;

mp_primitive (mp, "|=:>", mp_lig kern_token, 6);
Q@:=:/>_}{\.{\char'174=:>} primitive@>;
mp_primitive (mp, "|=:|", mp_lig kern_token, 3);
@:=:/_}{\.{\char'174=:\char'174} primitive@>;
mp_primitive (mp, "|=:[|>", mp_lig kern_token, 7);
@:=:/>_}{\.{\char'174=:\char'174>} primitive®@>;
mp_primitive (mp, "[=:[>>", mp_lig_kern_token, 11);

@:=:/>_}{\.{\char'174=:\char'174>>} primitive®>;

I won’t explain what happens there (as I would have to reread the relevant sections of
TeX The Program) but the magic is in the special sequences: =: =:| =:|> [=: [=:>
|=:1 [=:]> |=:]>> Similar sequences are used in some font related files. I bet that
most MetaPost users never entered these as they relate to defining ligatures for fonts.
Most users know that combining a f and i gives a £i but there are other ways to com-
bine too. One can praise today’s capabilities of OpenType ligature building but TgX was
not stupid either! But these options were never really used and this treasure will stay
hidden. Actually, to come back to a previous remark about abusing the ligature mech-
anism: OpenType fonts are just as sloppy as TgX with the quotes: there a ligature is just
a name for a multiple-to-one mapping which is not always the same as a ligature.

But there are even more surprises with fonts. When Alan Braslau and I redid the bibli-
ography subsystem of ConTgXt with help from Lua, I wrote a converter in that language.
I actually did that the way I normally do: look at a file (in this case a bibTgX file) and
write a parser from scratch. However, at some point we wondered how exactly strings
got concatenated so I decided to locate the source and look at it there. When I scrolled
down I noticed a peculiar section:

@ character set dependencies@>
@ system dependencies@>
Now we initialize the system-dependent |char_width| array, for which

|space| is the only |white_space| character given a nonzero printing

Hidden treasures 112

width. The widths here are taken from Stanford's June~'87
$cmr10$~font and represent hundredths of a point (rounded), but since

they're used only for relative comparisons, the units have no meaning.

@d ss_width = 500 {character |@'31|'s width in the $cmr10$ font}
@d ae_width = 722 {character |@'32|'s width in the $cmr10$ font}
@d oe_width = 778 {character |@'33|'s width in the $cmr10$ font}

903 {character |0@'35|'s width in the $cmri10$ font}
1014 {character |@'36|'s width in the $cmr10$ font}

@d upper_ae_width

@d upper_oe_width

0<Set initial values of key variables@>=
for i:=0 to @'177 do char_width[i] := 0;
o#

char _width[@'40] := 278;
char_width[@'41] := 278;
char_width[@'42] := 500;

char width[@'43] := 833;
char_width[@'44] := 500;
char_width[@'45] := 833;

Do you see what happens here? There are hard coded font metrics in there! As far
as I can tell, these are used in order to guess the width of the margin for references.
Of course that won't work well in practice, simply because fonts differ. But given that
the majority of documents that need references are using Computer Modern fonts, it
actually might work well, especially with Plain TgX because that is also hardwired for
10pt fonts. Personally I'd go for a multipass analysis (or maybe would have had bibTgX
produce a list of those labels for the purpose of analysis but for sure at that time any
extra pass was costly in terms of performance). That code stays around of course. It
makes for some nice deduction by historians in the future.

I bet that one can also find weird or unexpected code in ConTgXt, and definitely on
the machines of TgX users all around the world. For instance, now that most people
use utf8 all those encoding related hacks have become history. On the other hand, as
history tends to cycle, bitmap symbolic fonts suddenly can look modern in a time when
emoji are often bitmaps. We should guard our treasures.

113 Hidden treasures

Don’t use TEX! 14

Occasionally I run into a web post that involves LuaTgX and it is sometimes surprising
what nonsense one can read. Now, I normally don’t care that much but there are cases
where I feel that a comment is justified. Partly because I'm one of the developers, but
also because I'm involved in user groups.

In this particular case the title of a (small) blog post was “Why I do not like luaTeX!” and
the website announced itself ambitiously as ‘DIGITAL TYPOGRAPHY NEWS’. Nor-
mally I assume that in such a case it is a general site about typesetting and that the
author has not much experience or insight in the already ancient TgX typesetting sys-
tem. However, the url is:

eutypon.gr/e-blog/index.php/2021/02/13/why-i-do-not-like-luatex/

which happens to be the Greek User Groups portal. So why do I feel the need to reflect
on this? Why do I even care? The answer is simple: because user groups should inform
their (potential) users correctly. Another reason is that I'm involved in the program that
is disliked, and yet another one is that there is a suggestion that language support is bad
in LuaTEX, while actually hyphenation patterns are very well maintained by Mojca and
Arthur who are also actively involved in the community around the mentioned engine.

Let’s start with the title. For sure one might not like a specific program, but when it
involves one of the mainstream TgX engines, it should at least be clear that it’s a personal
opinion. Because no name is mentioned, we can assume that this is the opinion of the
Greek user group as a whole. The text starts with “Most people speak with good words
about luaTeX.” and the ‘most” in that sentence sort of puts the author in a small group,
which should trigger using a bit more careful title. Now I know a couple of users who
use LuaTgX (with ConIgXt) for typesetting Greek, and we can assume that they are
among the people who speak those good words: typesetting Greek just works.

More good news is that “They seem to like things it can do that no other TeX derived systrem
can do.” This might invite potential users to take a closer look at the system, especially
because we already know that most people are positive. In 2021 one should keep in
mind that, although the LuaTgX engine is around for more than a decade, the level of
support can differ per macro package which is why pdfTgX is still the most widespread
used TgX variant: much TgX usage relates to writing (scientific articles) in English so
one doesn’t really need an Unicode engine. I always say: don’t change a good working
workflow if you have no reason; use what makes you feel comfortable. Only use LuaTgX
if you have a reason. There is plenty of good and positive advice to be given.

With “Personally, I do not care about these features but yesterday a friend told me that he wanted
to write something in Greek with luaLaTeX.” the author steps over his or her personal re-
jection of the engine and enters the help-a-friend mode. “And what’s the catch, one may

Don’t use TpX! 114

DIGITAL TYPOGRAPHY NEWS

Just another WordPress site

Why | do not like luaTeX!

Most people speak with good words about luaTeX. They seem to like
things it can do that no other TeX derived systrem can do. Personally,
| do not care about these features but yesterday a friend told me
that he wanted to write something in Greek with luaLaTeX. And
what's the catch, one may ask. The problem is that lualLaTeX does not
load any hyphenation patterns but the default ones. So one needs to

load them. In TeX one uses a command like the follolwing one

\language\l@monogreek?’

where \1@monogreek is numerical value assigned to each language
contained in the format. This is well documented in the TeXbook.
Now despite the fact that | spent a few hours searching for
information on how to load specific hyphenation patterns, | could
not find anything! Moreover, | could not find any information on
how one loads a lua package (i.e., some external lua package that is
available in the TeX installation). People know that they can load a
LaTeX package with the \usepackage command but | have no
information on how to load lua code. Practically, this means that if
one is not part of the inner circle of luaTeX developers, then she
cannot really know what is really going on. And this is exactly the

reason why | do not like luaTeX.

Published February 13, 2021 Categorized as Uncategorized

By admin

eutypon.gr/e-blog/index.php/2021/02/13/why-i-do-not-like-luatex/

115 Don't use TgX!

ask. The problem is that luaLaTeX does not load any hyphenation patterns but the default ones.
So one needs to load them.” I'm not sure why this is a catch. It actually is a feature. One
drawback of the traditional TEX engines is that one needs to preload the hyphenation
patterns. Before memory was bumped, that often meant creating format files for a sub-
set of languages, and when memory became plenty it meant preloading dozens of pat-
terns by default. The good news is that in all these cases the macro package takes care
of that. In the case of LuaTgX no patterns need to be preloaded so it might even be that
IXTEX doesn’t have any preloaded but, not being a user, I didn’t check that.

This all makes the next sentence puzzling: “In TeX one uses a command like the follolwing
one: \language\l@monogreek, where \ L@monogreek is numerical value assigned to each
language contained in the format.” Now, I'm no expert on IXTEX but I'm pretty sure that the
@signisnot aletter by default. I'm also pretty sure that there is some high level interface
to enable a language, and in the case of LuaTgX being used that mechanism will load
the patterns runtime. I bet it will also deal with making sure other language specific
properties are set. Therefore the “This is well documented in the TeXbook.” is somewhat
weird: original TEX only had one language and later versions could deal with more, but
plain TgX has no \1@monogreek command. It doesn’t sound like the best advice to me.

Just to be sure, I unpacked all the archives in the most recent TpXLive dvd and grepped
for that command in tex and sty files and surprise: in the IXTEX specific style file
/tex/xelatex/xgreek/xgreek. sty thereisaline \language\1@monogreek\else\Hy-
phenRules{monogreek}\fi which to me looks way to low level for common users
to figure out, let alone that it’s a file for X§TEX so bound to a specific engine. Further
grepping for {greek} gave hits for I#TEX’s babel an there are Greek files under the
polyglossia directory so I bet that Arthur (who once told me he was reponsible for
languages) deals with Greek there. Even I, as a ConTgXt user who never use IXTgX and
only know some things by rumor (like the fact that there is something like polyglossia
at all) could help a new user with some suggestions of where to look, just by googling
for a solution. But explicitly using the \1language primitive is not one of them. Okay, in
ConTgXt the \1language [greek] command does something useful, but we’re not talk-
ing about that package here, if only because it relates to LuaTgX development, which as
we will see later is a kind of inner circle.

So, picking up on the blog post, in an attempt to get Greek working in IXTEX the author
got online but “Now despite the fact that I spent a few hours searching for information on
how to load specific hyphenation patterns, I could not find anything!” It might have helped
to search for lualatex greek because that gives plenty of hits. And maybe there are
even manuals out there that explain which of the packages in the TgX tree to load in
order to get it working. Maybe searching ctan or TgXLive helps too. Maybe other user
groups have experts who can help out. No matter what you run into, I don’t think that
the average user expects to find a recipe for installing and invoking patterns. Just for the
record, the LuaTEX manual has a whole chapter on language support, but again, users
can safely assume that the macro package that they use hides those details. Actually,
if users were supposed to load patterns using a unique id, they are likely to end up in
the modern Greek versus ancient Greek, as well as Greek mixed with English or other

Don’t use TpX! 116

languages situations. That demands some more in depth knowledge to deal with, in
any macro package and with any engine. You can add a bit of Unicode and utf-8 or
encodings in the mix too. Suggesting to consult the TgXbook is even a bit dangerous
because one then also ends up in an eight bit universe where font encodings play a role,
while LuaTgX is an Unicode engine that expects utf and uses OpenType fonts. And,
while languages seem to be a problem for the author and his/her friend, fonts seem
to be an easy deal. In my experience it’s more likely that a user runs into font issues
because modern fonts operate on multiple axis: script, language and features.

Maybe the confusion (or at that time accumulated frustration) is best summarized by
“Moreover, I could not find any information on how one loads a lua package (i.e., some external
lua package that is available in the TeX installation).” Well, again I'm sure that one can find
some information on IXTEX support sites but as I already said: language support is so
basic in a macro package that users can use some simple command to enable their fa-
vorite one. So, when “People know that they can load a LaTeX package with the \usepackage
command but I have no information on how to load lua code.” the first part is what matters:
Lua files are often part of a package and thereby they get loaded by the package, also
because often stand-alone usage makes not much sense.

It is absolutely no problem if someone doesn't like (or maybe even hates) LuaTgX, but
it’s a different matter when we end up in disinformation, and even worse in comments
that smell like conspiracy: there is an inner circle of LuaTgX developers and “Practi-
cally, this means that if one is not part of the inner circle of luaTeX developers, then she cannot
really know what is really going on.” Really? Is this how user groups educate their users?
There are manuals written, plenty of articles published, active mailing lists, presenta-
tions given, and there is support on platforms like Stack Exchange. And most of that
(the development of LuaTgX included) is done by volunteers in their spare time, for
free. Of course the groups of core developers are small but that is true for any devel-
opment. History (in the TgX community) has demonstrated that this is the only way
to make progress at all, simply because there are too many different views on matters,
and also because the time of volunteers is limited. It is the end result what counts
and when that is properly embedded in the community all is fine. So we have some
different engines like TgX, pdfTgX, LuaTgX, etc., different macro packages, specialized
engines like those dealing with large cjk fonts, all serving a different audience from
the same ecosystem. Are these all secretive inner circles with bad intentions to confuse
users?

The blog post ends with “And this is exactly the reason why I do not like luaTeX.” to which
I can only comment that I already long ago decided not to waste any time on users
who in their comments sound like they were forced to use a TgX system (and seem to
dislike it, so probably are better off with Microsoft Word, but nevertheless like to bark
against some specific TEX tree), who complain about manuals not realizing that their
own contributions might be rather minimalistic, maybe even counter productive, or
possibly of not much use to potential users anyway. I also ignore those who love to brag
about the many bugs, any small number suits that criterium, without ever mentioning

117 Don't use TgX!

how bugged their own stuff is, etc. If your ego grows by disregarding something you
don’t even use, it’s fine for me.

So why do I bother writing this? Because I think it is a very bad move and signal of a user
group to mix personal dislike, whatever the reason is, with informing and educating
users. If a group is that frustrated with developments, it should resolve itself. On the
other hand, it fits well in how todays communication works: everyone is a specialist,
which get confirmed by the fact that many publish (also on topics they should stay away
from) on the web without fact checking, and where likes and page hits are interpreted
as a confirmation of one’s expertise. Even for the TEX community there seems to be no
escaping from this.

The objectives of TgX user groups shift, simply because users can find information and
help online instead of at meetings and in journals. The physical TgX distributions get
replaced by fast downloads but they are definitely under control of able packagers.
Maybe a new task of user groups is to act as guardian against disinformation. Of course
one then has to run into these nonsense blogs (or comments on forums) and such but
that can partly be solved by a mechanism where readers can report this. A user group
can then try to make its own information better. However, we have a problem when
user groups themselves are the source of disinformation. I see no easy way out of this.
We can only hope that such a port drowns in the ocean of information that is already
out there to confuse users. In the end a good and able TgX friend is all you need to get
going, right? The blog post leaves it open if the Greek text ever got typeset well. If not,
there’s always ConTgXt to consider, but then one eventually ends up with LuaMetaTgX
which might work on the author as another “rode lap op een stier” as we say in Dutch.

Don’t use TpX! 118

119 Don't use TgX!

Speeding up TEX 1 5

15.1 Introduction

Recently a couple of cordless phones that I use gave up as soon as I used them for
a minute or so. The first time that happened I figured that after all these years the
batteries had gone bad and after some testing I decided to replace them. I got some of
these high end batteries that discharge slowly and store a lot of power. Within a year
they were dead too. Then I went for the more regular and cheaper ones, again with a
lot of capacity. And yes, these also gave up, that is: only in the phones that were hardly
used. The batteries lasted longer in phones that were discharged by usage daily.

When I went out for new batteries I was asked if I needed them for cordless phones
and, surprise, was given special ones that actually stored less but were guaranteed to
work for at least 6 years. The package explicitly mentioned use in cordless phones. So
here performance doesn’t come with the most high end ones, based on specifications
that impress.

This is also true for computers that are used to process TgX documents. More cores
amount to much accumulated processing power but for a single core TgX process, a few
fast cores are more relevant than plenty slower ones that run in parallel. More memory
helps but compared to other processes TeX actually doesn’t use that much memory.
And disk speed matters but less so when the operating system caches files. What does
play a role are cpu caches because TgX is very memory intense and processing is not
concentrated in a few functions. But a large cache shared among many (busy) cores
makes for a less impressive performance.

So what matters really? In the next sections we will explore a few points of view. It’s not
some advertisement for a specific engine, but much more about putting it into perspec-
tive (as one can run into ridiculous arguments on the web). It is not only the hardware
and software that matters but also how one uses it.

15.2 The engine

There are various ways to compare engines and each has its own characteristics. The
pdfTEX engine is closest to the original. It directly produces the output which can give it
an edge. It is eight bit and therefore uses small fonts and internally all that is related to
fonts and characters is also small. This means that there is little overhead in typesetting
a paragraph: hyphenation, ligature building and kerning are interwoven and perform
well.

The XFIEX engine supports wide fonts and Unicode and therefore can be seen as 32
bit. I never looked into the code so I can't tell how far that goes but performance is

Speeding up TeX 120

definitely less than pdfTEX. The rendering of text is delegated to a library (there were
some changes in that along its development) which is less efficient than the built in
pdfTEX route. But it is also more powerful.

The LuaTgX engine is mostly 32 bit and delegates non standard font handling to Lua
which comes with a performance penalty but also adds a lot of flexibility. Also, the fact
that one can call out to Lua in many places makes that one can not really blame the
engine for performance hits. The fact that hyphenation, ligature building and kerning
is split comes at a small price too. We have larger nodes so compared to pdfTgX more
memory is used and accessed. Some mechanisms are actually more efficient, like font
expansion and protrusion.

The LuaMetaTEX engine lacks a font loader (but it does have the traditional renderer
on board) and it has no backend. So even more is delegated to Lua, which in turn
makes this the slowest of the lot. And, again more data travels with nodes. In some
modes of operation much more calculations take place. However, because it has an
enriched macro processor, additional primitives, and plenty deep down ‘improvements’
it can perform better than LuaTgX (and even LuajitTgX, the LuaTgX version with a faster
but limited Lua virtual machine). And as with LuaTgX, there are usage patterns that
make it faster than pdfTgX.

So, in general the order of performance is pdfTEX, XgIEX, LuajitTeX (kind of obsolete),
LuaTgX, LuaMetaTgX. But then, how come that ConTgXt users never complain about
performance? The reasons is simple: performance is quite okay and as it is relative to
what one does, a user will accept a drop in performance when more has to be done.
When we moved on from LuaTgX to LuaMetaTgX there definitely was a drop in perfor-
mance, simply because of the Lua backend. Because upgrading happened in small (but
continuous) steps, right from the start the new engine was good enough to be used in
production which is why most users switched to LMTX as soon as became clear that
this is where the progress is made.

There were no real complaints about the upto 15% initial performance drop which in-
dicates that for most users it doesn’t matter that much. As the engine evolved we could
gain some back and now LuaMetaTgX ends up between pdfIgX and LuaTgX and in
many modern scenarios even comes out first. The fact that in the meantime we can
be much faster than LuaTgX did get noticed (when asked). However, as development
takes years updating a machine in the meantime puts discussions about performance
in a different (causality) perspective anyway.

15.3 The coding

Performance can increase when native engine features are used instead of complex
macros that have to work around limitations. It can also decrease when new features
are used that add complex functionality. And when an engine extends existing func-
tionality that is likely to come at a price. So where LuaMetaTgX provides a more rich

121 Speeding up TgX

programming environment, it also had a more complex par builder, page builder, in-
sert, mark and adjust handling, plenty of extra character, rule and box features and all
of that definitely adds some overhead. Quite often a gain in simplicity (nicer and more
efficient macros) compensate the more complex features. That is because on the aver-
age the engine doesn’t do that much (tens of thousands of the same) complex macro
expansion and also doesn’t demand that much complex low level typesetting. A gain
here is often compensated by a loss there. This is one reason why during the years
LuaMetaTEX could sustain a decent performance. Personally I don't accept a drop in
performance easily which is why in practice most mechanism, even when extended,
probably perform better but I'm not going to prove that observation.

One important reason why ConTgXt LMTX with LuaMetaTgX is faster than its ancestors
is that we got rid of some intermediate programming layers. Most users have never seen
the auxiliary macros or implementation details but plenty were used in MkII and MKIV.
Of course we kept them because often they are nicer than many lines of primitive code,
but only a few (and less in the future) are used in the core. Examples are multi step
macros (that pick up arguments) that became single step and complex if tests that be-
came inline native tests. Because ConTgXt always had a high level of abstraction consis-
tency of the interface also makes that we don’t need many helpers. When some features
(like for instance box manipulation) got extended one could expect a performance hit
due to more extensive optional keyword scanning in the engine but that was compen-
sated by improved scanners. The same is true for scanning numbers and dimensions.
So, more functionality doesn’t always come at a price.

To summarize this: although the engine went a bit more ‘cisc” than risc the macro
package went more ‘risc’. It reminds me a bit of the end of the previous century when
there was much talk of fourth generation languages, something on top of the normal
languages. In the end it were scripting languages that became the fashion while tra-
ditional languages like C remained relatively stable and unchanged for implementing
them (and more). A similar observation can be made for ConTgXt itself. Whenever
some new feature gets added to an existing mechanism I try to not cripple performance
and thanks to the way ConIgXt is set up it works out okay.

Let’s look at an example. In MkII we can compare two “strings” with the macrodoifelse.
Its definition is as follows:

\long\def\doifelse#1#2
{\let\donottest\dontprocesstest
\edef\!!stringa{#1}/
\edef\!!stringb{#21}7
\let\donottest\doprocesstest
\ifx\!!stringa\!!stringb
\expandafter\firstoftwoarguments
\else
\expandafter\secondoftwoarguments

\fi}

Speeding up TeX 122

This macro takes two arguments that gets expanded inside two helpers that we then
compare with a primitive \ifx. Depending on the outcome we expand one of the two
following arguments but first we get rid of the interfering \else and \fi. The push-
ing and popping of \donottest takes care of protection of unwanted expansion in an
\edef. Many functional macros are what we call protected: then expand in two steps
depending on the embedded \donottest macro. Think of (simplified):

\def\realfoo{something is done here}
\def\usedfoo{\donottest\realfoo}

Normally \donottest is doing nothing so \realfoo gets expanded but there are cases
where we (for instance) \let it be \string which then serializes the macro. This is
something that happens when writing to the multi pass data file. It can also be used for
overloading, for instance in the backend or when converting something. This protection
against expansion has always been a ConTgXt feature, which in turn made it pretty
robust in multi pass scenarios, but it definitely came with performance penalty.

When pdfTEX got the e-TEX extensions we could use the \protected prefix to replace
this trickery. That means that MKII will use a different definition of \doifelse when
that primitive is known:

\long\def\doifelse#1#2
{\edef\!!stringa{#1}/
\edef\!!stringb{#23}
\ifx\!!stringa\!!stringb
\expandafter\firstoftwoarguments
\else
\expandafter\secondoftwoarguments

\fi}
This works okay because we now do this:
\protected\def\usedfoo{something is done here}

The \doifelse helper itself is not protected in MKII (non e-TgX mode) It would be a
performance hit. won't bore the reader with the tricks needed to do the opposite, that
is: expand a protected macro. It is seldom needed anyway.

The MKIV definition used with LuaTgX is not much different, only the \long prefix is
missing. That one is needed when one wants #1 and/or #2 to be tolerant with respect to
embedded \par equivalents. In LuaMetaTgX we can disable that check and in ConTgXt
all macros are thereby \1ong. Users won't notice because in ConTgXt most macros were
always defined the long way; we also suppress \outer errors.

\protected\def\doifelse#1#2J,
{\edef\m_syst_string_one{#1}/
\edef\m_syst_string_ two{#21}/
\ifx\m_syst_string one\m_syst_string_two

123 Speeding up TEX

\expandafter\firstoftwoarguments
\else
\expandafter\secondoftwoarguments

\fi}

Implementation wise a macro, once scanned and stored, carries the long property in
its command code so that has overhead. However because LuaTgX is compatible we
cannot make all normal macros long by default when \suppresslongerror is used.
Therefore checking for an argument running into a \par is still checked but the mes-
sage is suppressed based on the setting of the mentioned parameter. Performance wise,
not using \long comes a the cost of checking a parameter which means an additional
memory access and comparison. Unless we otherwise gain something in the engine
it comes at a cost. In LuaMetaTgX the \long and \outer prefixes are ignored. Even
better, protected macros are also implemented a bit more efficiently.

In the end the definition of \doifelse in LMTX looks a bit different:

\permanent\protected\def\doifelse#1#2,
{\iftok{#1}{#2}7
\expandafter\firstoftwoarguments
\else
\expandafter\secondoftwoarguments

\fi}

The \permanent prefix flags this macro as such. Depending on the value of \over-
loadmode a redefinition is permitted, comes with a warning or results in a fatal error.
Of course this comes at a price when we define macros or values of quantities but this
is rather well compensated by all kind of improvements in handling macros: defining,
expansion, saving and restoring, etc.

More interesting is the use of \iftok here. It saves us defining two helper macros. Of
course the content still needs to be expanded before comparison but we no longer have
various macro management overhead. In scenarios where we don’t need to jump over
the \else or \fi we can use this test in place which saves passing two arguments and
grabbing one argument later on. Actually, grabbing is also different, compare:

\def\firstoftwoarguments #1#2{#1} 7 MkII and MkIV
\permanent\def\firstoftwoarguments #1#-{#1} 7 MkXL aka LMTX

\def\secondoftwoarguments#1#2{#1} 7 MkII and MkIV
\permanent\def\secondoftwoarguments#-#1{#1} 7 MkXL aka LMTX

In the case of LuaMetaTgX the #- makes that we don’t even bother to store the argument
asitisignored. Where #0 does the same it also increments the argument counter which
is why here even the second arguments has number 1. Now, if this more efficient? Sure,
but how often does it really happen? The engine still needs to scan (which comes at
a cost) but we save on temporary token list storage. Because TgX is so fast already,

Speeding up TpX 124

measuring only shows differences when one has many (and here a real lot) iterations.
However, all these small bits add up which is what we’ve seen in 2022 in ConTgXt: it is
the reason why we are now faster than MkIV with LuaTgX, even with more functionality
in the engine.

I can probably write hundreds of pages in explaining what was added, changed, made
more flexible and what side effects it had /has on performance but I bet no one is really
interested in that. In fact, the previous exploration is just a side effect of a question
that triggered it, so maybe future questions will trigger more explanations. It anyhow
demonstrates what I meant when I said that LuaMetaTgX is meant to be leaner and
meaner. Of course the code base and binary is smaller but that also gets compensated by
more functionality. It also means that we can make the ConTgXt code base nicer because
for me a good looking source (which of course is subjective) is pretty important.

15.4 Compatibility

There are non ConTgXt users who seem to love to stress that successive versions of Con-
TEXt are incompatible. Other claims are that it is developed in a commercial setting.
While it is true that there are changes and it is also true that ConIgXt is used in com-
mercial settings, it is not that different from other open source projects. The majority of
the code is written without compensation and it is offered without advertisements or
request for support. It is true that when we can render better, it will be done. But the
user interfaces only change when there is a reason and there are few cases where some
functionality became obsolete, think of input and font encodings. Most such changes
directly relate to the engine: in pdfIgX and MKII we emulate utf-8 wile in LuaTgX is
comes natively. In pdfIEX eight bit (Typel) fonts are used while LuaTgX adds sup-
port for OpenType. Other macro packages support that by additional packages while
ConTgXt has it integrated. That is why the system evolves over time.

Just a users adapt to (yearly) operating system interfaces, mobile phones, all kinds of
hardware, cars, clothing, media and so on, the ConTgXt users have no problem adapting
to an evolving TEX ecosystem. I guess claims about changes (being a disadvantage) can
only point to a lack of development elsewhere. The main reason for mentioning this is
that when ConTgXt users move on to newer engines, the older ones are seldom used.
So, few users compare a LMTX run with one using pdfTEX or LuaTgX. They naturally
expect LuaMetaTgX to perform well and maybe even to perform better over time. They
just don’t complain. And unless one hacks (overloads) system macros compatibility is
not really an issue. What can be an issue is that updates and adaptations to a newer
engine come with bugs but those are solved.

So, the fact that we compare incompatible engines with likely different low level macro
implementations of otherwise stable features of a macro package makes comparison
hard. For instance, maybe there are speedups possible in frozen MKII, although it is
unlikely, which makes that it might even perform better than reported. In a similar
fashion, the fact that OpenIype is more demanding for sure makes that LuaTgX ren-
dering is slower than pdfTgX. It anyhow makes a discussion about performance within

125 Speeding up TgX

and between macro packages even more ridiculous. Just don't buy those claims and/or
ask on the ConTgXt mailing list for clarification.

15.5 The job

So, say that we now have an efficient and powerful engine and a matching macro pack-
age. Does that make all jobs faster? For sure, the ones that I use as benchmark run
much smoother. The 360 page LuaMetaTgX manual runs in less than 8.4 seconds on a
Dell Precision laptop with (mobile) Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz,
2TB fast Samsung pro SSD, and 48 GB of memory, running Windows 10. The MetaFun
manual with many more pages and thousands of MetaPost graphics needs a bit more
than 12 seconds. So you don't hear me complain. This chapter takes 7.5 seconds plus
0.5 is for the runner, not enough time to get coffee.

Nowadays I tend to measure performance in terms of pages per second, because in the
end that is what users experience. For me more important are the gains for my colleague
who processes documents of 400 pages from hundreds of small xml files with multiple
graphics per page. Given different output variants a lot of processing takes place, so
there a gain from 20 pages per second to 25 pages per second is welcome. Anyway, here
are a few measurements of a simple test suite per January 7, 2023. We use this as test
text:

\def\Knuth{%%

Thus, I came to the conclusion that the designer of a new system
must not only be the implementer and first largel|scale user; the
designer should also write the first user manual.

\par

The separation of any of these four components would have hurt
\TeX\ significantly. If I had not participated fully in all these
activities, literally hundreds of improvements would never have
been made, because I would never have thought of them or perceived
why they were important.

\par

But a system cannot be successful if it is too strongly influenced
by a single person. Once the initial design is complete and fairly
robust, the real test begins as people with many different
viewpoints undertake their own experiments.

¥

Now keep in mind that these are simple examples. On more complex documents the
LuaMetaTEX engine with LMTX is relatively faster: think xml, plenty MetaPost, com-
plex tables, advanced math, dozens of fonts in combination with the new compact font
mode.

The tests themselves are simple: we switch fonts (because fonts bring overhead), we
add some color (because we use different methods), we process some graphics (to show

Speeding up TeX 126

what embedding MetaPost brings), we do some tables (because that can be stressful).
Each sample is run 50, 500 or 1000 times, and each set is run a couple of times so that we
compensate for caching and fluctuating system load. The tests are more about signaling
a trend than about absolute numbers. For what it’s worth, I used a Lua script to run the
samples.

When you run an experiment that measures performance, keep in mind that perfor-
mance not only depends on the engine, but also on for instance logging. When I run
the ConTgXt test suite it takes 1250 seconds if the console takes the full screen on a 2560
by 1600 display and 30 seconds more on a 3840 by 2160 display and it even depends on
how large the fontis set. On the 1920 by 1200 monitor I get to 1230. Of course these times
change when we add more to the test suite so it’s always a momentary measurement.

Similar differences can be observed when running in an editor. A good test is making a
ConTgXt format: 2.2 seconds goes down to below 1.8 when the output is piped to a file.
On a decent 2023 desktop those times are probably half but I don’t have one at hand.

sample 1, number of runs: 2

\starttext
\dorecurse {%s} {
\Knuth
\par
}
\stoptext
engine 50 500 1000
pdftex 063 083 1.07
luatex 095 186 294

luametatex 0.61 149 248

sample 2, number of runs: 2

\starttext
\dorecurse {%s} {
\tf \Knuth \bf \Knuth
\it \Knuth \bs \Knuth

\par
}
\stoptext
engine 50 500 1000
pdftex 070 1.73 2.80
luatex 1.37 537 9.92

luametatex 1.04 5.06 9.73

127 Speeding up TgX

sample 3, number of runs: 2

\starttext
\dorecurse {%s} {
\tf \Knuth \it knuth \bf \Knuth \bs knuth
\it \Knuth \tf knuth \bs \Knuth \bf knuth

\par
}
\stoptext
engine 50 500 1000
pdftex 071 1.81 298
luatex 141 5.84 10.77

luametatex 1.05 5.71 10.60

sample 4, number of runs: 2

\setupcolors[state=start]
\starttext
\dorecurse {%s} {
{\red \tf \Knuth \green \it knuth}
{\red \bf \Knuth \green \bs knuth}
{\red \it \Knuth \green \tf knuth}
{\red \bs \Knuth \green \bf knuth}

\par
}
\stoptext
engine 50 500 1000
pdftex 073 191 3.64
luatex 1.39 5.82 1258

luametatex 1.07 557 11.85

sample 5, number of runs: 2

\starttext
\dorecurse {%s} {
\null \page

+
\stoptext
engine 50 500 1000
pdftex 062 1.12 1.68
luatex 090 1.39 1.98

luametatex 0.58 0.99 1.46

Speeding up TEX 128

sample 6, number of runs: 2

\starttext
\dorecurse {%s} {
%% nothing

}
\stoptext
engine 50 500 1000
pdftex 055 054 0.56
luatex 079 0.81 0.82

luametatex 054 0.52 0.53

sample 7, number of runs: 2

\starttext
\dontleavehmode
\dorecurse {%s} {
\framed [width=1cm,height=1cm,offset=2mm] {x}

}
\stoptext
engine 50 500 1000
pdftex 058 0.65 0.71
luatex 0.84 096 1.08

luametatex 054 0.62 0.72

sample 8, number of runs: 2

\starttext
\dontleavehmode
\dorecurse {%s} {
\framed
[width=1cm,height=1cm,offset=2mm,
foregroundstyle=bold,foregroundcolor=red,
background=color,backgroundcolor=green]

{x}
}
\stoptext
engine 50 500 1000
pdftex 0.59 0.70 0.83
luatex 0.87 1.00 1.17

luametatex 0.55 0.66 0.78

129 Speeding up TEX

sample 9, number of runs: 2

\starttext
\ifdefined\permanent\else\def\BC{\NC\bf}\fi
\dontleavehmode
\dorecurse {%s} {
\starttabulatel[||||]]
\NC test \BC test \NC test \NC test \NC \NR
\NC test \BC test \NC test \NC test \NC \NR
\NC test \BC test \NC test \NC test \NC \NR
\NC test \BC test \NC test \NC test \NC \NR
\stoptabulate
+
\stoptext
engine 50 500 1000
pdftex 062 115 171
luatex 094 1.84 286

luametatex 0.60 1.19 1.88

sample 10, number of runs: 2

\starttext
\dontleavehmode
\dorecurse {%s} {
\startMPcode
fill fullcircle scaled 1cm withcolor red ;
fill fullsquare scaled 1lcm withcolor green ;

\stopMPcode
\space
+
\stoptext
engine 50 500 1000
pdftex 573 5098 102.10
luatex 093 1.07 1.30

luametatex 057 0.71 0.86

15.6 Final words

Whenever I run into (or get send) remarks of (especially non ConTgXt) users suggesting
that LuaTgX is much slower than pdfTgX or that LuaMetaTgX seems much faster than
LuaTgX, one really has to keep in mind that this is not always true. Among the questions
to be asked are “What engine do you use?”, “Which macro package do you use?”, “How well is
your style set up?”, “How complex is the document?”, “Is your own additional code efficient?”,

Speeding up TeX 130

“Do you use engine and macro package features the right way?” and of course “What do you
compare with?”, “What do you expect and why?”, “Do you actually know what goes on deep
down?”. An embarrassing one can be “Do you have an idea what is involved in fulfilling
your request given that we use a flexible adaptive macro language?”. Much probably these
questions not get answered properly.

Another thing to make clear is that when someone claims for instance that ConTgXt
LMTX is fast because of LuaMetaTgX, or that LuaMetaTgX is much faster than LuaTgX,
a healthy suspicion should kick in: does that someone really knows what happens and
matters? The previous numbers do show differences for simple cases but we'’re often
not talking of differences that can be used as an excuse for insufficient coding. In the end
it is all about the experience: does performance feel in tune with expectations. Which
is not to say that I will make ConTgXt and LuaMetaTgX faster because after all there
are usage scenarios where one has to process tens of thousands of documents with a
reasonable amount of time, on regular infrastructure, and of course with as little as
possible energy consumption.

If pdfTEX suits your purpose, there is no need to move to LuaTgX. As with rechargeable
batteries in cordless phones a higher capacity can make things worse. If LuaTgX fits the
bill, don’t dream about using LuaMetaTgX instead because it will half runtime because
the adaptations needed in the macro package (like adding a backend) might actually
slow it down. Moores law doesn’t apply to TEX engines and macro packages and you
might get disappointed. Accept that the choice you made for a macro package can come
with a price.

Quite often it is rather easy to debunk complaints and claims which makes one wonder
why claims about perceived or potential are made at all. But then, I'm accustomed to
weird remarks and conclusions about ConIgXt as a macro package, or for that matter
LuaTgX (as it originates in the ConIgXt community) even by people who should know
better. Hopefully the above invites to being more careful.

131 Speeding up TgX

10

Unicode 1 6

16.1 Introduction

When working on a TgX macro package for decades one can hardly avoid dealing with
math; after all TgX is pretty much about math. When this wonderful typesetting infra-
structure was written it was all about quality and how to make your documents look
nice. And for sure, Don Knuths documents looks nice, also because he pays a lot of
attention to the “fine points of math typesetting”.

The constraints of those time (like hardware, compilers, fonts, and for sure also time)
made TEX into what it is: eight bit character sets, eight bit fonts, eight bit hyphenation
patterns, efficient memory usage and therefore carrying around as little as possible. It
all makes sense. But one needs to pay attention.'”

Math typesetting is actually a sort of separated process in the engine: unprocessed lists
go in and after some juggling a list of assembled boxes, glyphs, glues and penalties
come out. I will not go into detail about that and only mention that in LuaMetaTEX
we extended all this to be a bit more flexible and controllable, something that has been
driven by the fact that we need to support Unicode fonts. This is all part of a related
effort to move from eight bit ‘everything” to Unicode ‘everywhere’.

Now, one can say a lot about Unicode but the main advantage is that it tries to cover
‘all” characters ever encountered, including scripts (used in languages) that are long
gone, as well as these little pictures that people like to see on the web: emojis. One can
safely say that Unicode simplifies mixing languages and scripts, and thereby makes TgX
macro packages less complex. On the other hand, Unicode (or more precisely, related
wide) fonts makes all kind of features possible and thereby add a complication.

So, how about math? When Don Knuth gave us TgX he also gave us fonts and there are
plenty symbols in these fonts. But, as mathematicians seem to love variations on sym-
bols soon more fonts arrived, most noticeably those from the ams that also added some
more alphabets: mathematicians also love to render the shapes of letters differently. In
order to access these glyphs names were invented that also sometimes suggested that
there was some order in the matter. And, for some reason these names got aliases and
soon we had a huge list of often obscure and inconsistent macro names. It didn't take
long for a little mess and confusion to creep in.

It has been said that the verbose TEX math ascii input format is also a way for mathe-
maticians to communicate, just because many use the same tool to render the formulas.

And that is what Mikael Sundqvist and I have been doing a lot since we started upgrading math in Con-
TEXt in combination with enhancing the math engine in LuaMetaTX. The story here is a byproduct of
our explorations and very much a combined effort.

Unicode 132

11

Of course that gets obscured when one starts to add additional macros. It gets even
more tricky once we start talking ‘standard” as in “I#TgX is the standard”. That has for in-
stance resulted in browsers interpreting TgX like input without using TgX (so how about
expansion?). It has also sort of put TgX into the range of possible word processing sys-
tems, which in turn leads to these MS Word versus Google docs versus I£TgX debates
that can get rather nasty and unrealistic when it comes to discussing usage and quality.
Interestingly, MS Word now has reasonable math, to some extent modelled after TgX.
It has some verbose TgX like (but constrained) input and would do well for probably
mostly people who occasionally have to inject some math. There were also attempts by
the people at Microsoft to normalize the input but we leave that aside now.

However, because we now do have all these symbols and because source code editors
make them accessible and show them there is a good chance that users will inject them,
if only by cut and paste, so we do have to deal with that. This automatically puts us in
the position that we need to deal with different meanings for the same symbol, which in
turn might demand different spacing, penalties and such. In the end itis users that drive
all this, not publishers; they don't really care and out-source typesetting anyway. We're
not aware of any research and development being done and I suppose we would have
noticed because after all we're involved in developing LuaTgX. It is one of the engines
that does OpenType and Unicode math and no publisher or supplier ever took serious
interest in it. From our perspective what users do is visible, everything else is hidden
behind corporate curtains. And this is why nowadays we only need to care about users
(mainly authors).

Back to typesetting. For a long time all went well: one could typeset documents that
looked good. Okay, not all looked good because not everyone paid attention to details,
and the more the web evolved the more patching cut'n’paste of bad examples made its
way into documents, but let’s not start talking quality here. But then came Unicode and
a while later people started talking about accessibility, cutting and pasting and more.
In the meantime there had been developments like MathML and OpenMath that tried
to structure and organize formulas in a more symbolic way.!!

In the meantime the TEX community had lost the edge on fonts, and OpenType math
was invented by Microsoft and implemented in MS Word before a substantial number of
TEX users understood what was happening. They had it coming. To a large extend one
can say the same about math in Unicode. Where a Greek capital ‘A’ is seen as different
from a Latin capital ‘A’, even when they often have the same shape, a math italic variable
'h" was made synonym to ‘Planck constant’, as if the letters used in math had no meaning
at all. We'll see that a wide hat is an extensible character of zero width combining
hat accent, which makes for curious handling of the initial character. There is more
granularity in some symbols, especially popular symbols like slashes and bars, than in

It probably went unnoticed that ConTEXt always supported rendering MathML, and as such had to deal
with all the weird aspects (read: way it was used). Although one is not supposed to directly edit MathML
we work with authors who are quite happy to do that simply because they code the documents in xml
because there is a need for high quality pdf as well as html output and a ConIEXt based workflow can
handle the xml well. We're talking of large volumes here (mostly for basically free school math).

133 Unicode

letters. Itis as if the math community didn’t care much about how the letters (variables)
were communicated and perceived but were picky about the slope of slashes. It seems
more of a visual world, which might actually be the reason structured input never really
took of. Maybe TgXies just love the mix of characters, commands, spacing directives.
Maybe they just love to reposition and space these glyphs to suit all kind of curious
non-standard math rendering.

All this makes it pretty hard to communicate meaning, and it is just one of the exam-
ples where the TEX community, for as far involved, failed to make a strong case. Our
personal opinion is that no one really cared because in the TEX community it is all about
rendering. The fact that we use math to communicate only gained attention when acces-
sibility became hot and by then it was too late. Efforts like OpenMath started ambitious
and in the end basically failed. Coding in xml using MathML isn’t much better and one
always had to adapt to the latest fashion. Also, once plenty code shows up bugs become
teatures. Browser support came and went and came back. Simplified input using for in-
stance AsciiMath started indeed simple but quickly became a (somewhat inconsistent)
mess. What we see here is the same as everything web (and computer languages): we
can do better, we start some project, then move on, and we end up with half-way aban-
doned results. The development cycles are short, results have to be achieved fast, there
is no time (or interest) for iterating and refactoring. The word ‘standard” and mantra
‘everyone should use this” are quite popular.

So where does that leave us with TgX? Well, with a mess. Decades of various efforts
have not brought us a coherent system of organizing symbols and properties, made
us end up with inconsistencies, made users revert to hacks, didn't make math easily
transferable and complicates rendering. Personally we find it sort of strange that we
spend time on for instance tagging and accessibility before we get these math alphabets
and shared math specific symbols sorted out. If we cannot make good arguments for
that (math being a script on its own with semantics and such) we waste energy and are
pulling a dead horse. What puzzles us most is that one would expect mathematicians to
be able to come up with strong arguments for a structured approach. But maybe it was
simply the fact that TEX math typesetting was pretty much driven by large commercial
publishers and those providing services for them: the first category doesn’t invest in
these matters and even less today, and the second category makes money from sorting
out the mess, so why get rid of it. Who knows. For us, it means that any complain
about these matters deserves the same answer: the TEX community created this mess,
soithas tolive with it. And the bad thing is: bugs and work-arounds eventually become
features and then one is supposed to conform, even if deep down one knows better. It
doesn’t help that the community is proud of what it can render and has built itself a
reputation that all is good.

So why this criticism? Why not just abandon TgX? The answer is simple: TEX is quite
okay and cannot be blamed for where we are now. We need to think of solutions and
in that respect the ConTgXt users are lucky! They have always been told not to use
this macro package for math because there are other standards and because publishers
want XTEX (even if they just let the manuscripts be recoded). That means that we

Unicode 134

don’t really need to care much about the past. Those who use ConIgXt can benefit
from the compatibility we have anyway but also move forward to more structured and
consistent math. It is in this perspective that we will discuss some more details next so
that eventually we can draw some conclusions. The end goal is to have an additional
layer of grouping math symbols that permits consistent high quality rendering in a
mixed input environment.

16.2 Molecules

Before we go into details about some characters, we spend some word on the rendering.
The building blocks of a formula are atoms and internally the term nucleus is used for
what we have without scripts. The simple sequence 1 + x will result in a linked list
of three atoms with three nuclei. In x”2 the x is the nucleus. Atoms can have scripts:
prescripts, postscripts and a prime. The majority of Unicode math characters become
such atoms (nuclei and scripts) and they get a class property that determines their
spacing, but that is not part of the Unicode specification. From the upcoming sections
it will be clear that when we classify we don't get that much help from MathML or even
the TEX community either.

In addition to these atoms the LuaMetaTgX engine (which builds upon TgX) has what
we can call molecules. There are several types: fractions, accents, fences, radicals. This
distinction is to some extent present in Unicode: plenty of fraction related slashes, all
kind of accents, vertical delimiters that can be made from snippets and act as fences,
and a radical symbol. In MathML we see similar constructs but there in practice quite
often operators need to be interpreted in a way that can distinguish between atoms and
molecules. That is partly a side effect of applications that generate MathML. And as
usual with standards pushed upon the world without years of exploration the confu-
sion became part of the norm and will stay.

In the TEX engine over and under delimiters are implemented on top of radicals (using
the same noad, the wrapper node for yet unprocessed math) but they have different
code paths. Basically we have vertically fenced material and just like fractions have left
and right fences as part of the concept (for binominals) the radical has a sort of left
fence too. You can also wonder why we need accent noads while we support other
delimiters with radicals. This organization mostly relates to subtypes and classes (and
likely some limitations of the past) that have related spacing properties, but we can
think if a generic structure noad and meaningful subtypes. However, that is not what
we get so let’s be more precise:

Fractions: these stack two atoms (or molecules) and separate them by a visible or phan-
tom rule, or in LuaMetaTEX by a delimiter. They can have a left and right fence which
originates in them also suitable for binominals. You may wonder why we don’t use
regular fences here. One reason we can think of is that when you fence something, you
have an open and close class at the edges while with a fenced fraction the whole still is
fraction. In LuaMetaTEX we can tweak classes at the edges but in regular TgX there are
fewer classes, so there constructs become ordinary or inner.

135 Unicode

Accents: these put something on top of or below an atom (or molecule) and are driven
by characters. The accent related commands take an integer (traditional) or three inte-
gers (extended) and it is this expected input that drives it. However, they are treated
like delimiters. In traditional TEX a delimiter is defined by two characters: the direct
unscaled one, and when not found a second one drives the lookup from wider vari-
ants and eventually an extensible character. Accents just have the second one, which
probably relates to the fact that the text ones that would be the starting point make no
sense. It is this ‘looking” for a single code point that makes that accents are not merged
with the more general radical command space. Another reason is that accents deal a
bit different with spacing and italic correction so even if we could merge, it would be
more confusing in the end.

Fences: these come in pairs with optional middle ones. The reason for pairing is that
they need to get the same size. That means that before we construct them the atom or
molecule that they fence has to be analyzed. It also makes the result a construct of its
own, although in LuaMetaTEX we can unpack that result so that it can be broken across
lines. In practice that was never an issue because in a running text unscaled fences
are used (just atoms with open and close classes assigned) but as soon as one goes to
multi-line displays formulas things become more hairy. The related commands expect
delimiters (the two part character definitions) but in the meantime are also happy with
a single one because in the end OpenType math has all in one font.

Radicals: originally this only concerned roots but because they are basically wrappers
we also use them for content that gets a delimiter above, below or both. In that sense
the term radical can also be interpreted as ‘extreme’, more than a carrot looking symbol.
The related commands take one or more delimiters (or character) because we support
left as well as right delimiters connected by a rule, so in the end radicals evolved into
a construct with delimiters of all kind. So, the unique property of radicals is that the
fences assume a cooperation between one or more glyphs and a rule. In ConTgXt we
support actuarian hooks as radicals that are used for annuity expressions, otherwise
the Unicode symbols is useless and the MathML construct complex.

So, where accents take numbers as delimiter specification, fences, fractions and radicals
take specific math quantities or just letters. This makes that we will not merge these into
one scanner and handler even if they all use the same (large) noad to store and carry
around their properties. Also, it has some charm to keep the original TgX distinctions.
After all, it’s not like Unicode, MathML or OpenIype math fonts have brought some
new insights: in the end they all draw from TgX and they way it’s done there.

16.3 Symbols

There are plenty of symbols in Unicode. When we try to get an idea how we ended
up with that set we're surprised that not much seems to be known about it. There
are references to iso standards, usage by specific organizations (like those dealing with
patents), there are references to lists of publishers. In personal communications with
people involved it becomes clear that the criterion that some symbols really has to be

Unicode 136

used somewhere doesn’t apply to these math symbols. There are bizarre specimens
that we cannot locate anywhere. They are often assigned the ‘relation” property which
for TgX is a safe bet because binary and relations get similar spacing, but binary makes
an exception when it sits at the front. The fact that relation spacing is used can even
obscure the fact that some characters have zero width properties; the results just look
somewhat bad and one can always blame the font or renderer and adding some thin
spacing is accepted behavior. So one can make the argument that because TgX was the
main renderer of math, a safe bet was better than a confusing and unproven-by-usage
assignment to some category.

In TgX some symbols have multiple names, even when they have the same class. This
indicates the wish for meaning at one end but shape at the other, and once a name
has been assigned it sticks. It would be interesting to know how mathematicians see
formulas: if one puts \bars around a variable does one see “bar x bar” or “the modulus
of x”, and how is translation to audio to be performed?

One important aspect of using any symbol in TgX, or basically any typesetting system
that deals with math, is that the spacing depends on the meaning. Now, in the perspec-
tive of Unicode meaning is somewhat diffuse. A Latin capital ‘A’ related to ‘a” is not the
same as a Greek capital ‘A’ that relates to ‘a’. So, from the shape one cannot beforehand
deduce what is meant, but when copying it the Unicode will expose the meaning. This
is not the case in math: although many symbols have one meaning only, there are also
plenty that can mean different things and the (TgX) math community has not been able
to make a strong case for providing different slots. Maybe the reason was that there
already was a tradition of using commands that then relate a shape to a class that then
results in appropriate spacing. Maybe it is also assumed that an article or book starts
by explaining what a specific symbol means in that particular context. But that doesn’t
help much for copying. It also doesn’t help with direct Unicode input. The way out for
this last problem is that in ConIgXt we will add additional properties to characters that
then can communicate the class and thereby control the spacing. Although we initially
did that at the Lua end we now use the lightweight dictionary feature of the engine:
a property, group, slot model. The main reason is that we foresee that at some point
we might have to add property based rendering to the engine, and this opens up that
possibility. Ever since we started with LuaTgX and MkIV we have used the character
database (in Lua format) to store most properties so that we have all in one place.

For figuring out the properties we can look at how traditionally symbols got multiple
commands associated, how MathML looks at it, what Unicode reveals and what we find
in fonts. It is a bit of jungle out there so for sure we have to make decisions ourselves.
We next turn to that exploration.

16.4 Slashes

The definition on the Wikipedia page [1] of slashes is as follows:

“The slash is an oblique slanting line punctuation mark /. Once used to mark periods
and commas, the slash is now used to represent exclusive or inclusive or, division and

137 Unicode

fractions, and as a date separator. It is called a solidus in Unicode, is also known as an
oblique stroke, and has several other historical or technical names including oblique and
virgule.”

The page then has a very detailed description on how slashes are used in text, math-
ematics, computing, currency, dates, numbering, linguistic transcriptions, line breaks,
abbreviations, proofreading, fiction, libraries, addresses, poetry, music, sports, and text
messages. It is a pretty good and detailed page which also gives a nice summary of us-
age in math.

In mathematics, we use the slash (a forward leaning bar) for fractions, division, and
quotient of set. Examples of fractions are 1/> but also % sits in this category.

U+0002F / this is the official solidus
U+02044 / the mathematical fraction slash
U+02215 / the mathematical division slash
U+02571 / a diagonal box drawing line
U+029F8 / the mathematical big solidus
U+OFFOF ? a full width solidus

U+1F67C ? the very heavy solidus

The Stix fonts have the first five, the rest is not there, so we can safely assume that they
are not used in math. That brings us to the question that, say that the other ones are
used, how does the user access them? In the editor they often look pretty much the
same. For TgXies the answer is easy: you use a command. But as we already men-
tioned, there we enter a real fuzzy area: these commands either describe a shape or
they communicate a meaning, at least, in an ideal world. Sometimes wrapping in a
macro helps, like $\vfrac{1} {2}8$.

In the document that explains Unicode math there is a section “Fraction Slash and Other
Diagonals”. Even if we limit ourselves to the forward leaning slashes it looks like we
need to include exotic symbols, as the empty set symbol with an left arrow on top:
U+29B4 a circle with left pointing arrow on top, that doesn’t show up in most math
fonts but Stix has it @. We quote:

“U+2044 / FRACTION SLASH is typically used to build up simple skewed fractions in
running text. It applies to immediately adjacent sequences of decimal digits, that is,
to spans of characters with the General Category property value Nd. For example, 1/2
should be displayed as %. In ordinary plain text, any character other than a digit delimits
the numerator or denominator. So 5 1/2 should be displayed as 5% since a space fol-
lows the 5. In general mathematical use, a more versatile method for layout of fractions is
needed (see, for example, Section 2.1 of [UnicodeMath]), however parsers of mathemat-
ical texts should be prepared to handle FRACTION SLASH when it is received from other
sources. U+27CB MATHEMATICAL RISING DIAGONAL and U+27CD MATHEMATICAL
FALLING DIAGONAL are mathematical symbols for specific uses, to be distinguished
from the more widely used solidi and reverse solidi operators as well as from nonmathe-
matical diagonals.”

Unicode 138

In TgX there is no parsing going on: we just get sequences of atoms and the inter atom
spacing applies. Curly braced arguments are used to communicate units that needs to
be treated a while. As side note: where for some scripts there are special characters that
tell where something (state) starts and ends this is not available for math, which makes
it impossible to mark a sequence of characters as being something math. The whole
repertoire of pre-composed fractions and super- and subscripted Unicode symbols are
not to be used in math.

Most documents that somehow relate to or (partially) originate in TgX can be rather
fuzzy, so we can read here:

“U+277CB corresponds to the LTgX entity \diagup and U+27CD to \diagdown. Their
glyphs are invariably drawn with 45° and 135° slopes, respectively, instead of the more
upright slants typical for the solidi operators. The diagonals are also to be distinguished
from the two box drawing characters U+2571 and U+2572. While in some fonts those
characters may be drawn with 45° and 135° slopes, respectively, they are not intended to
be used as mathematical symbols. One usage recorded for U+27CBand U+27CD1is in the
notation for spaces of double cosets.”

So, itis the angles that math users should translate into meaning which I guess is natural
for them. From the above we cannot deduce if we should take them into account in a
macro package.

The MathML specification [3] keeps it abstract and talks about division without men-
tioning the rendering. In content MathML we have:

divide = element divide { CommonAtt, DefEncAtt, empty}
and the suggested rendering (from an example) is a slash.
In the chapter “Characters, Entities and Fonts” there is mentioning of:

“There is one more case where combining characters turn up naturally in mathematical
markup. Some relations have associated negations, such as U+226F [NOT GREATER-
THAN)] for the negation of U+003E [GREATER-THAN SIGN]. The glyph for U+226F
[NOT GREATER-THAN)] is usually just that for U+003E [GREATER-THAN SIGN)|
with a slash through it. Thus it could also be expressed by U+003E-U+0338 making use
of the combining slash U+0338 [COMBINING LONG SOLIDUS OVERLAY]. That
is true of 25 other characters in common enough mathematical use to merit their own
Unicode code points. In the other direction there are 31 character entity names listed in
[Entities] which are to be expressed using U+0338 [COMBINING LONG SOLIDUS
OVERLAY].”

A curious note is this:

“For special purposes, one may need a symbol which does not have a Unicode representa-
tion. In these cases one may use the mglyph element for direct access to a glyph as an
image, or (in some systems) from a font that uses a non-Unicode encoding. All MathML

139 Unicode

12

token elements accept characters in their content and also accept an mglyph there. Be-
ware, however, that use of mg lyph to access a font is deprecated and the mechanism may
not work in all systems. The mglyph element should always supply a useful alternative
representation in its alt attribute.”

At some point we experimented with very precise positioned html from TgX (read: Con-
TEXt) and that worked very well: the rendering was exactly the same as pdf but then
suddenly it was no longer possible to access glyphs from fonts. The assumption had
become that one should feed text into the font rendering machinery and use OpenType
features to access specific shapes, which of course is a fragile approach (the libraries
and logic keep evolving, and the most robust access is simply by index, or by glyph
name if present, assuming that one uses the font that was meant to be used). So, how
the MathML glyph element is supposed to work out well is not clear. Anyway, as we
want nicely typeset math we don’t care that much if features present in LuaMetaTEX
and ConTgXt are unique and cannot be reproduced otherwise.

Inmathclass. txt [4] which is “not formally part of the Unicode Character Database at this
time” we see a classification:

U+0002F binary

U+02044 binary

U+02215 binary

U+02571 not mentioned

U+029F8 n-ary or large operator, often takes limits
U+OFFOF not mentioned

U+1F67C not mentioned

So, in the end we can focus on the four that are mentioned, and we will do that with
the above in mind as well as what is common in the TgX world. We will look at usage,
classification (groups) and classes.

Unfortunately this sort of mess also results in a mess in fonts. For instance when we
checked out the difference between U+002F and U+2044 we found that in the fonts
produced by the TeXGyre project both have proper dimensions (and look the same),
so they can be used stand alone, but also as delimiters. In Cambria the dimensions are
okay but only U+2044 has extensible characters. In ConTgXt we have defined \slash
to use that slot but when you test Lucida and Stix2 the results are disappointing: In
Lucida the width of U+2044 makes it unusable (it looks bad anyway), and in Stix2 it
is a bit wider so in the end it even becomes fuzzy what to recommend as fix: quarter
width, half width or full width. Defining \slash as any of them gives at some point
an issue so in the end we just patch the font in the goodie file: we make them the same
and make sure they have extensible characters. After all, chances are slim that this will
ever be fixed. In that respect a newer engine doesn’t change the problem: we need to
handle it in the macro package, but at least that can be done a bit more natural.!?

In principle, we can support the goodies in the generic font handler, but we think it makes no sense
because it also relates to the way math is handled in general and supporting a wide range of different
applications can only cripple the code, let along that agreeing on matters can be hard.

Unicode 140

16.5 Bars

Again we start with the Wikipedia page, this time the one dedicated to bars [5]. The
page starts with mathematics so that suggests that the (initial) author is familiar with
usage in that field: if we cut and paste the itemized list we even get TpX math (sort
of). Examples of usage are: absolute value, cardinality, conditional probability, de-
terminant, distance, divisibility, function evaluation, length, norm, order, restriction,
set-builder notation, the Sheffer stroke in logic, subtraction, but also “A vertical bar can
be used to separate variables from fixed parameters in a function, or in the notation for elliptic
integrals”.

Among the objectives of our exploration are grouping symbols in sets that represent
related meanings and usage. Within these groups we can fine tune with classes but that
is more geared at rendering. Although currently users enter specific usage of symbols
with the same shape (or even Unicode) with commands we can imagine them entering
the ‘real’ characters and in that case we need some automatic class assignment based on
a group (or set of groups). The Wikipedia page mentions that in physics “The vertical bar
is used in bra—ket notation in quantum physics”. It then goes on about usage in computing,
phonetics and literature. This ordering is different from the slashes, but okay.

The page then makes a distinction between solid and broken bars and there is some
interesting history behind that, which relates to typewriters, terminals and printers in
the perspective of distinction and indeed we noticed that on our keyboard the broken
bar is still used, even if the rendering is solid. The page ends with the Unicode bars and
entities. We mention most:

U+007C | asingle vertical line

U+00A6 | asingle broken line

U+2016 | adouble vertical line (norms)
U+2223 | divides

U+2225 || parallel lines

U+2502 | a vertical box drawing line

U+FF5C ? a fullwidth vertical line

Given the mentioned wide range of usage it will be clear bars that can be confusing and
are pretty overloaded. We're not aware of broken bars being used in math, so we ignore
these.

The Unicode math draft talks of ‘vertical lines” and distinguishes two series, delimiters:

U+007C | single vertical lines
U+2016 || double vertical lines
U+2980 ||| triple vertical lines

and operators:

U+2223 | divides (single line)
U+2225 || parallel (double lines)

141 Unicode

U+2AF4 || binary relation (tripple lines)
U+2AFC ||| slarge triplle operator

Watch the triples: these are not (yet) in the Wikipedia summary. Rightfully there is a re-
mark that the official Unicode descriptions use BAR and LINE but TgXies can’t complain
about that, can they? After all, they also use these terms mixed.

The delimiters sit at the edges but sometimes also in the middle. The operators are
between other elements and the document states that they also should grow. And is it
mentioned that spacing depends on usage. The large triple is an n-ary operator but as
usual with math symbols the user (reader) has to guess what that actually means.

It is actually unfortunate that the fences have no left, middle and right variant. Even
if these render the same it would make life easier and consistency with other fences is
also worth something. One wonders how it would have looked if accessibility demands
had kicked in earlier. The Unicode mathclass.txt [4] provides:

U+007C fence (unpaired delimiter)
U+2016 fence (unpaired delimiter)
U+2980 fence (unpaired delimiter)

We assume that the unpaired qualification is actually an indication that usage as what
in TgX is called ‘middle’ is okay. The operators are classified as:

U+2223 relation
U+2225 relation
U+2AF4 binary
U+2AFC large n-ary

The main problem with bars in TgX is that there is no distinction between a left and right
bar which makes it impossible to use them directly as fences. On can consider this to
be an omission to Unicode math because shape rules over meaning. So anyway, this is
something that a macro package has to deal with. If needed these can get a class on
their own in which case we can define atom spacing rules that deal with them ending
up left or right. In Unicode there are signals that deal with bidirectional text, so we see
no reason why there shouldn’t be similar provisions for math.

16.6 Hyphens and Dashes

This section applies to text and math as both are riddled with horizontal lines: easy to
scratch in wood, chisel in stone or draw on paper symbols. We limit ourselves to the
straight ones, but similar observations can be made for curved ones.

Wikipedia distinguishes hyphens, minus, and dashes so there are multiple pages ded-
icated to this. The page about minus mentions that there are three usages (somewhat
rephrased):

Unicode 142

e Itis used as subtraction operator and therefore a binary operator that indicates the
operation of subtraction.

e It can be function whose value for any real or complex argument is the additive
inverse of that argument.

e [t can serve as a prefix of a numeric constant. When it is placed immediately be-
fore an unsigned numeral, the combination names a negative number, the additive
inverse of the positive number that the numeral would otherwise name.

The functional variant is how content MathML sees it: you apply a minus operator to
something, singular of multiple. We were surprised to see that there is a distinctive
rendering suggested, something we have argued for at several occasions (mostly TeX
meetings):

“In many contexts, it does not matter whether the second or the third of these usages is
intended: -5 is the same number. When it is important to distinguish them, a raised
minus sign " is sometimes used for negative constants, as in elementary education, the
programming language apl, and some early graphing calculators.”

Unfortunately that distinction was not recognized by the TEX community at large which
(we guess) is why we don’t see it in Unicode, which on the other hand has plenty dashes
as we will see soon.

The page mentions usage in indicating blood types and music, which is a nice detail.
It also mentions usage in computing, including regular expressions and in physics and
chemistry indicating charge. It lists these codes for minus symbols:

U+002D hyphen minus

U+2212 minus

U+FE63 small hyphen minus
U+FFOD full width hyphen minus

The page also mentions the commercial minus / (see also [7]) and division sign + (see
also [8]) and we think these should be supported in math mode simply because they
can be part of (even simple text style) formulas.

The fact that we use the hyphen as minus and expect it to render as a wider dash like
shape is something that related to math mode in TgX speak. In text mode we expect it
to be seen as hyphenation related indicator. We won’t go into details about automated
hyphenation and explicit hyphens in text mode but here are the hyphens as mentioned
on the hyphen specific Wikipedia page:

U+002D hyphen minus
U+00AD soft hyphen

U+2010 hyphen

U+2011 non breaking hyphen

You might wonder why we mention text variants here and one reason is that we actually
might need to provide a catch for the last two: maybe when a user copies these from a

143 Unicode

document (when rendered at all) we need to treat them as the simple hyphen minus
and just remap them to the math minus when in math mode. Below, we will discuss
dashes, and although these are also meant for text, a reason for exploring these can
be found in the fact that TgX users like to decorate the content in unexpected ways
and lines (or rules) fit into that. The Wikipedia pages go into some details about the
hyphens being used in compounds and there can be some confusion about whether
to use endashes or hyphens for that. We're pretty sure that typesetting wars have been
fought over that. Usage as pre- and suffixes definitely is worth noting (and we use them
as such in this sentence).

We leave out all the other usages and see what there is to tell about related symbols.
The Wikipedia page about dashes is an extensive one. It starts out with the distinction
between figure dash (U+2012: —), endash (U+2013: -), emdash (U+2014: —) and
horizontal bar (U+2015: —). Of these a TgXie will for sure recognize the endash and
emdash. The hyphen is not a dash but if you look at TgX input that double or triple
hyphens get ligatured into en- and emdashes! The only certainty one has is that the
endash is often half the width of an emdash. Also, the width of the emdash is often the
same as the font size.

One reason why a language subsystem of a TgX macro package is complex is that it has
to deal with cultural aspects and the usage as well as spacing around all these dashes
can differ. When trying to support that a macro writer soon finds out that one user of
language X can tell you the rules are done this way, and a while later you get a mail
from another user who claims that in language X the rules are done that way. Word
processing and dominance of English probably adds to the confusion. The same is true
for quotes, but math doesn’t need these, so we skip them. Now wait, you will say: does
math use these dashes? Users probably will mix them in but more important is that
the width of these dashes also has associated skips: \enspace and \emspace or \quad
and these one definitely see users mix into math.

The figure dash has the same width as digits which makes them useful in tables. In the
fonts that come with TeX it is the reverse: the digits have the same width and that width
matches the endash. There is no habit of using the figuredash, but we might need to
change that. After all, we now have the fonts! We do need to deal with the figure dash
because users might mix math and text in tables, and although you can find plenty of
badly typeset by TgX tables, this is no excuse for using a mix of minus and figure dash
in inconsistent ways.

The Wikipedia page mentions the usage of the endash: as connector, as compound
hyphen, and as sentence interrupter. Now the one that needs some attention is the sec-
ond one. In Dutch, we can combine words in many ways and for educational purposes
adding a compound dash makes sense. However, because the weight of the hyphen
and endash in TgX fonts is rather incompatible, in ConTeXt we use(d) fakes: two over-
lapping hyphens. Another complication is that one has to wrap that in a discretionary
node in order to make the hyphenator happy, but that is now delegated to the engine
that can be configured to see certain characters as valid hyphenation points. Although

Unicode 144

13

14

15

we support discretionaries in math this doesn’t relate to dashes but to pluses and mi-
nuses and such. The engine supports explicit discretionaries but can also automatically
repeat symbols that are set up as repeatable across lines. We're not sure if users actually
use en- and emdashes in math mode, but one can occasionally run into examples (on
the web) where special effects are achieved in curious ways."

It is worth pointing out that Wikipedia discusses “Ranges of values” and this is some-
thing we need to investigate in the perspective of math! Strictly spoken that is a text
thing, but ... Among the many observed and suggested patterns we note that among
TEXies using the endash as itemize symbols is also popular.

Usage of the emdash is related to the use of parenthesis or colons, so it is more a kind
of punctuation. It can also be used as an interrupt and again it is a candidate for an
itemize symbol. There is of course a TEX thing there: lack of text symbols made for a
rather mixed usage of math and text symbols in itemizations. For instance a dotted one
uses the well visible math dot instead of the often hardly visible text dot that simply
was not present in TgX fonts, so our eyes got accustomed to the bolder ones. It is one
of the reasons why a TgX macro package load a math font even when no math is used.
Over the years in TEX math and text symbols have been mixed in various ways, also a
side effect if the limited amount of characters in text fonts and the abundance of them
in math mode, even if most are only accessible by name. We need to deal with that
historic mix.

The page rightfully mentions that TgX has no horizontal bar, also known as ‘quotation
dash’, used for dialogues in some languages. We should make a note then that it might
be good to see if we have to reconfigure the sub-sentence presets to match that expec-
tation. The proposed hack MPS: where? for a missing symbol is somewhat curious:

x \hbox{---}\kern-.5em-—- x

Why not \hbox{---\kern-.5em---} or just -——\kern-.5em--- to get the same ef-
fect? This also assumes that the font collapses these three hyphens into a dash, then it
backtracks the symbol width and does a second one.'* Anyway, where figure dashes
are related to minuses we can probably ignore this super minus resembling horizontal
bar.!®

The Wikipedia page ends with a summary of all kind of dashes, including underscores,
script specific symbols, accents (like macron), modifiers and curly ones. Here we only

The math stream doesn’t go through the font handler although embedded \hboxes get that treatment.
This means that two hyphens in a row are just two atoms and not get collapsed to an endash.

Here is some food for thought: for this kind of usage one can argue that such a dash should have
some stretch. In LuaMetaTgX and therefore ConIgXt we can do this: \uleaders \hbox to 1.5em
{---\hskip Opt minus .5em---} \hskip.125em minus .125em \relaxand get: x — XX — xx
XX —— XX —— XX —— XX — XX — XX — XX — XX — XX —— XX —— XX —— XX —— XX —— XX — XX
XX —— XX —— XX —— XX —— XX —— XX —— XX —— XX — XX — XX — XX — XX — X. Boxed material
can be stretched and be taken into account when creating paragraphs. It is no big deal to wrap that in a
macro, say \figuredashed.

We can actually issue a warning when it is used in math mode.

145 Unicode

16

mention the ones that can end up in some source when one cuts and pastes. Doing that
can result in missing characters (because not all fonts provides them) or a change in
meaning (for as far as the symbols relates to an intention). We show some that fit into
this discussion and also mention the Unicode description:

U+002D
U+005F
U+00AD
U+2010

U+2011

U+2012
U+2013
U+2014
U+2015
U+2043
U+207B
U+208B
U+2212
U+23AF
U+23E4

U+2500
U+2796
U+2E3A
U+2E3B
U+FE58
U+FE63
U+FFOD

HYPHEN-MINUS
LOW LINE
SOFT HYPHEN
HYPHEN

NON-BREAKING HYPHEN

FIGURE DASH

EN DASH

EM DASH

HORIZONTAL BAR

HYPHEN BULLET

SUPERSCRIPT MINUS
SUBSCRIPT MINUS

MINUS SIGN

HORIZONTAL LINE EXTENSION
STRAIGHTNESS

BOX DRAWINGS LIGHT HORIZONTAL
HEAVY MINUS SIGN

TWO-EM DASH

THREE-EM DASH

SMALL EM DASH

SMALL HYPHEN-MINUS

FULLWIDTH HYPHEN-MINUS

the usual hyphen but also used as minus
aka underscore

valid hyphenation point (invisible)

the real hyphen but more work on a key-
board

a hard hyphen, disables following hyphen-
ation

see discussion above

see discussion above

see discussion above

see discussion above

used in itemized lists

combined with pre-superscripted characters
combined with pre-subscripted characters
the math minus (rendering of hyphen)
build long connected horizontal lines
represents line straightness in technical con-
text

part of the box-drawing repertoire

a visual variant with no meaning

a visual variant with no meaning

a visual variant with no meaning

a visual variant with no meaning

a visual variant with no meaning

a visual variant with no meaning

The Unicode math draft only mentions the hyphen:!®

“Minus sign. U+2212 [or] — [known as] MINUS SIGNis the preferred representation of
the unary and binary minus sign rather than the ascii-derived U+002D [or] - [known
as| HYPHEN-MINUS, because minus sign is unambiguous and because it is rendered
with a more desirable length, usually longer than a hyphen.”

and elsewhere we can read:

“The ascii hyphen minus U+002D [or] - is a weakly mathematical character that may
be used for the subtraction operator, but U+2212 [or]| — [known as| MINUS SIGN is

preferred for this purpose and looks better.”

When I copy this snippet into the document source there are START OF TEXT symbols at the places where
a hyphenation occurs, which is probably a side effect of a bad TOUNICODE entry in the pdf file, but it is
kind of interesting in this perspective as definitely a hyphen is rendered.

Unicode 146

We are not aware of the concept of weak mathematical characters, so we will not take
that property too serious when we try to improve the rendering.

This is basically it. There is no mentioning of classes (after all, traditional TgX has no
unary class) so it is assumed that the renderer does the right thing: interpreting the
sequence of characters and apply spacing accordingly. There are users who like to see a
unary minus being rendered differently, just as the minus that a student is supposed to
key in a calculator and while the Wikipedia page mentions this explicitly, it is ignored
here. Yes, having two distinctive slots for this would have been great. Maybe it is not
seen as relevant enough by the community that would benefit most, but who knows
what had happened it the Wikipedia page had been there before!

The minus is mentioned in the somewhat curious section about how shapes should be
positioned relative to the baseline, where the position of the minus relates to what in
TEX speak is the math axis. There is also some mentioning of non-mathematical use,
like:

“The concept of mathematical use is deliberately kept broad; therefore the Math property
is also given to characters that are used as operators, but are not part of standard mathe-
matical notation, such as U+2052 COMMERCTAL MINUS.”

There should be no confusion with the SET MINUS which renders as a backslash, a
(NEG\-ATED) MINUS TILDEor (NEG\-ATED) SIMILAR MINUS SIMILAR thatlook more
like relations. MPS: overfull hbox, and do you intend to hyphenate?

The MathML document recognizes the minus as being unary or binary. In content
MathML it is easy: when applied to a single atom it is a unary. In presentation MathML
minus is an operator that sits at the front of a row (unary) or in the middle (binary).
Keep in mind that we are limited to mn for numbers, mi for alphabetic symbols and
mo for operators, not to be confused with TgX’s math operators, because in MathML
relations are also operators. One can wonder about a minus in mn elements.

So to summarize: we definitely need to make sure that (whatever renders as) hyphens
is dealt with in math as minus. We can wonder what to do with (especially) en- and
emdashes and the other horizontal lines that actually might show up as (what we call)
middle delimiters in mathematical constructs: if it’s there, TgXies will use it! The lack
of specific symbols for unary minus has to be compensated at the macro package level.

16.7 Pieces

In Unicode one can find all kind of constructors, for instance characters that find their
origin in those character sets that had lines and corners for drawing on a terminal. It
is therefore no surprise that there are also some constructors that relate to math. An
example demonstrates this:

\def\makeweird#1#2#3#4Y,
{\vcenter\bgroup

147 Unicode

\offinterlineskip

\hbox{$\scriptscriptstyle\char"#1$}\par

\hbox{$\scriptscriptstyle\char"#2$}\par

\hbox{$\scriptscriptstyle\char"#3$}\par

\hbox{$\scriptscriptstyle\char"#43$}/
\egroup}

\def\1lwA{\mathopen {\makeweird{23A7}{23A8}{23A8}{23A9}}}
\def\rwA{\mathclose{\makeweird{23AB}{23AC}{23AC}{23AD}}}
\def\1wB{\mathopen {\makeweird{23A7}{23AC}{23AC}{23A9}}}
\def\rwB{\mathclose{\makeweird{23AB}{23A8}{23A8}{23AD}}}
\def\1lwC{\mathopen {\makeweird{23A7}{23AC}{23A8}{23A9}}}
\def\rwC{\mathclose{\makeweird{23AB}{23A8}{23AC}{23AD}}}

$\1wA x + 4 + \1wB x72 + 472 + \1wC x~3 + 473 \rwC \rwB \rwA$

X+ 4+ (X2 +4% + [x° + 43

So, we have official Unicode characters for constructing large fences. In the Unicode
math documents there is some mentioning of this and interesting is that there are sug-
gested compositions expressed in 2, 3, 5 etc. stacked ‘lines” which makes one wonder
how math is perceived (or supposed to be rendered). But what is really weird is that
there are plenty of arrows but no snippets defined that can be used to create extended
ones. Why vertical snippets and no horizontal ones? This is clearly an omission and
the TEX community did take care of this need. So, for horizontal arrows and alike one
expects the font to handle it and for fences not?

It is not only fences that have snippets, we also find them for integrals. But for vertical
arrows they are lacking: that is completely up to the font. Now, for us that is fine, but
again, for consistency they could have been there. It would make it possible to filter
bits and pieces from fonts using official slots instead of private ones. So, to some extent
we can best assume there is nothing like that and ignore whatever pieces are in Uni-
code anyway (like the braces in the example). One can even argue that because of this
inconsistency a font designed can as well only use private slots and not provide snippets
at all.

So, how do we get out of this situation? Because no one cared getting it in Unicode, we
can do as we like. Of course, we can define arrow fillers as has always been done in TgX,
but because in LuaMetaTgX we have a bit more in our toolkit, and because we want to
support stretch fractions (where the rule is replaced by a horizontal delimiter) it was
decided to define a tweak that deals with this: when the basic arrows have no horizon-
tal parts defined, we just assemble them. For those arrows that have a hook or so at

Unicode 148

17

the other end, we use the space as extender.!” If we ever end up with proper snippets
un Unicode then we also need adapted fonts, and then we can get rid of these hacks.
That said: because all decent math fonts do have the three pairs or fences (brace, paren-
thesis, bracket) the vertical snippets are rather useless, unless one wants to construct
assembled weird ones. This would be different for horizontal assemblies, because there
is more variety in them.

The official name for all related to characters that can stretch is ‘delimiter’. In traditional
TEX one can define a command that becomes a character. In that case a family, class
and slot is assigned. You can also directly access a character in which case one will
assign these properties otherwise (no command is defined). The same is true for these
delimiters. However, in traditional TEX the larger character usually comes from a so
called extension font and uses family 3). In OpenType fonts we have all in one font so
there the large family, class, and slot are not used.

An interesting side effect of the updated math machinery in LuaMetaTEX is that we no
longer really need delimiter specifications when we use OpenType fonts. This is because
in practice the only two classes that really matter are the open and close ones. There
are basically two kinds of delimiters: fences and singulars. Fences need open and close
and only bars have a dual character. So, when we don’t define it as delimiter, the engine
can still use that character and take its assigned class when used stand-alone, while in
the case of fences these themselves are of class open and close. And, for instance a left
brace can get class open because when used stand alone it is an unscaled left fence.
In the rare case that one really need a different class we are using commands: some
characters can be binary, ordinary or whatever so then commands relate a name to a
class-character combination. Actually, in ConIEXt we will switch to using dictionaries
and field specific rendering instead, but that is a different story. We can illustrate the
arrows with an example:

$ x +

\left\downarrow a \uparrow \frac{i1}{b} \downarrow c \right\uparrow

=y$

The stand alone arrows are defines with class relation but when used as fences their
spacing is driven by the fences themselves.

X -w

varbin rel frarel

relvaJva chorel re:

This means that in ConTgXt LMTX we no longer have delimiter code definitions. Of
course the engine has to be able to use math characters of any kind (by commands,

opev rrel

Actually we no longer do that because the engine will center the arrow anyway when it’s too short.

149 Unicode

direct or as utf) as delimiters, but that was not that hard to provide. It also simplifies
the code we use for fencing as it can be less selective.

Another interesting side effect of once again looking into these stretched characters is
that the fraction mechanism that already was extended with skewed fractions, now
supports any stretchable character as alternative for a fraction rule.

$
p \leftarrowtext {a + b + ¢ + d}{x + y} q
\quad
p \frac {a + b + ¢ + dX{x + y} q

$

Watch the difference in spacing: here the class of the used delimiter determines the
spacing around the (pseudo) fraction:

\]21” Lm in Lﬁ”blL“lpwwal invar L’\
p il q mr}n Jm hihin
varrel relvdr varfra
varvar
varb1 {nvar
Varbl Thvar

Again this simplifies some code because normally one ends up with stacking stuff using
leaders in between.

+d

10731

frafdar

16.8 Accents

When we talk about accents, we refer to tiny symbols that anchor themselves onto base
characters. We limit ourselves to the ones common in Latin scripts because they are
the ones used in math. Accents in Unicode are somewhat special. In the past, when
encoding vectors were limited, accents were entered as part of an input sequence and
then anchored by the renderer. Nowadays often pre-composed characters are used. A
very cheap way of anchoring is to have accents that just overlay, and in practice centering
an accent over a base character works sort of okay. As an example of an accent we will
use the hat:

U+005E x xm”™m \Hat x* +m"
U+02C6 x’xm™m \hat Xx +mm
U+0302 fxrmim \widehat x"x+m™m

Normally the font handler will take care of anchoring U+0302, but it can only be done
properly when there are anchors defined for what are called ‘marks’: the official feature
description is mark-to-base (or simply mark). The last column in the above table shows
math and as we input a raw character we don’t get proper anchoring: the zero width
makes it overlap.

Now wait, you will say, but why does it actually overlap? The reason is that zero width is
not actually zero width here! The glyph has a bounding box that goes into the negative

Unicode 150

18
19

horizontal direction and therefore, when such a shape gets injected into the output, the
rendering in the viewer will move the left edge to the left. But because the TgX engine
only handles positive widths and because the width is explicitly part of a character
specification anyway!® we don't progress (advance) which is why the overlapping sort
of works for the x but less so for the m: in math mode we need to use these \hat and
\widehat commands.

The hat and widehat assignments were those of August 2022. In plain TeX we see these
definitions:

\def\hat {\mathaccent"705E }
\def\widehat{\mathaccent"0362 }

The \mathaccent primitive takes an integer that encodes the class, family, and slot
in the 8 bit font encoding. Here we see that the hat comes from family 0, the upright
math font. The widehat comes from extensible family 3. These two are independently
defined. When you want a hat that spans the nucleus, you need to use the widehat.
In the math engine spanning actually means that we have a delimiter and normally
that means: start with a basic shape, when that is too narrow, go to the extensible font
and follow the chain with increasing sizes and when you run out of those apply an
extensible recipe. The sequence and extensible are both optional and the important part
is that we first look at what is called the small character and then to the large one(s).

However, the \mathaccent primitives doesn’t take a delimiter! It directly starts fol-
lowing a chain if the given character has it (and then the character itself is of course the
first in that chain). And this is where the problems start when we move to OpenType
and Unicode math.

U+005E Hat some useless, often ugly large glyph
U+02C6 hat it has width but no extensibles
U+0302 widehat it has zero width and extensibles

Now, if we define \hat as U+02C6 we don't get the extensibles, and it basically is what
was always done in TEX macro packages following the plain suggestions. If we define
\widehat we start out with a glyph that has likely zero width' And, because Open-
Type starts with the base glyph and then uses a set of variants of eventually a recipe
of parts, we suddenly have a different situation with \mathaccent than we normally
have, where these are decoupled. Therefore, the definition of \hat and \widehat de-
termines what an OpenType math engine will do, just as in regular TgX, but we might
need them to be defined differently.

A solution would be to let \mathaccent (or \Umathaccent) directly go to the variants,
but that is sort of weird. Because a zero width glyph doesn’t match the criteria to span a
nucleus it is likely to be skipped anyway, although there can be a case where the next in

The height and depth are not: these we derive from the bounding box.
Over the many years that LuaTgX evolved this was not guaranteed, for instance when wide (Unicode)
fonts were constructed from traditional eight bit (TgX encoded) fonts.

151 Unicode

size overruns the width of the nucleus in which case the zero width one is used which
itself is not that nice. We could actually derive the width from the boundingbox, but that
would be a bit abnormal, and it makes no sense to burden the font machinery with that
exception. Another approach we can follow is to just copy the extensibles from U+0302
to 02C6 and use that one for \hat as well as \widehat and then make \widehat an
alias to \hat. After, all, the main reason why we have two commands comes from the
fact that \mathaccent doesn’t take a delimiter but single character reference (encoded
in an integer).

Here is the whole list of accents:

\grave U+0060 \widegrave U+0300
\ddot U+00A8 \wideddot U+0308
\bar U+00AF \widebar U+0304
\acute U+00B4 \wideacute U+0301
\hat U+02C6 \widehat U+0302
\check U+02C7 \widecheck U+030C
\breve U+02D8 \widebreve U+0306
\dot U+02D9 \widedot U+0307
\ring U+02DA \widering U+030A
\tilde U+02DC \widetilde U+0303
\dddot U+20DB \widedddot U+20DB

The only accent that is an exception is the last one but is it really used? It anyway makes
no real sense to assume that users will ever directly input the utf characters conforming
the last column, so we can just go for the first one and use the extensibles from the
second and see where we end up. Neither MathML nor TgX related specifications seem
to cover this well, so we can just do what suits us best.

Because all has to fit into the ConTgXt user interface and because we also want to be
backward compatible (command wise), we end up with something:

\showglyphs
\im {\widehat{a} + \widehat {aal}} =
\im {\hat {a} + \hat {aa}} =

\im {\hat {a} + \hat[stretch=yes]{aa}} =
\setupmathaccent [top] [stretch=yes]
\im {\hat {a} + \hat {aa}}

that gives us:
a+ad=a+aad=a+aad = d—+ ada
Now, one problem, is of course that users can enter these modifiers as utf sequence

in the input, just like they do with delimiters. Therefore we do support the following
feature (which is under class control so disabled by default):

\Umathcode "02C6 \mathaccentcode 0 "02C6

Unicode 152

20

21
22

\edef \HiHatA {\Uchar"02C6}
\Umathchardef \HiHatB \mathaccentcode 0 "02C6

$ \Uchar"02C6{x} + \HiHatA{xx} + \HiHatB{xx} = \widehat {xxxx} $
You get this:
XXX+XX= XXXX

The only cheat here is that normally accents come after the accentee, but we can live
with that. After all, it’s all about convenience.

There is another aspect of accents that we need to mention here. The hat, tilde, and
check are often used over not only single letters but also small expressions. So how
come that fonts have only very few variants defined? We can imagine that in eight bit
fonts the number of available slots plays a role but in OpenType fonts that is not the
case. It therefore can be considered an oversight that usage of these wide accents has
not be communicated well to the font designers.

G+a+b+a+bt+c+a+b+c+rd+a+b+c+d+e+at+brc+d+e+f
d+a+b+a+b+c+a+b+c+d+a+b+c+d+e+a+b+c+d+e+f
d+a+b+a+b+c+a+b+c+d+a+b+c+d+e+a+b+c+d+e+f

The previous lines demonstrate that we can actually cheat a little for these three top
accents: we can just scale the last variant horizontally. It was a few lines patch to Lua-
MetaTgX to make this automatic and triggered by setting the extensible field in a
character table to true instead of a recipe. The ingredients to get this working were
already there, and it works out quite well. The only complication was that the flac
feature (that provides flat accents for cases where the nucleus is rather high) could
interfere, but that was trivial to deal with in the code that does the goodies.?’

When it comes to these delimiters that have no real solution in the font, we can con-
sider delegating coming up with a glyph to the macro package at the time it is needed,
and we can actually do that. However, this is mostly interesting for educational us-
age, where the amount of delimiters is predictable and limited. About a decade ago
some mechanism was added to the MkIV math machinery that support plugins so that
we could use MetaFun to generate (most noticeably) square root symbols the way we
liked.?! The main drawback is that mixing this in means matching to a font, and that is
not always trivial. But it is this kind of trickery that makes working with TgX fun. That
said: what we are discussing here is more fundamental in the sense that we try to come
up with generic engine solutions that just rely on the fonts. That way complex math
with all reasonable symbols is also served.?

When we were testing fonts this got us by surprise when we tested Cambria that has these flat overloads
for the tilde and check. Because supports this automatic (hidden from the user) one doesn’t look into
that direction when testing something.

This was a fun project of Alan and Hans.

These MetaFun plugins are still possible, but we need to adapt some to LMTX which will happen as we

go.

153 Unicode

23

Interestingly there are some arrows that act like accents. There are over- and under ones
as well as combining (often zero width) accents. Fonts are not always consistent in how
these extends (the wide ones). Often the combining accents are smaller and closer to
the running text. Traditionally in TgX fonts there are no extensible arrows: they are
constructed from arrow heads, minus and equal signs with some negative spacing in
between. One can therefore wonder is the smaller combining ones are appreciated by
those who want stable math. It definitely means that we have to make choices. Even
more interesting is that while Unicode has some means to construct braces from pre-
dictable Unicode slots. there is no way to do the same with arrows and (indeed) there
are fonts out there with shaped arrows that demand different middle and end pieces.
In fact, the same is true for rules that are not simple rectangles and radical extensions
that are not flat rules either. In all these cases the usage patterns of accents and simi-
lar constructs has not really been fed back into the way Unicode and OpenType fonts
support math.?

16.9 Bullets

In TEX usage bullets are a it special. Because fonts had a limited number of slots avail-
able, bullets in for instance itemized lists traditionally were taken from a math font. The
bullet in Computer Modern has a comfortable size and is quite useful for that. Bullets
in text fonts often were (are) relatively small so even when they were available they
were not really used. The official Unicode slot for bullet is U+2022 and in this font it
shows up as “e’. The Wikipedia page on bullets (typography) mentions:

“A variant, the bullet operator (U+2219 @ BULLET OPERATOR) is used as a math symbol,
akin to the dot operator. Specifically, in logic, x @ y means logical conjunction. It is the
same as saying “x and y””

The page also mentions that “glyphs such as « and o” have “reversed variants @ and [@"
although we haven't see the reverse once in TgX documents (yet), like these (we use
Stix2 to show them):

U+2022 « BULLET
U+2023 ? TRIANGULAR BULLET
U+2043 - HYPHEN BULLET

U+204C « LACK LEFTWARDS BULLET
U+204D » LACK RIGHTWARDS BULLET
U+2219 «+ BULLET OPERATOR (math)
U+25CB O WHITE CIRCLE

U+25CF @ BLACK CIRCLE

U+25D8 QB INVERSE BULLET

U+25E6 o WHITE BULLET

One can argue that this is not what Unicode is for but if so, then some other bits and pieces also make
little sense.

Unicode 154

24

U+29BE © CIRCLED WHITE BULLET
U+29BF @® CIRCLED BULLET

The reverse ones are not really reverse in Stix2 as they have bigger circles. There are
a few more bullets mentioned but probably only because they have the word bullet
in their description and they don't really look like bullets. Given the already discussed
lack of granularity in some math symbols with multiple usage it is somewhat surprising
that we have a math bullet. The weird looking left- and rightward bullets are kind of
hard to distinguish. Let’s hope that mathematicians don’t discover these!

This brings us to the more general way of looking at these bullets because among
the popular math symbols used in text are also the triangles and (TgX) math fonts
came with. When we have a few commands for circular shapes like $\bullet\big-
circ\circ$ giving e O o we have plenty of (black) triangles.

For instance, we have \triangledown and \bigtriangledown and these have cor-
responding Unicode slots U+25BD and U+25BF but when you try these in for instance
Stix2, Pagella and Cambria you got: 7 +, 7 + ? and ? + ?, where the question mark
indicates a missing character.

It is for that reason that \triangledown and \bigtriangledown are both defined as
using the large one. This test also demonstrated us that we didn’t have to waste time
looking up what MathML had to tell about it. A typeset version of that specification
was never a visual highlight and missing glyphs only makes that worse. And, when
fonts lack shapes no one uses them anyway.

However, it makes sense to think a bit about how to deal with this properly, and we will
likely add some checking to the goodie files for it, so that when we do have them, we
use them.?. But even then, most troublesome is that the size (and even positioning)
of these symbols is rather inconsistent across math fonts, but because they are seldom
used it doesn’t make much sense to compensate for that (read: we just wait till users
ask for it).

16.10 Punctuation

There are quite some punctuation symbols in Unicode but not for math where the main
troublemakers are the period, comma, colon and semicolon. The first two can be used as
separator in numbers, in which case we don’t want any spacing, or they can be part of a
(pseudo) sentence in a formula, or they can separate entries in a list (take coordinates).

1.1 + 1.2
(1.1, 1.2)
x+ 1.1, x+ 1.2

When used as separator in a sentence, which is more likely in display math than in
inline math, the spacing after it can be either regular (as in text) or wide. And the

Most practical is to add this information to the character database which is a bit of work

155 Unicode

symbol can come from the math font or text (and these can actually look different). In
ConlTgXt (also pre LMTX) we have some special trickery at work for spacing comma’s
and periods but we leave that aside now. What should be noted is that out-of-the-
box spaces are ignored when math is scanned so we cannot take that surrounding into
account when dealing with spacing in the engine.

Although the Unicode specification provides a classification of characters that includes
punctuation in practice we need to deal with it ourselves. For instance, by default a
period is not considered punctuation but a command and semi colon are, while a colon
is a relation!

Take for instance f. (math italic f followed by a period). Italic correction and math
glyphs have this special relationship and it also shows up in punctuation. Imagine
that we have a sequence of characters, say fx. These are actually two ordinary atoms
but in f, we have an ordinary atom followed by a punctuation atom so here spacing is
determined by how these classes are set up. But, given the shape if the f we actually
don’t want italic correction here.

fx+f+f+f +f+a+a+a +a; +x, +x, +x 1 +Xx;

fat fofoAfitfi a4, +a 440, 42, 4000+
When you zoom in you can see the subtle spacing differences. We can compensate for
the semi colon being a bit higher than the period by applying some kern, something
that we can set up in the goodie file.

Actually, if we assume that periods only occur in numbers we can make it punctuation
and set it up for digit spacing but then commas etc also get done that way. A variant
is to have two punctuation classes (or cheat and put the period in the digit class). No
matter what we do, no help can be expected from documents mentioned: it’s mostly a
visual thing anyway.

Let’s end with the visual aspect: in most fonts the two colons 0x003A and 0x2236 are
different: one has more distance between the periods. Which one? Well, that depends
on the font! Latin Modern has a cramped 0x2236 while Stix2 has a cramped 0x003A.
Cambria has square dots for the 0x003A and round ones slightly more cramped for
0x2236. Lucida goes extreme: it has smaller dots far apart for 0x2236. If the idea is
that a reader should get from the shape what it’'s about one can wonder if texts get
read the way the author intended. Of maybe shapes don’t matter. Of course a macro
package can obscure these inconsistencies by setting the math character code of 0x003A
to 0x2236 but that only obscures the fact that little attention has been paid: what one
can consider bugs became features.

16.11 Special ones

There are quite some characters that really depend on a math renderer. Examples are
wide accents, fences, and arrows. Some constructs, like fractions use rules and these

Unicode 156

don’t come from Unicode nor fonts. A mixed case is radicals: there is a Unicode point
and fonts can provide larger variants. Normally one steps up a slightly slanted ver-
sion but when things get large the radical becomes an extensible and therefore gets an
upright shape. The engine is supposed to add a horizontal rule at the right location.
Interesting is that there is no provision for a right end cap. The reason probably is that
TEX, being the major renderer, has no combined horizontal and vertical extenders and
OpenType doesn’t have that either. Some properties are driven by the fonts” math pa-
rameters which sort of makes the radical rendering a very restricted adventure: it is
supposed to be used for roots only, either of not with a degree anchored in the right top
area. It looks like that degree is not really to extend much beyond the left edge of the
symbol.

In Unicode there is an actuarian character U+20E7 and support in fonts is not that good.
We do support it because we ran into in MathML. However, it is a hack. The symbol as
provided by fonts is rather useless.

$ \sqrt {x + 1} + \annuity{x + 1} $

Let’s see how it renders:

Vx+14+x+1

We take the dimensions of a radical as template and when we look at the bare glyphs
we see this:

v -

Basically we have a right actuarian character like we have a left radical. But In this
case the rule will go left instead of right. This is implemented on top of radicals so
and driven by \Udelimited that takes two delimiters and doesn’t scan for a degree.
For two-sided roots (with degree) we have \Urooted. And like normal radicals the
delimited one adapts itself to the content:

$ \sqrt {x + \frac{i}{x}} + \annuity {x + \frac{i}{x}} $

So we get:

Il I
Vi + g R+

For the record: in ConIgXt spacing is also driven by the struts and because we use the
radicals renderer the gap and distance parameters also apply. It might look spacy, but
keep in mind that we want radicals to look similar when we have more of them in line,

157 Unicode

and we can configure all. We have also enabled the feature that radicals at the same
level are normalized in height and depth. Here are some variants:

$ \lannuity {x + \frac{i}{x}} +
\rannuity {x + \frac{i}{x}} +
\lrannuity {x + \frac{i}t{x}} $

This gives:

| 1 1| ' 1|
X+§+X+§ + X+§

So we can have a mix of left, right and both end radical like symbols that encompass
the nucleus. We're not aware of more such characters in Unicode but when they show
up we are prepared. Only real usage can result in some parameters being fine-tuned.

16.12 Final words

This text was written in 2022 when we were working on math, extending the goodie files
with new tweaks, checking support in fonts and updating manuals. But, as we moved
forward, for instance with adapting Typel support of Antykwa and Iwona to the new
possibilities again we had to go back in time and figure out why actually things were
done in certain ways. And I have to admit that we had some good laughs and quite
some fun on seeing how strange and inconsistent the assumed structured and logical
TEX ecosystem deals with math. A wrapup like is is never complete and we can keep
adding to it so just consider it to be a momentary impression.

Personally I have to admit that I've always overestimated what happened outside the
ConTgXt bubble, especially given the claims made. Consistency in Unicode math is
probably not as good as is could have been and the same is true for OpenIype math
support, but maybe I'm naive in expecting consistency and logic in math related work.
The mere fact that Donald Knuth pays a lot of attention to the math in his writing doesn’t
automatically translate in all TeXies doing the same. I don’t claim that ConTgXt is doing
better but I do hope that its users keep going for the best outcome.

One final note. In ConIgXt we always tried to keep up with developments and Unicode
input as well as using OpenType math fonts are part of that. However, because we're
not part of the ‘gremia of TgX math and related coding” it hardly matters what our opinions
are with respect to these issues. The best we can do is adapt to whatever shows up, it
being bad or good. It is however kind of funny to see (by now rusty) problems that have
been noticed already long ago being presented as kind of new. Hopefully staying ahead
and/or adapting with specific solutions doesn’t'backfire to hard on the ConTEXt users.
If so, we're sorry for that. As long as they can render their documents well, it doesn’t
matter that much anyway. After all, we can always just blame the others involved’.

Unicode 158

16.13 Resources

[1] en.wikipedia.org/wiki/Slash_(punctuation)

[2] www.unicode.org/reports/tr25

[3] www.w3.org/TR/MathML3

[4] www.unicode.org/Public/math/revision-15/MathClass-15.txt
[5] en.wikipedia.org/wiki/Vertical_bar

[6] en.wikipedia.org/wiki/Dash

[7] en.wikipedia.org/wiki/Commercial_minus_sign

[8] en.wikipedia.org/wiki/Division_sign

[9] en.wikipedia.org/wiki/Bullet_(typography)

159 Unicode

ConTgXt in TgXLive 2023 1 7

Starting with TgXLive 2023 the default ConIgXt distribution is LMTX, a follow up on
MKIV, running on top of the LuaMetaTgX engine instead of LuaTgX. Already for a long
time the MKII version used with pdfTgX, X§IEX and Aleph has been frozen and most
users moved on from MKIV to LMTX (a more distinctive tag for what internally is ver-
sion MkXL).

In principle one can argue that we now have three versions of ConIgXt and there can
be the impression that they are very different. However, although MkXL can do more
than MKIV which can do more than MKII, the user interface hasn’t changed that much
and old functionality is available in newer versions. Of course some old features make
no sense in newer variants, like eight-bit font encodings in an OpenType font realm and
input encodings when one uses utf, although we still support input encodings a.k.a.
regimes. When we started using the Mk* suffixes the main reason was that we had to
distinguish files and the official TgX distribution doesn’t permit duplicate file names.
Using a distinctive suffix also makes it possible to treat files differently.

suffix engine template arguments main file

MkII pdfTEX, X5TEX, Aleph context.mkii
MKkIV LuaTgX, LuajitTgX, LuaMetaTpX context.mkiv
MkVI idem yes

MkIX idem yes

MkXI idem yes yes

MkXL LuaMetaTgX context.mkxl
MKLX idem yes

In this table ‘template” files are a mix of TEX and Lua and originate in the early days of
MKIV; basically, they are a wink to active server pages. With ‘arguments” we refer to files
that accept named macro arguments which means that they need to be preprocessed.
That started as a proof of concept but some core files are defined that way. Users will
normally just use a . tex file.

The Lua files in the code base have the suffix 1ua, or when meant for LuaMetaTgX that
uses a newer Lua engine they can have the suffix Imt. There can also be 1fg (font
goodies) and 11g (language goodies) plus byte-compiled files with various suffixes
but these are normally not seen by users. We leave it at that.

So, while TgXLive 2022 installed MkII and MKIV, TgXLive 2023 installs MkIV and LMTX.
Therefore the most significant upgrade is in the engine that is used by default: LuaMeta-
TeX instead of LuaTgX. The MKII files are no longer installed so we don’t need pdfTgX.

So how did we end up here? Initially the idea was that, because LuaTgX is basically
frozen, LuaMetaTEX would be the engine that we conduct experiments with and from

ConTXt in TgXLive 2023 160

which occasionally we could backport code to LuaTgX. However it soon became clear
that this would not work out well so backporting is off the table now. Just for the record:
the project started years ago so we’re not talking about something experimental here.
There have been articles in TugBoat about what we’ve been doing over the years.

One of the first decisions I made when starting with LuaMetaTgX was to remove the
built-in backend, which then meant also removing the bitmap image inclusion code.
That made us get rid of dependencies on external libraries. In fact, a proof-of-concept
experimental variant didn’t use the built-in backend at all. The font loading code could
be removed as well because that was not used in MKIV either. In MKIV we also don’t use
the kpse library for managing files so that code could be dropped from the engine tool;
it can be loaded as so-called optional library if needed but I'll not discuss that here.
If you look at what happens with the LuaTgX code base, you'll notice that updating
libraries happens frequently and that is not a burden that we want to impose on users,
especially because it also can involve updating build-related files. Another advantage
of not using them is that the code base remains small.

A direct consequence of all this was that the build process became much more effi-
cient and less complex. A fast compilation (seconds instead of minutes) meant that
more drastic experiments became possible, like most recently an upgrade of the math
subsystem. All this, combined with an overhaul of the code base, both the TgX and
MetaPost part, meant that backporting was no longer reasonable. Being freed from the
constraint that other macro packages might use LuaMetaTgX in turn resulted in more
drastic experiments and adding features that had been on our wish list for decades.
Another side effect was that we could easily compile native MS Windows binaries and
immediately support transitions to arm-based hardware.

Instead of “backporting after experimenting”, a leading motive became “fundamentally
move forward” while at the same time tightening the relation between ConTgXt and the
engine: the engine code became part of the distribution so that users can compile them-
selves, which fits perfectly in the paradigm (and demands) of distributing all the source
code, even that of the engine. There is also less danger that patches on behalf of other
usage interferes with stable support for ConIgXt. A specific installation is now more
or less long-term stable by design because it no longer depends on binaries and/or li-
braries being provided for a specific platform and operating system version. Of course
installers and TgXLive do provide the binaries, so users aren't forced to worry about
it, but they can move along with a system update by recompiling an old, and for their
purpose, frozen ConTgXt code base.

An unofficial objective (or challenge) became that the accumulated source stays around
12 MB uncompressed, (compressed a bit over 2 MB) and the binary around 3 MB so that
we could use the engine as an efficient Lua runner as well as a launcher stub, thereby
removing yet another dependency. That way the official ConTgXt distribution didn’t
grow much in size. A bonus is that we now use the same setup for all operating systems.
It also opened up the possibility of a exceptionally small installation with all bells and
whistles included. Another nice side effect, combined with automatic compilation on
the compile farm, makes that we can provide installations that reflect the latest state

161 ConTpXt in TgXLive 2023

of affairs: a recent binary combined with the latest ConIgXt. As a result, most users
quickly went for LMTX instead of MKkIV.

In the code base we avoid dependencies on specific platforms but there are a few cases
where the code for MS Windows and Unix differs. However, the functionality should
be the same. A good test is that for MS Windows we can compile with mingw (cross-
compilation), MSVC (native) and clang (native); that order is also the order of runtime
performance. The native MSVC binary is the smallest but users probably don’t care. In
any case, it is nice to have a fallback plan in place. The code is all in C; the MetaPost
code is converted from cweb into C using a Lua script but we also ship the resulting
C code. The code base provides a couple of cmake files and comes with a trivial build
script.

When I say that there are no libraries used, I mean external libraries. We do use code
from elsewhere: adapted av1 as well as decnumber (for the MetaPost library), adapted
hjn (hyphenation), miniz (zip compression), pplib (for loading pdf files), 1ibcerf
(to complement other math library support, but it might be dropped), and mimalloc
for memory management. However all the code is in the LuaMetaTEX code base and
only updated after checking what changed. The most important library originating
elsewhere is of course Lua: we use the latest and greatest (currently) 5.4 release. We
kept the socket library but it might be dropped or replaced at some point. In addition
there is a subsystem for dynamically loading libraries; the main reason for that being
that I needed zint for barcodes, interfaces to sql databases, a bunch of compression
libraries, etc. But all that is tagged optional and ConTgXt will never depend on it. There
are no consequences for compilation either because we don’t need the header files. The
glue code is very minimalistic and most work gets delegated to Lua.

Initially, because the backend is written in Lua, there was a drop in performance of some
15% but that was stepwise compensated by gains in performance in the engine and ad-
ditional or improved functionality. The ConTgXt code base is rather optimized so there
was little to gain there, apart from using new features. Existing primitive support could
also be done a bit more efficiently; it helps if one knows where potential bottlenecks are.
Therefore, in the meantime an LMTX run can be quite a bit faster than a MkIV run and
it can even outperform a LuajitTEX run. In practice, the difference between an eight-bit
MKII run using the eight-bit pdfTEX engine and a 32-bit LuaMetaTEX run with LMTX
can be neglected, definitely on more complex documents. I never get complaints about
performance from ConTgXt users, so it might be a minor concern.

So what are the main differences in the installation? If you really want to experience
it you should use the standard installation. Currently the small installer is the engine
that synchronizes the installation over the net and, assuming a reasonable internet con-
nection, that takes little time. The installation is relatively small, and many of the bytes
used are for the documentation. Updates are done by transferring only the changed
tiles. The TgXLive installation is a bit larger because it shares for instance fonts with the
main installation and these come with resources used by other macro packages. Both
installations bring MKIV as well as LMTX and therefore provide LuaTgX as well as Lua-
MetaTgX. However, a MKIV run is now managed by LuaMetaTgX because we use that

ConTXt in TgXLive 2023 162

engine for the runner. The MKII code is no longer in TgXLive but is in the repositories
and used to test and compare with pdfTgX. It just works.

The number of binaries and stubs is reduced to a minimum:

file symlink

tex/texmf-platform/luametatex combined TgX, MetaPost and Lua engine
tex/texmf-platform/mtxrun luametatex script runner, binary
tex/texmf-platform/context luametatex CONTEXT runner, binary
tex/texmf-platform/mtxrun.lua script runner, lua code
tex/texmf-platform/context.lua loader for ConIgXt runner
tex/texmf-platform/luatex the good old ancestor

All of these programs are in the ConIgXt distribution directory tex/texmf-<plat-
form>/. In addition, context and mtxrun are symlinks to the luametatex binary,
where possible.

So, the context command runs luametatex, but loads the Lua file with the same
name which in turn will locate the ConTeXt management script (mtx-context) in the
TeX tree and run it. The same is true for mtxrun: it is a binary (link) that loads the
script in (this time) the same path and then can perform numerous tasks. For instance,
identifying the installed fonts so that they can be accessed by name is done with:

mtxrun --script font --reload

Where in MKII we had stubs for various utility scripts, already in MkIV we went for a
generic runner and a bit more keying. It’s not like these scripts are used a lot and by
avoiding shortcuts there is also little danger for a mixup with the ever-growing list of
other scripts in TeXLive or commands that the operating system provides.

The LuaTgX binary is optional and only needed if a user also wants to process MkIV
files. There are no shell scripts used for launching. The two main calls used by users
are:

context foo.tex
context —--luatex foo.tex

A user has only to make sure that the binaries are in the path specification. When you
run from an editor, the next command does the work:

mtxrun --autogenerate --script context <filename>

with <filename> being an editor-specific placeholder. Like other engines, LuaMeta-
TeX (and ConTgXt) needs a file database and format file, and although it should gener-
ate these automatically you can make them with:

mtxrun --generate
context --make

163 ConTpXt in TgXLive 2023

The rest of the installation is similar to what we always had and is tds compliant. The
source code of LuaMetaTgX is included in the distribution itself (which nicely fulfills
the requirements) but can also be found at:

https://github.com/contextgarden/luametatex

There are also some optional libraries there but ConTgXt works fine without them. The
official latest distribution of ConTgXt itself is:

https://github.com/contextgarden/context
https://github.com/contextgarden/context-distribution-fonts

We see users grab fonts from the Internet and play with them. They can install addi-
tional fonts in tex/texmf-fonts/data/<vendor>. Project-specific files can be col-
lected in tex/texmf-project/tex/context/user/<project>. These directories
are not touched by installations and can easily be copied or shared between different
installations. After adding files to the tree mtxrun --generate will update the file
database.

In the distribution there are plenty of documents that describe how LuaMetaTgX with
LMTX differs from MKIV with LuaTgX: new primitives, macro extensions, more gran-
ular math rendering, improved memory management, new (or extended) (rendering)
concepts, more MetaPost features; most is covered in one way or another, and much
is already applied in the ConTEXt source code. After all, it took a few years before we
arrived here so you can expect substantial refactoring of the engine as well as the code
base, and therefore eventually there is (and will be) more than in MkIV.

When you compare a ConTgXt installation with what is needed for other macro pack-
ages you will notice a few differences. One concerns the way TgX is launched. Anengine
starts with a blank slate but can be populated with a so-called format file that is basi-
cally a memory dump of a preloaded macro package. So, the original way to process
a file is to pass a format filename to the engine. In order to avoid that a trick is used:
when an engine (or symlink/stub to it) is launched by its format name, the loading
happens automatically. So, for instance pdflatex is actually an equivalent for starting
pdfTEX with the format file pdflatex . fmt while 1atex is pdfTEX with another format
file (latex.fmt) starting up in dvi mode. And, as there are many engines, a specific
macro package can have many such combinations of its name and engine.

In ConIgXt we don't do it that way. One reason is that we never distinguished between
backends: MKII uses an abstract backend layer and load driver files at runtime (it was
one of the reasons why we could support Acrobat as soon as it showed up, because
we already supported the now obsolete but quite nice dviwindo viewer). And that
model hasn’t changed much as we moved on. Because we use a runner, we also don’t
need to distinguish between engines: all formats have the same name but sit on an
engine subpath in the TgX tree. Anyway, this already removes quite some formats.
On the other hand, ConTEXt can be run with different language specific user interfaces
which means that instead of just context.fmt we have cont-en.fmt and possibly

ConTiXt in TgXLive 2023 164

more, like cont-nl.fmt. So that can increase the number again but by default only the
English interface is installed. As a side note: where with MKII we needed to generate
MetaPost mem files, with its descendants having mplib we load the (actually quite a bit
of) MetaPost code at runtime.?

In addition to a format file, for the LuaTpX and LuaMetaTEX engine we also have a
(small) Lua loader alongside the format file. All this is handled by the runner, also be-
cause we provide extensive command line features, and therefore of no concern to users
and package maintainers. However, it does make integrating ConIEXt in for instance
TeXLive different from other macro packages and thereby puts an extra burden on the
TeXLive team. Here I want to thank the team for making it possible to move forward
this way, in spite of this rather different approach. Hopefully a LuaMetaTgX integration
is a bit easier in the long run because we no longer have different stubs per platform
and at least the binary part now has no dependencies and only has a handful of files.

For those new to ConIgXt or those who want to try it in TgXLive 2023 there is not much
difference between the versions. However, MKkIV is now frozen and new functionality
only gets added to LMTX. Of course we could backport some but with most users al-
ready having moved on, it makes no sense. Just as we keep MKII around for testing
with pdfTgX, we also keep MKIV alive for testing with LuaTgX. Maybe in a couple of
years MKIV will go the same route as MKII: ending up in the archives as an optional
installation.?

2 Occasionally I do experiments with loading the TgX format code at runtime, but at this moment the
difference in startup time of about one second (assuming files are cached) is too large and running over
networks will be less fun, so the format file will stay. The time involved in loading MetaPost can be
brought down but for now I leave it as it is.

26 This text appeared in TugBoat around the 2023 TgXLive release. Thanks to Karl Berry for his careful
reading and fixing of the text and of course for keeping TeXLive alive.

165 ConTpXt in TgXLive 2023

27
28
29
30
31

32
33
34

How not to install ConTEXt 1 8

Installing LuaMetaTeX can be a complex process that requires some technical exper-
tise, but the following steps should give you a general idea of what is involved:

1. First, you need to ensure that you have a recent version of the Lua programming
language installed on your system. You can download the latest version of Lua
from the official website at http://www.lua.org/ download.html.?

2. Next, you need to download the latest version of the MetaTeX distribution, which
includes the LuaMetaTeX engine, from the official ConTeXt Garden website at
https:/ /wiki.contextgarden.net/ConTeXt_Standalone.?

3. Once you have downloaded the MetaTeX distribution, extract the files to a direc-
tory on your system.?

4. You can then run the LuaMetaTeX engine by opening a command prompt or ter-
minal window and navigating to the directory where you extracted the MetaTeX
files. From there, you can run the command "luametatex” followed by the name
of the TeX file you want to process.®

5. To make it easier to use LuaMetaTeX with your favorite text editor, you may also
want to install a TeX distribution such as TeX Live or MiKTeX, which includes
support for LuaMetaTeX. These distributions typically include a graphical user
interface that makes it easier to manage your TeX installation and configure your
system for use with LuaMetaTeX.3!

It’s worth noting that the exact steps for installing LuaMetaTeX may vary depend-
ing on your operating system and the specific TeX distribution you are using. For
more detailed instructions, you may want to consult the official documentation for
LuaMetaTeX and the TeX distribution you are using.>?

by ChatGPT3334

The Lua code needed is part of the source tree that can be downloaded from GitHub or websites.

There is no MetaTgX, although we sometimes joke about it.

So here one is stuck.

Shouldn't it be compiled first? And even then it needs some format, so one needs context and mtxrun.
Indeed installing TgXLive is easier, as is installing the smaller reference installation which uses LuaMeta-
TEX as its own installer. As far as we know, MikTEX doesn’t include LMTX. And yes, consulting the
documentation might be best.

So here is the way out of the proposed mess.

Queried by Mikael Sundqvist.

Which (at least here) is more about well formed sentences than about verified content. We can only hope
that new TEX users are able to recognize a fake.

How not to install ConTgXt 166

167 How not to install ConTEXt

Side effects 19

In the process of extending TEX into LuaMetaTgX I occasionally run into what I consider
side effects. Some might argue that we're seeing a bug but personally I never consider
what I observe as “interestingly weird” to be a bug. After all, if it really was an issue Don
Knuth would already have run into it and dealt with it accordingly.

Mid-2023 Mikael Sundqvist and I were reviewing the upgraded multi-line display math
mechanism and in particular we were looking at how it behaves with for instance side
floats. At some point we wondered if such a formula should follow the shape. This is
not that trivial because where regular text is in most cases sort of grid-based and there-
fore has well-defined line heights, display math is way less predictable. This means
that setting up hanging indentation based on lines will often lead to bad results. I did
actually check if the par builder could be adapted to work with a height specification
but this is not trivial, if only because one then needs to keep track of (intermediate) line
heights while at the same time one doesn’t know if the interline spacing changes, which
actually is something a user can set up in ConTgXt display math. Setting the hang or
shape comes before the content so we also have an out-of-order situation to deal with.
Of course placing a formula number in the margin or below a formula also interferes.

Because formulas following a shape looked weird anyway (think for a moment what
mid-aligned display math should look like) in the end we decided that a display for-
mula in a side float situation is just an unbroken vertical box that if needed will extend
below the allotted hang space. This is not that different from what TgX does when
we would use display math (which we don’t in ConTgXt, where we follow a different
approach) because TgX just assumes that a display formula counts as three lines pro-
gression in a hanging (or par shape) continuation.

\dontleavehmode
\hbox{\strut one}
\break
\hbox{\strut two}
\par
\the\prevgraf

This example shows two boxes making a single paragraph and the number of lines
reported is two:
.one

two
2

That number is not always reliable as we can see from:

\dontleavehmode

Side effects 168

lone
two
Ithree

\hbox{\strut one}

\break

\vbox{\strut two\par \strut three}
\par

\the\prevgraf

Again we get two, which indicates that a line is a box and not a text line which is why
for standard TgX display math a value of three is added, assuming simple single line
formulas of not that much height and with spacing around it that make it somewhat
similar to three lines.

2 |

The way these three lines are communicated is via \prevgraf which is a property of
the currently worked on list. When the par builder kicks in, its current value is taking
as starting point for the first line number and line numbers are used to pick up the right
indentation (from hang or shape). This means that when the hang or shape parameters
are not reset, as in the case of a mid paragraph display formula in TgX, we pick up where
we left. So, that made me wonder what happens if we set the \prevgraf ourselves? As
with \prevdepth, which has its own interesting side effects, we can get some surprising
outcomes. For showing this we use the following macro:

\def\Test#1#2J,
{\begingroup
\hsize 9cm
\hangafter -3
\hangindent 1cm
sample data % from a sample file
\prevgraf #2
[\number\prevgraf]
\par % not needed in ctx
\endgroup}

So let’s start with the zero case. We use a quote from Mathematical Writing, a course
by Don Knuth that Mikael and I agree we would have failed to pass:

Many readers will skim over formulas

on their first reading of your exposition.

Therefore, your sentences should flow
smoothly when all but the simplest formulas
are replaced by “blah” or some other grunting
noise.[0]

The output is as we expect: we get three indented lines. So what happens when we set
the \prevgraf to one?

169 Side effects

Many readers will skim over formulas

on their first reading of your exposition.
Therefore, your sentences should flow smoothly
when all but the simplest formulas are replaced
by “blah” or some other grunting noise.[1]

We're good, so let’s try two:

Many readers will skim over formulas on
their first reading of your exposition. Therefore,
your sentences should flow smoothly when all
but the simplest formulas are replaced by “blah”
or some other grunting noise.|[2]

Going up from there we see that values larger than three seemingly get ignored, so a

safe thousand produces:

Many readers will skim over formulas on their
first reading of your exposition. Therefore, your
sentences should flow smoothly when all but the
simplest formulas are replaced by “blah” or some
other grunting noise.[1000]

I then became curious what happens with effectively zero values but that is hard be-
cause when you set \prevgraf negative assignments give an error. That made me
wonder what would happen with the maximum positive value, given that I'd seen the

code involved doing additions:

Many
read-
ers
will
skim
other
grunt-

ing
noise.[2147483647]

Okay, that looks interesting! So what if we go a bit below that?

Many readers will skim over formulas
on their first reading of your exposition. There-
fore, your sentences

should
flow

Side effects 170

smoothly
when

or
some

other

grunt-

ing
noise.[2147483645]

We now come to the question: “Is this really what Don Knuth had in mind?” For sure the
answer is “yes” if we can come up with a use case. However, because once a user knows
that this feature is there, and because we cannot be sure (without examining the code)
if a wrap around can make TgX fail, it is best to just catch this case. In order to remain
compatible we do this via an option: we set the third bit in \normalizeparmode. In
ConTgXt speak:

\bitwiseflip \normalizeparmode \limitprevgrafnormalizeparcode
As you can see below, we're fine now.

Many readers will skim over formulas on their
tirst reading of your exposition. Therefore, your
sentences should flow smoothly when ... or some
other grunting noise.[2147483647 |

Can we come up with a use case? Sure. In plain TgX there is a macro that will show the
word snippets on the console:

\def\showhyphens#1

{\setbox0\vbox

{\parfillskip Opt
\hsize \maxdimen

% \tenrm
\pretolerance-1
\tolerance -1
\hbadness 0
\showboxdepth 0

o\
#1}}

Now watch the extreme \hsize here. We clip the one line result to the text width.
One would expect a reasonable sample text to fit on that line and indeed it does but
the tolerance values combined with the lack of a final filler will lead to underfull box
messages.

Many |

171 Side effects

If we use . 2\maxdimen instead we see this:

ﬂ\/[any readers will skim

Here comes our use case. We limit the text because here we get multiple lines. Interest-
ingly, we don’t even need to set \hangindent to some value.

\def\showhyphens#17,
{\setbox0\vbox
{#1
\prevgraf 2147483647
%\showboxdepth 0
T}

or in ConTgXt speak:
\def\showhyphens#1{\setbox\scratchbox\vbox{#1\prevgraf\maxcount}}

So one can argue that letting \prevgraf wrap around is a feature that permits efficient
trickery.

Many
read-
ers
will
skim

other
grunt-

mg

noise,
It is this particular neat use case that turn this ‘wrap around’ side effect into a proper

feature, although in ConTgXt LMTX we will likely enable the catch. But the fact that on
the one hand setting \prevgraf has a check for a negative value, while on the other
hand the par builder permits ‘wrapping around” might be an argument for some “grunt-
ing noise”.

post scriptum

In TgX there is a difference between these two cases:

some text \par

$$ formula $$ \par

some text \par

and

some text % stay in par

$$ formula $$ J, stay in par

Side effects 172

some text \par

In the first case we have three paragraphs and if we use some hanging indentation or par
shape it only covers the current paragraph. In the second case we stay in the paragraph
and therefore the hang or shape applies to all three. Now here comes the interesting
bit.

Compare

o Many readers will skim over formulas on their first reading of your exposition.
Therefore, your sentences should flow smoothly when all but the simplest formu-

. las are replaced by “blah” or some other grunting noise
x=1
,,,,,,,,,,,,,,,, Many readers will skim over formulas on their first reading of your exposition.
herefore, your sentences should flow smoothly when all but the simplest formulas ar
replaced by “blah” or some other grunting noise

L

With

T Many readers will skim over formulas on their first reading of your exposition.
. Therefore, your sentences should flow smoothly when all but the simplest formu-

. las are replaced by “blah” or some other grunting noise
iy o (@)

x=1

o Many readers will skim over formulas on their first reading of your exposition.
J/Therefore, your sentences should flow smoothly when all but the simplest formulas ar
eplaced by “blah” or some other grunting noise

and

o Many readers will skim over formulas on their first reading of your exposition.
Therefore, your sentences should flow smoothly when all but the simplest formu-

las are replaced by “blah” or some other grunting noise

o Many readers will skim over formulas on their first reading of your exposition.
.Therefore, your sentences should flow smoothly when all but the simplest formulas ar

eplaced by “blah” or some other grunting noise

AsImentioned before, a display formula counts as three lines and that is communicated
to the par builder by adapting \prevgraf. This is actually independent of the amount
of spacing we add so you can take it into account when setting up such a hang. It is one
of these cases where more clever automatism makes little sense.

173 Side effects

Because spacing around formulas can be tricky in ConTpXt we always managed it differ-
ently. For that reason in LuaTeX we added some more engine control over the scenarios,
for instance in relation to \baselineskip related catches. We just default to no spac-
ing at all. In LMTX we emulate display mode even more different and also use the
LuaMetaTEX option to make the dollar driven display mode equal to inline, in order to
force users to use the proper mechanisms. In ConIEXt we also have some plugins into
\everypar that (re)set the shapes so in order to produce the above I had to bypass
that. I can’t speak for other macro packages but in plain a test looks like this:

\abovedisplayskip Opt
\belowdisplayskip Opt

\hangindent lcm

\hangafter =7

\input {knuthmath} % 3 lines (@12pt)
$$ x = 1 $$ % 3 lines

\input {knuthmath} % 3 lines
In this document I cheated by adding;:

\everypar {
\mathdisplaymode 0
\mathdisplayskipmode O

So now we know one reason why \prevgraf is really there and why wraparound is
not important. Of course one can wonder why that (current list) property can be set at
all by a user. Here’s one:

S Many readers will skim over formulas on their first reading of your exposition.

Therefore, your sentences should flow smoothly when all but the simplest formu-

N las are replaced by “blah” or some other grunting noise. =~
x=1

Joo Many readers will skim over formulas on their first reading of your exposition.
Therefore, your sentences should flow smoothly when all but the simplest formu-

las are replaced by “blah” or some other grunting noise
I J o o

How did we get this? The par builder kicks in when we handle display math but it
retains the shape. That means that after the formula is done we have a positive value
of \prevgraf and that means we can subtract from it without going negative (and
triggering an error):

\input {knuthmath}
$$ x = 1 $$

\prevgraf\numexpr\prevgraf-2\relax 7 etex
\input {knuthmath}

As it is not a (engine or user) register we can’t advance and because it operates on the
current list grouping is irrelevant, so for pure TgX one has to do something;:

Side effects 174

{\count2=\prevgraf \advance\count2 by -2 \prevgraf=\count2} 7 tex

So, if really needed one can typeset the formula and from its dimensions and spacing
above and below derive the correction. Here we just subtract two. There is no way
that Mikael can convince me to add a fragile feature like this to ConTgXt, and I know
he won't. We anyway have different nuts (or nut math) to crack. Also, we promote a
more spacy source setup so users will definitely add empty lines (\par equivalents)
before and after formulas, which makes all the above fail. But out of curiosity, maybe
we should get the latest TAOCP collection and check where display math is used in a
hang or shape context.

175 Side effects

Strange assumptions 20

Below I will collect some of the questions and remarks-turned-questions that keep pop-
ping up and start annoying me, especially when they come from people who should
know better (being involved in development themselves). I'm always puzzled why
these things come up, especially by people who are no user and should not waste time
on commenting on ConIgXt.

All these versions, ConTgXt keep changing, so what’s next?

Sure, we're now at the third version, MkII, MkIV and LMTX, but there is is some pro-
gression in this. The first version evolved from TgX to e-TgX to pdfTEX (but also could
handle XgIEX and Aleph). Butin order to get things done better we moved on to LuaTgX
and because that is a ConIEXt related project it made sense to split the code base which
made us end up with a frozen stable MKII and an evolving-with-LuaTgX MkIV. Then
there was a demand for a stable LuaTgX for usage otherwise which in turn lead to the
LuaMetaTgX project and its related ConTgXt evolution LMTX. So, yes, this macro pack-
age keeps changing. And it this bad? Don’t other macro packages evolve? And why do
users of other packages bother anyway? I never heard a ConTgXt user complain either.
By the way, how do other macro packages actually count and distinguish versions?

Why is ConTgXt so slow?

Because I seldom hear complaints from users about performance, why do users of other
macro packages find reason to even bother. In MkII we immediately started with a high
level keyword driven interface so that came with a price. But quite some effort was put
into making it as fast and efficient as possible. Fortunately for ConTgXt users the MkIV
version became faster over time, in spite of it using a 32 bit engine (which comes at a
price). Even better is that LMTX with LuaMetaTgX has gained a lot over MkIV. But then,
I guess, other macro packages that use LuaTgX are also fast, so maybe the claims that
ConIgXt is much slower than other macro packages still hold. I'm not going to check it,
and I bet ConTgXt users don't care.

Why does ConTgXt (even) needs a runner.

Indeed, because we don’t want users to be bothered with managing runs right from
the start it came with a program (Modula2) and later a script (Perl followed up by
Ruby) that checks if an additional run is needed because of some change in the table of
contents, references, the index, abbreviations, positioning, etc. Index sorting was done
too so there was no further dependency. We though that was actually a good thing.
With LuaTgX and LuaMetaTgX all that became even more integrated because Lua was
used. The runner(s) also made it possible to ship additional scripts without the need
for potentially clashing applications in the ever growing TgX ecosystem. Interesting is
that ridiculing ConIgXt for script dependency was never complemented by ridiculing

Strange assumptions 176

other macro packages that nowadays seem to depend on scripts (with some even using
LuaTEX which originates in the ConTgXt domain).

Why does ConTgXt organizes files that way?

ConTgXt sticks quite well to the TgX Directory Structure, so what is the problem here?.
Yes, we needed some granularity (e.g. for MetaPost) but later that just became normal.
And indeed we optionally let users use a flat directory structure for fonts but that’s
normally in the users own local tree. Oh, and in MkIV and LMTX we use our own file
database (actually also in MKII at some point), just because (definitely at that time) it
was way faster and we needed more features. The same is true for the font database,
utf encoded hyphenation patterns, and so on. Can it be that we're often just ahead of
the pack?

Let’s nor forget to complain about the fact that MkIV and LMTX use a cache but so do
lots or programs: just think browsers of some scripting language ecosystems. And that
was introduced right after we started with MkIV and hasn’t changed much at all. Users
expect no less. And other macro packages are free not to use the cache (for e.g. fonts).

The authors of ConTEXt don’t care about compatibility, do they?

You're joking, right? Surely some features became sort of obsolete when we moved
to MKIV, like encodings. But if users like to stick to them, they can. Do you really
think that user like us to drop compatibility? Maybe it fits some narrative to spread
that story. Of course, we make things better if we can, and the interfaces have always
permitted upgrades and extensions. There are definitely cases when (maybe due to
user demand) something new gets added that then evolves towards a stable state, so
yes, there can be code in flux. But that is natural. Should we just assume that other
macro packages don’t evolve, never have bugs, don’t break anything, never fix broken
things immediately? Maybe. And complaining about ConTgXt evolving is none of its
non-users business anyway.

Is ConTEXt commercial?

This is one of the strangest questions (or remarks). We use ConTgXt ourself and using it
in ajob is by definition commercial use. Are all other TgXies only using TgX macro pack-
ages in the free time, as hobby? I'm pretty sure that more money is made by competing
package users and I'm also sure that most of the time involved in creating ConTgXt (and
LuaMetaTgX for that matter) is not covered by income. Using the fact that ConTgXt is
developed by a (small) company excuse for lack of development elsewhere is about as
lame as it can get. Much development is done without us needed it, but because we
like doing it, because of the challenge.

Should I use ConTgXt for math?

Of course, because that’s what TgX is good at. It you are forced to use a specific macro
package for its math abilities, just do so. If you want to move on or want consistent

177 Strange assumptions

interfaces, maybe ConIgXtis for you. We don't care. Trust your eyes more than assumed
standards or ways of doing math typesetting.

Why is the format file so much larger than for other packages?

The answer is simple: we have an integrated system, so we have plenty macros and
with each token taking 8 bytes (data and link) that adds up. And for MKIV and LMTX
there also Lua code involved as well as a rather large character database. In LuaTgX
the format file is compressed (and also zipped) and in LuaMetaTgX is it is a bit more
compressed but now zipped; still the LMTX format file is smaller than the MKIV one.
We let those who complain wonder why that is. We also let users of other macro pack-
ages wonder if loading a ton of stuff later on doesn’t accumulate to a similar or larger
memory footprint. And, as with many critics: make sure to check every few years if
that other macro package hasn’t catched up and can be criticized the same way:.

Strange assumptions 178

179 Strange assumptions

35

It’s about time 21

Edith Sundqvist
Mikael Sundqvist
Hans Hagen
Willi Egger

Male dominance

When you start using TgX you can’t get around the fact that it uses dimensions. You have
to set up a paper size, configure a line width, tell it what font size to use, etc. As with
many techniques that evolved in different countries the way to express a dimension can
be done differently. In Europe we like to talk in centimeters (cm) or millimeters (mm)
and in the United States it’s all about inches (in). Typographers all over the world
speak in terms of points (pt), didots (dd), ciceros (cc) and picas (pc) while those
messing around with digital typography prefer “big” (PostScript) points (bp). TgXies
sometimes like scaled points (sp) as 1 sp is the smallest internal representation of a
unit. When someone talks “points” you can’t be sure if it is big points or TgX points
because the pt unit is often used for both.

There are also font-related units, like the popular em width (em) and ex height (ex)
and there is even a pixel unit (px) that can be set to some resolution but that one is
rarely used. There is also a math unit (mu) that scales with the math font in use.

All units are internally scaled points and one real point is 65536 scaled points. That
means that when a unit is entered it gets mapped onto this internal scaled point quan-
tity.®

For a while we had the new didot and new cicero but in LuaMetaTgX these were
dropped because no one used them. On the contrary, the newly introduced (Don)
Knuth unit (dk) is quite convenient and we use it as a convenient offset for a so-called
TEX page environment, which we use a lot in testing math functionality.

From this summary we can observe that there are three units that are names: Didot,
Cicero and Knuth. But do you realize that these are all males? That can’t be right and
should be fixed. If you look at user styles (or questions on support platforms) you will
also notice that in spite of standardization, the inch (in) has not been replaced by its
more correct metric counterparts. Okay, that might be due to the fact that there is no
meter as unit but using smaller dimensions (mm and cm) makes more sense, also for

If you go back to the early days, there are even cases where you want to talk in terms of true units. Those
are not affected by original TgX’s magnification factor (mag) but in LuaMetaTgX we dropped that factor
and therefore also these true units became obsolete.

It’s about time 180

internal accuracy reasons. That said, it is about time that we eradicate the inch or at
least come up with something more metric.

So there you have it: we need some female units that correctly stay within the metric
domain! In order to convince users to drop the inch the first new unit somewhat relates
to it: one Edith (es) is the median of the widths of thumbs of BachoIX 2023 attendees.
One can argue that this is somewhat arbitrary and indeed it is. In order to get a decent
value we use a discrete measurement device that groups thumbs into 15, 20, 25 and 30
mm intervals. A 10mm interval is unlikely to get many hits unless the TgX ecosystem
suddenly became very easy to use and toddlers get interested in it as a game.

Rule of thumb

If we talk in terms of one Edith, we should keep in mind that at any point we can de-
cide to re-calibrate that unit. If we end up below 25mm we probably have quite some
young and/or old users in the sample set. So, in order to have a constant value, the com-
munity has to make sure that TgX (and preferably ConTEXt) usage is nicely distributed.
Now, of course at BachoIgX we are quite tolerant, because also Plain and IXTgX users are
sampled. Also, given that this sample of the TEX community is skewed to older users,
one can wonder how that influences the initial value. It is up to the ConTgXt group to
decide when and where to re-calibrate at a later moment. After all, we have to keep
the narrative that ConIgXt is unstable and evolves alive, and occasionally updating a
unit fits into that narrative. If you think that this kind of research is somewhat flaky,
keep in mind that probably all research related to typography is kind of subjective and
somewhat unreal. And BachoIEX being tagged as ‘conference’ adds a lot of credibility.

The Edith (m-——) makes a nice unit for margins, butitis a bit large for offsets, so
we also need a female counterpart for the Knuth (m). This is why, just like a centimeter
(mmmmm) has a smaller companion in millimeter (1), the Edith has a companion Tove
(m). In terms of points one Tove is 7.11317pt, while a Knuth is 6.43985pt. It is surely
just a coincidence that the value of one Tove in points is about the age of Tove when
she became aware that her dad was a ConIgXt fan. In terms of points one Edith is
71.13177pt which, ignoring the unit, comes close to the average age of those who have
attended BachoIgX more than 10 times.

The implementation of these units in LuaMetaTgX is not that hard, simply because scan-
ning for these dimensions happens in few places: when scanning dimensions, and in
a Lua helper that converts a string to scaled points. At the ConIEXt meeting where we
implemented the Knuth, there was some trial and error involved in order to get the
right numerator and denominator. One dk is 422042 scaled points which brings us to
a numerator 49838 and denominator 7739. Except for scaled points, the fraction gets
multiplied by 65536 and the amount. Most units have numerators and denominators
with weird values, although 7227 jumps out.

unit visualized name num denom

bp | base point 7227 7200

181 It’s about time

cc (] cicero 14856 1157

cm — centimeter 7227 254
dd | didot 1238 1157
dk [knuth 49838 7739
es meessssssm cdith 9176 129
in e inch 7227 100
mm 1 millimeter 7227 2540
pc - pica 12 1
pt [point 1 1
sp | scaled point® 1 1
ts [tove 4588 645

When you consider these numbers it is good to realize that internally the engine uses
a 32 bit number, split into two halves. There is a maximum, 16383.99998pt, so that
(intermediate) calculations don’t overflow. The last digit of what TgX reports when it
computes a dimension as points is to be taken with a grain of salt. Here is how the
Edith and Tove compare to their metric counterparts:

2.5cm 4661699 71.13188pt
2.5mm 466169 7.11317pt
les 4661692 71.13177pt
1ts 466169 7.11317pt

In case you wonder if checking for yet another unit has drawbacks in terms of perfor-
mance, we can guarantee LMTX users that they won't notice a performance hit. Even
with these additional units the engine quite likely beats its predecessors in scanning
units. And the impact on the code base is less than 20 short lines of trivial code so that
goes unnoticed as well.

Calibration

In order to conduct the calibration we need a reliable measurement device and here we
got lucky. The ConTgXt community has some unique craftsmanship amongst its mem-
bers and Willi Egger made us a robust sampling device that can compete with those
used by the ones that the International Organization for Standards uses: the Edithorial.

In addition to that, the ConTEXt Math Society, indeed the same one that brings you all
these nice new math capabilities in LuaMetaTgX, provided the necessary statistical and
mathematical underpinning to make the Edith and Tove believable units. So here are
some more details.

36 This one is not multiplied by 65536.

It’s about time 182

the median thumb marked in blue.

We have found out that the Tove unit, 2.5 millimeters, corresponds to
7.1131744384765625 points. Let us find a decent rational approximation of this, with a
small denominator. We do this by calculating the continued fraction, and we try a few
steps to get something that is good enough.

We start by noting that the integer part is 7. We then use a calculator (in our case
Wolfram Alpha) to compute

1 1
7.1131744384765625 — 7 = 0.1131744384765625

~ 8.835917486854523392207091816098

This means that we get as a first possible choice

1 57
7+§—§—7.125.

We continue, and next note that

1
8.835917486854523392207091816098 — 8

~ 1.196290322580645161290322580645.

Thus, our next candidate is

7+——1——=-6-4=7.T.

19
8+1

Here, the bar over the 1 indicates that 1 is repeating. In the next step we calculate

1

T196290377580645161590327580645 —1 = 5.094494658997534921939194741167 .

The next candidate becomes

13w
8+L 53

1
1+z

7+ = 7.1132075471698.

We continue, to get

183 It’s about time

1
5.094494658997534921939194741167 — 5

~ 10.582608695652173913043478260870

The next approximant becomes

1 3834
gL _1 539

1
1+—
5+ﬁ

7+ = 7.113172541743970315398886827458256029684601.

For the next step we have

1

10.582608695652173913043478260870 — 10 1.716417510447761194029850746269

so the next approximant becomes

1 4011
g1 592

14+—2

7 + = 7.1131756.

1
1
1O+T

5+

Since this one has such a nice short repeating set of decimals, we fell for it, and quit
here. The next approximant would be

12256 20301 28346 48647 466169
17237 28547 3985’ 68397 65536

where the last one exactly equals what we started with, 7.1131744384765625. Before we
continue, we mention that [7;8,1,5,10,1,1,2,1, 1, 9] is a more compact way to write
the continued fraction above.

One could perhaps first think that multiplying the rational number by 10 would yield
a very similar continued fraction, but that is not the case. In fact, the continued fraction
for 71.131744384765625 is given by [71;7,1,1,2,3,1,3,1,3,1,3,2]. This put us in a bit
of an awkward situation. Do we want a nice approximation for the true value, or do we
prefer to have es to be exactly 10 times as large as ts? If we go for the latter, we could
take 42110/592. We calculated the approximants though, and got

489 569 1067 2703 9176 11879 44813
7’ 8’ 15’ 38’ 129’ 167 © 630"
56692 214889 271581 1029532 2330845
692 /3021 ’° 3818 ' 14475 ' 32768 °

When we saw this, it was irresistible to define es as

9112_796 — 71.131782945736434108527
and then to define ts as
9176 4588
1590 = a5 = 7.1131782945736434108527.

It’s about time 184

The edithorial device

The design of the edithorial also involved some research. Of course there was some
discussion about the right way to sample thumbs and those who have attended Ba-
choIgX and ConIgXt meetings will not be surprised that Willi is responsible for this.
He presented us with a drawing (figure 21.2) that we immediately agreed upon.

Edith-Enhet (Edith-Unit)

105 mm

55mm
50 mm

15 mm 20 mm 25mm 30 mm

17.5mm 20 mm

[]
[]

Edith-Enhet (Edith-Unit)

Edithorial Standardisation Committee

Version: 1.0

Date: 22-03-2023
Adaptations:
W. Egger Scale 3:2

Figure 21.2 A TgX community worthy edithorial for measuring
the Edith.

Willi then sat down and made a prototype (figure ?7) in order to see if sampling would
work out. Knowing that the device would be stored under harsh conditions in the uni-
versity city of Lund in Sweden, it had to be sturdy Polish oak and after being brought to
precision it underwent first an iron acetate treatment and after that a furniture oil (tung
oil) treatment as can be seen in figure 21.3. Even with TgX being digital we cannot get

185 It’s about time

around physical devices for measuring digits. And with TgX operating in nanometers
we have to fit in.

Figure 21.3 This reference edithorial plus protective cover.

Some double checking

There is one question we have to answer before we dare to use the Edith (es) and Tove
(ts) as offsets next to a Knuth (dk) and that is: in what box does Don’s thumb fit? After
all, we need to assign some more weight to his thumb. On the Internet you can find
images of Don Knuth sitting behind an organ but for reasons of copyright we cannot
show these, but one thing we can be sure of is that his thumb is not wider than a key of
that instrument, because according to the Wikipedia page Musical keyboard:*

“Over the last three hundred years, the octave span distance found on historical keyboard
instruments (organs, virginals, clavichords, harpsichords, and pianos) has ranged from
as little as 125 mm (4.9 in) to as much as 170 mm (6.7 in). Modern piano keyboards
ordinarily have an octave span of 164-165 mm (6.5-6.5 in), resulting in the width of
black keys averaging 13.7 mm (0.54 in) and white keys about 23.5 mm (0.93 in) at the
base, disregarding space between keys.”

This definitely keeps Don’s thumb out of the 30mm bucket. When we zoom into these
images it seems also unlikely that the thumb will go to the 20mm bucket, but in the
end the only one who can answer this is Don Knuth himself. And because he’s behind
an email firewall we don’t dare to ask him. So more research was needed and after a
brainstorm session we decided to rely on a public visual that any TgX user should be
familiar with: the yearly Christmas lectures.

37 Notice how metric measures win over inches here!

It’s about time 186

at famous e sisa
B 00 digits. WhatemerBes o mer
otal of 100 plays, PUEES T orary
kes Not A Wake
manner that ma
'Sy

creation Jike no other:

< > bl

o) 9:41/1:0225 - A Dream Embodying Pi »

Stanford Lecture: Don Knuth - "Pi and The Art of Computer Programming” (2019)
sj Stanford Online @

Figure 21.4 The 2019 lecture: Pi and The

Art of Computer Programming.
which 18
that initially con

e v \

“"ﬂ' B0 (30)
iy imghes (30); thas an
fox deimimg martingales

S0 aence (Y,) by lesting
o= tbe Rentiny B(Vnet |
e o= 2 sbows thas (V) is fair
wpal) 252, ve htain a martingale
ﬁvﬂlvm\ Ya) =
hm‘mph h

Stanford Lecture: Don Knuth - "Pi and The Art of Computer Programming” (2019)
sj Stanford Online &

op /£ Share

Figure 21.5 The 2014 lecture: (3/2)-ary
Trees

And because we know which books the thumb is on, we can calculate the bucket by

comparing the dimensions: on one case we use the paper size as a reference, on the
other case we use the interline spacing of the book as reference!

A A e B e

Figure 21.6 Close-up of the thumb.

In Figure 21.6 we show a close-up of the thumb and the page. We have divided the
image into a 100 x 100 grid, but the aspect ratio of the image is 3 : 2, so we need to

187 It’s about time

compensate for that. We estimate that the interline space of the text is 8 grid lines high,
while the diagonal line measuring the width of the thumb is 12 grid lines wide and 42
grid lines high. This means that the thumb-interline space quotient is given by

V(12-3/2)2 + 422

3 ~ 5.71.

Next, we need to know what interline space is used. We should probably know this
by heart, but as we do not, we instead downloaded one of the pre-fascicles of TAOCP
volume 4. We cut out a square with sides of 5 cm, and added again a 100 x 100 grid.

Figure 21.7 A
5c¢cm x 5em cutout.

We measured the height of two lines and got in return 17 grid lines. This means that
the interline space is given by

17

5 %5700

cm = 0.425 cm.

As a result we estimate that Don Knuth’s thumb has the size
571 x 0.425cm =~ 2.43 cm.

If we're right about all this then the Edith will not be influenced by the grand wizard’s
thumb, so the well-calibrated (derived) Tove cannot be discarded for offsets as being
less accurate (and stable) as the Knuth.

A modern relative unit

Since TgX showed up a lot has changed when it comes to computers: the computers
considered powerful in the early days now fit in your pocket. One disadvantage of
these portable devices is that they have a variety of display sizes. A document can
easily be generated again, adapting the layout to all these devices is a bit of a pain.

This is why we introduce a new dynamic unit, the eu or the European Unit, but one that
can be changed by setting an internal register, \eufactor. Because that defaults to 10,

It’s about time 188

one eu starts out as one es. A nice coincidence is that one can also read it as Edith’s
Unit.

\eufactor leu 2eu
2 - —
10 E—— 1
15 g

We can set the factor in Tove steps between 1 and 50 so that we retain a reasonable
accuracy. So, this relative unit stresses the sisterhood of these two new units because
leuis 10ts and les. This unit might also come in handy when writing manuals so
you can bet that we will use it.

These units are modern in another way too. The popular game MineCraft has
its own unit, a block, as (for instance) discussed on https://minecraft.fan-
dom.com/wiki/Tutorials/Units_of_measure. For those using inches, one inch is
0.0254 blocks, so one block makes 39.3700787in. For those using metric system one cm
equals 0.01 blocks or 0.16 pixels and therefore one block makes 40cm. These 40cm are
16 Ediths which means that the Edith is also a good introduction in the hexadecimal
numbering system. Unfortunately LEGO bricks are defined in inches so there the inch-
ers still have the edge. But Edith and Tove have an advantage in MineCraft, which is
confirmed by observation. Just like some of TgX’s units are actually defined using the
inch paradigm, we could add units like mb for MineCraft Block being 16 Ediths. After
all, implementing extra units is trivial in LuaMetaTgX. Let us know what you think.

How about MetaPost?

We not only have to deal with TgX but also with MetaPost, so from now on MetaFun
will also provide these units, which we can then use to properly draw thumbs as in
figure 21.8.

Figure 21.8 One can sign docu-
ments with these calibrated thumbs.

While checking other units in MetaFun we were reminded that they are there given as
floats and not as fractions. We were amused to see

2.83464 ;
28.34645 ;

mm

cm

189 It’s about time

which means that a mm is not exactly one tenth of a cm, and also that the rounding has
been done by the even/odd rounding off rule. We decided to define

es := 71.13174 ;
ts := 7.11317 ;
Overflow

When you enter a dimension in TgX and it is larger than 16383.99998pt or 1073741823
scaled points, an error message is shown and when you ask for help, that contains the
sentence “I can’t work with sizes bigger than about 19 feet”. There is no £t unit in TEX, so
the user has to do some conversion, maybe taking ones own foot into account.

Just like we had to adapt the error message issued when an unknown unit is used,
we decided make the overflow message a bit more detailed. For that we introduced
the Theodore, where that unit is to the Edith what the Foot is to the Inch. With one
Theodore being five Edits we now report this:

“I can’t work with sizes bigger than about 19 feet (45 Theodores as of 2023), 575 centime-
ters, 2300 Toves, 230 Ediths or 16383 points.”

So how did we come to this one? At the BachoIgX meeting the 18 month old, always
good humored, Theodore was running around in the conference room and his little
feet were carefully measured by his father Arthur Rosendahl (the self appointed High
Commissioner of Hyphenation and upcoming tug president). Because the 19 inches
are also an approximation, we rounded the Theodore to five Ediths. In addition we
mention a few more maxima, so that the user gets a better impression how large TeX
can go. Mojca Miklavec, who gets her feet dirty by managing the binary build farm
on the context garden, proposed a th unit but as there is no £t we didn’t come to a
conclusion yet. Actually that unit would make a good default for text width, just like
an es makes perfect left margin, and a ts a nice offset around framed content.

Wrapping up

In this article we discussed a few additional units that have been added to LuaMetaTgX.
We’ve carefully chosen some names that not only compensate the male dominance in
unit names, but also have a modern and fresh ring. The units are of course metric. The
Edith (es) replaces the deprecated inch (in) and the Tove (ts) can be used for offsets
as alternative to the Knuth (dk) that of course we will keep using alongside. The units
are calibrated using an edithorial of which there exists a unique reference measurement
piece. The standard has been established at the 2023 BachoIgX meeting and might be
recalibrated at a future ConTgXt meeting when a new generation of users thinks that is
needed. Many thanks to Karl Berry for copy-editing.

It’s about time 190

191 It's about time

Missing kerns 22

Introduction

When a TgX user posts a math related font question on SE there is a good chance that it
catches our eyes. In this case the question® was about the lack of kerning in OpenType
math usage. The person (signature ‘dmaxwell”) showed these examples

daf W, df W,

pdftex luatex

and asked if it is possible to use kern pairs also in OpenTypemath.

Before we dive into the details we show how we can solve it in ConTgXt Imtx. We do
in fact have support for kern pairs, and one way to set them up is via the goodie file
system. The goodie file for Latin Modern Math is modern-math.1fg. There are plenty
of tweaks, and we can add an instance of the “kernpairs” tweak.

{
tweak = "kernpairs",
list = {
[0x1D451] = { -- italic d
[0x1D453] = -.2, -- italic f
3,
s
s

This moves the italic f to the left (the minus sign), and the amount is 20% of the width
of the italic d. With a similar entry for the combination of italic W and the comma, we

df W,

The kerning here is not as aggressive as the (rather famous) df kerning in Computer
modern. When we came to discuss this issue, we realized that there were a bit more
for us to do, and more to say on the subject that also could interest others, so keep on
reading.

38 https:/ /tex.stackexchange.com/q/692788 /52406

Missing kerns 192

Kerns in OpenType math

Scanning the OpenType math font specification® for kerning, one might become sur-
prised. Somewhere at the beginning one can read the following

Layout of math formulas is quite different from regular text layout that is done
using tables such as GSUB and GPOS. Regular text layout mainly deals with a
line of text, often formatted with a single font. In this situation, actions such
as contextual substitution or kerning can be done with access to the complete
context of the line of text, and the rules can be expressed in terms of known
glyph sequences. Math layout is quite different from this.

Reading this, one gets the impression that there is no support for kerning in math, at
least not pairwise between characters. But further down, one finds that there is indeed
support for kerning in math, but the only kerning that is described is what we call stair-
case kerning, between base characters and sub-, super- and prescripts. They explain it
like this,

For any given glyph, different values can be specified for four corner positions —
top-right, to-left [sic], etc. — allowing for different kerning adjuments according
to whether the glyph occurs as a subscript, a superscript, a base being kerned
with a subscript, or a base being kerned with a superscript.

and then follows a rather long and technical description of how this is meant to work.

As ‘dmaxwell’, asking the question, noticed, this lack of kerning of math fonts might be a
mistake. This holds in particular for fonts like Latin Modern Math, that originate from
a math fonts that indeed have pairwise kerning.

Even if not specified by Microsoft, TEX engines can implement additional support. This
was done for example in LuaTgX and LuaMetaTgX. In the latter, there is indeed support
for the built in staircase kerns, corner kerns, as well as pairwise kerns. In fact, the stair-
case kerns has proven to not be too useful, so they are automatically transformed into
corner kerns (that also work between for example a base character and a superscript,
as in the example below).

a 2

b

In the rest of this article we will focus on the pairwise kerns.

Kerns in traditional math

Traditional TEX font handling involves tfm files. These files provide properties of
glyphs. For each glyph it specifies a width, height, depth and italic correction, but

3 https://learn.microsoft.com/en-us/typography/opentype/spec/math

193 Missing kerns

does that in a compact way: choosing from a limited set. For the discussion here this
is not relevant, apart maybe from the observation that the combination of width and
italic correction in math is kind of special. It also explains why there can be differences
in metrics between OpenType fonts and its ancestors, just because in OpenType we can
be more granular. Optionally a character can have a pointer to a larger size, an exten-
sible recipe, for instance for delimiters. Also optional is ligature and kern information.
For efficiency reasons these properties are packed into a table with flags in the entries
indicating what we're dealing with.

You can use the tftopl program to see what is actually in a tfm file, and here is such
an entry for the N:

(CHARACTER C N
(CHARWD R 0.8034725)
(CHARHT R 0.683332)
(CHARIC R 0.109027)

(COMMENT
(KRN C = R -0.083334)
(KRN C = R -0.027779)
(KRN C ; R -0.055555)
(KRN C : R -0.055555)
(KRN 0 177 R 0.083336)
)

)

If we look at the Lua representation that we have in ConTEXt we get this:

t={
["depth"]=0,
["height"]=447828,
["italic"]=71451,
["kerns"]={
[68]=-36409,
[69]=-36409,
[61]=-54614,
[127]1=54615,
+,
["remainder"]=0,
["tag"]=1,
["width"]=526563,
+

Here we are only interested in the kerns sub table and when you compare both listings
you will notice that the first one has one entry more and we admit that this caught us
by surprise. We were interested in these values because we wanted to add them to the
Latin Modern Math goodie file, so what do we have to choose?

Missing kerns 194

When we load this font in ConTEXt, we get a message:

duplicate between index Ox4E and 0x3D: -0.83334pt -> -0.27779pt
duplicate between index 0x58 and 0x3D: -0.83334pt -> -0.27779pt

The left characters are the N and X, the right one is the /, which is actually one that we
are less interested in because we have fraction spacing etc. But that doesn’t mean that
we wanted to explore it a bit more. The next code shows some variants, we wrap into
an ord to make sure that no inter-atom spacing kicks in.

$\mathord{N\kern Opt /}$
$\mathord{N\kern-0.83334pt/}$
$\mathord{N\kern-0.27779pt/}$

N/ N/ N/

One can argue that the second variant looks best and that is indeed the one that Don
Knuth expects the engine to use. When (in traditional mode) a kern is needed the
engine will run over the characters property array and when it hits the kern asked for
it quits scanning. That also means that when we use a Lua approach, where we use a
hash table instead, we should now overwrite already set entries when the tfm table gets
parsed and its data gets stored. Just to be sure we checked all engines, and all behave
as expected with respect to applying the first kern.

A natural follow up question is “where does this duplicate entry come from”. For that we
need to go back to the source. Just for the record, the Latin Modern fonts as well as its
Computer Modern predecessors behave the same here.

ligtable "N":"X": slash kern -1.5u#, 7 $N:X:$
"C":"T": slash kern -.5u#, comma kern -u#, period kern -u#, 7
$C:T:$
"B":ME":"G":"0":"Q":"R":oct"174": ¥ $B:E:G:0:Q:R:\jmath:$
"1Metptitgt "t "w" toct" 002" :oct"004": % $l:p:q:t:w:\it\Theta:\Xi:$

oct"006":0ct"010":0ct"012":0ct"014": % $\it\Sigma:\Phi:\Omega:\beta:$
oct"020":0ct"022":0ct"032":0ct"036": 7 $\zeta:\theta:\rho:\phi:$
oct"042":0ct"043":0ct"045": ¥ $\varepsilon:\vartheta:\varrho:$
oct"046":0ct"047":0ct"100": % $\varsigma:\varphi:\partial:$

skewchar kern 3skew#;

This blob of MetaFont code can be found in mathit.mf and in order to understand it
better we can reformat it a bit:

ligtable

195 Missing kerns

"NTo"XM:

slash kern -1.5u#,
"Cc"."T":

slash kern -.bu#,

comma kern -u#,

period kern -u#,
"B":"E":"G":"0O":"Q":"R":o0ct"174":
1" Mp"itg" "t i "w" :0oct"002" :0ct" 004" :
oct"006":0ct"010":0ct" 012" :0ct" 014" :
oct"020":0ct"022":0ct" 032" :0ct"036":
oct"042":0ct"043":0ct"045":
oct"046" :0ct"047":0ct"100":

skewchar kern 3skew#;

The second slash entry will result in the extra entry in the tfm file but as mentioned
it will be ignored by TgX. One can argue that tftopl should warn for this duplicate.
This is the only entry that saves on the skewchar definition, so it could have been like
this:

ligtable
"N XM
slash kern -1.5u#,
comma kern -u#,
period kern -u#,
skewchar kern 3skew#;
ligtable
"c"."T":
slash kern -.bu#,
comma kern -u#,
period kern -u#,
"B":"E":"G":"O":"Q":"R":oct"174":
1" Mptitg" "t i "w" roct"002" :oct" 004" :
oct"006":0ct"010":0ct"012":0ct"014":
oct"020":0ct"022":0ct" 032" :0ct"036":
oct"042":0ct"043":0ct"045":
oct"046" :0oct"047":0ct"100":
skewchar kern 3skew#;

Which then gives just one kern pair for N and X with /, not that anyone ever sees this as a
real problem. Of course we were curious if other files in the collection have these dupli-
cate entries and there is indeed one other case, the upright text specification (including
slanted and bold but not italic) has this:

duplicate between index 0x6B and 0x61: -0.55556pt -> -0.27779pt
duplicate between index 0x76 and 0x61: -0.555566pt -> -0.27779pt

Missing kerns 196

Here the second kern is actually better, so one can wonder what the intended kerning
was. It might be the reason why the Dutch word ‘kaas” comes out so badly in a tradi-
tional setup.

ka ka ka

It anyhow demonstrates that one should be careful with the order of definitions, and
adhere to the specification that the first kern wins. This is actually not that different
from the way OpenType works, although, especially in the early days, one could find
fonts that were set up with the assumption that he last one wins or that kerns accumu-
late. Of course much can get unnoticed on a relatively low resolution output medium.

How to proceed?

We now have to decide how to proceed in the perspective of ConTgXt LMTX, where
we follow a somewhat different approach to math spacing. As discussed elsewhere,
we already rid ourselves of italic correction as a means to anchor subscripts: we went
natural width with bottom kerns.

We also have, as shown at the beginning of this article, a dedicated mechanism for math
kerns that compensates for the lack of such feature in OpenType math.

Because an OpenType math font is a hybrid font that has upright, italic and bold shapes
in one font, kerning can be more extensive than in a traditional assembly. Now, if only
the fonts had a kern table, we could just use that one but the fonts lack such a table.
For Latin Modern we can add definitions taken from the eight bit fonts but for instance
Pagella and Bonum need their own. We use this example:

$df + dj + d1+ ab + if + ij$

In untweaked Latin Modern we get this

df +dj+dl+ab+if +ij

and when tweak we get:

df +dj+dl+ab+if +ij

The TEXGyre Pagella and Bonum math fonts give:

197 Missing kerns

df +dj +dl + ab + if +ij
df +dj+dl+ab+if +1ij

However, in the tweaked Bonum we get this:

-0.650 -0.909
L]

df +dj+dl+ab+if +1ij

We consider it an interesting coincidence that we actually already had added math
kerns to the goodie file that do something similar to the type df and dj. We also admit
that the choice for what to kern is mostly determined by what one encounters and we’re
sure that this is also the case the limited set of kerns in math italic characters of Latin
Modern: there is a reason why dj gets a kern and i j doesn't.

But the main reason why we have these kerns in Bonum is not that we wanted to get
better kerning but that because we compensate the excessive ‘sticking out at the left’ that
we compensate has to be partially decompensated in some cases. But we anyway had
to translate the kerns into a fraction of the width (in our case the width plus discarded
italic correction) because that is what we use in the goodie files where we need to avoid
hard coded dimensions.

This is how Pagella comes out tweaked:

df +dj+dl+ab+if +ij

So where can we get the kerns from? Playing a bit with values from the text font al-
phabets give some cue where we should kern but the amounts can’t be used: text and
math characters sit differently in their bounding boxes. Using side bearing can help but
is also not optimal, So, after half a day playing with this we gave up on that. Instead
we now use a feature that starts from the values that we find in Computer Modern set,
assuming that italic shapes are similar. These are the most important candidates that
get kerning with periods and commas:

CFHJKMNPSTUVWXYZfjrT'IIYYévorT

In the Computer Modern fonts the skew character is used for anchoring accents and in
OpenType that is done using the topanchor property. So, we can discard these. The
same is true for the slash: either we set kerns for all characters that matter, or we don’t.
For instance Latin Modern has a kern after a slash before A, M, N, Y, Z and A, but
not before e.g. V and W. Also, if we compare the values for italic correction in Latin
Modern Math with Computer Modern, we notice subtle differences in the width-italic
ratio: 0.367 versus 0.381 so we cannot be too picky. For now have commented the values
but they can easily become a feature.

Missing kerns 198

(Optional) side note

It is no secret that eight bit pdfTgX beats the Unicode engines when it comes to process-
ing (utf8) input and rendering text. Among the ConTgXt font loader processing mode,
base mode comes close to the traditional approach, while node mode is slower because
all is done in Lua. Node modes is needed when we go beyond simple pairwise kerns
and simple (non contextual) ligatures.

In Lua we usually store data in a hashed table and that is also true for kerns in fonts that
get loaded. When in node mode, we keep all at the Lua end but in base mode we pass
the kerns to TEX. On previous pages we indicated that properties like kerns get stored as
a sequential lookup. Because Lua randomizes the hash using a different seed each run.
The order in which kerns end up in TgX is also random. The way we store information
today (like in these Lua hashes) was not an option in the early days of computing which
makes TgX even more of a masterpiece of efficiency.

If we use texnansi encoding we have kern pairs between va and vo and in Latin Mod-
ern the first one is the first entry and the second one the sixteenth. So does that have
some effect on runtime? A somewhat over the top test using these combinations shows
that in pdfIgX that stored the kerns in original order indeed the va kerns takes less
time to resolve. The further down the list the kern is, the more time it will cost. This is
comparable with for instance access to path points in MetaPost: the assumption is that
paths are short when this is needed as looping over a 5000 point path involved quite
a bit traversing. This has never been an issue for TgX because fonts are limited to 256
glyphs which means that of the many accented variants of vowels only a few end up in
a specific encoding. Of course the more random order in the Lua hash variant makes
for a constant look up time in node mode and a more averaging time in base mode. A
side effect is that one can add one own additional kerns in node mode.

Isn’t it amazing to what observations a simple question on SE bring up? There is one
more thing worth mentioning. The lack of these kerns went unnoticed for quite a while.
This can indicate a that either users don't care, or just don’t consider it needed, or have
adapted by adding manuals kerns. It definitely has not resulted in it being seen as a
necessity in OpenType math. It is kind of interesting that a power user was told about
this he remarked that checking the period of comma after a capital in math mode was
part of some quality assurance process because it could indicate that authors messed
the spacing (in MathML and of AsciiMath input). So, adding these kerns already paid
back. It also shows that TEX can adapt very well to whatever circumstances it has to
deal with.

199 Missing kerns

We deserved it 23

23.1 Introduction

Among the first macros we cooked up are the ones that we used to typeset chemistry.
They come under the ppchTEX, and it was mostly done by Hans, Ton and Tobias. Over
time rendering structures by PICTEX got replaced by pstricks and later MetaPost. When
we moved to MKIV all that got reimplemented, this time by Hans and Alan and we stuck
to MetaPost. We actually also updated the syntax and, because old documents were
supposed to be rendered by MKII we took the liberty to sacrifice some compatibility for
a more complete and consistent feature set. However we never came to updating the
existing manual and the new one became work in progress. We didn’t really needed
the code and Alan, who did need it, knew what was there anyway.

Then Mikael had some questions and it pushed me into manual mode: upgrade the old
one and combine it with the pending new one. That also made me wonder if we could
now benefit from some new features in the math engine, which in turn could simplify
the code base. This is typically something that takes weeks instead of hours so better do
it right from the start. And, while at it, one then of course ends up in looking (again) at
arrows (or more specifically: stackers) and from that to Unicode, which in turn is good
for some introspection.

23.2 Implementation
Among the (old) complications in dealing with chemistry are the following:

e Simple inline chemical formulas (snippets) of the kind *;U* where scripts need to
be properly vertically aligned and an upright font is used.

e In running text one wants touse A+ B —— Cbutalso A+B «— CorA +
B — C.

e Even more symbolic representations might be on the wish list, think of A—B—C=
D.

There is more but these examples demonstrate a few features: we need prescripts,
proper spacing, line breaks at preferred spots, and some symbols.

e And of course one also wants to annotate like A + B — > hereC but also A + B <
— > thereC or A + B <=> whereeveryC where the arrows stretch with the text.

e It would be nice if we can also use the advanced alignment options that are available
in math but discussing this is beyond this musing.

We deserved it 200

23.3 Unicode

Implementing the above has never been that hard but just became a little easier in
LMTX. However, when doing that I wondered if there were more than the already
present symbols to be taken care of. And so I did a search on the internet for “uni-
code and chemistry”. One of the first hits was “Five symbols used in chemistry L2/23-193",
arequest for some more arrows. One can search the web for it and see if it is still around.
When staring at I wondered a bit about the descriptions:

BALANCED EQUILIBRIUM ARROW

EQUILIBRIUM ARROW LYING TOWARD THE RIGHT
EQUILIBRIUM ARROW LYING TOWARD THE LEFT
REACTION DOES NOT PROCEED

STANDARD STATE SYMBOL

When later I discussed this with Mikael we came to the conclusion that ‘LYING” prob-
ably means ‘LEANING’ but we're not chemists so we can be wrong. The proposed ren-
dering of the first three boils down to arrows with half a tip, also known as harpoons:
long left and right pointing ones stacked for the first and long over short ones for the
other two.

AN AN L

— < —

There are several observation to make here. First of all, there is a whole bunch of arrows
(stacked and single) that bare descriptions mentioning them being arrows. There is no
meaning in them. One can even wonder why some are there. So, in order to be in sync
with that it makes more sense to add a few more harpoons. Cooking up names like this
serves no purpose.

If we look at the proposed shapes (which are actually different from those used in TgX
packages that are references) one can actually wonder about the way these are sup-
posed to stretch. The short variant is not different from existing double harpoons in
which case the meaning is lost. Then when we go longer we get this empty space and
then we should wonder how the extensible should kick in: how do the left- and right-
most fixed glyphs and the one or two middle repeated ones behave?

AN AN L

< < 7

Why don’t we just use the next three? After all, as with math, how we interpret symbols
depends on how we define them to be read. Sometimes Mikael and I get a good laugh
over some of the shapes bound to math code points and we’re sure that some legend is
needed when using them.

——N s :

Of course there are and can be conventions but getting some agreement is not trivial.
We only have to look at Unicode math to see some issues, like:

201 We deserved it

e The repertoire of symbols is large but to a large extent somewhat arbitrary: what
was known (or assumed) to be used got in there. There is a difference between a
left, right and even middle bar, just like there is a left and right brace.

e There are alphabets but they come with holes. We're not supposed to distinguish
between a Plank constant ‘4" and variable ‘4’. We can distinguish the greek upper-
case A from a latin A so mathematicians are less convincing.

e One can define extensible fences with components but not all of them. There are no
constructors for arrows. Some likely come from old encodings but why add these
and not be consistent.

Plugging a hole in an alphabet is doable. Adding some missing snippets for fences is
also no big deal, just because we have a limited set. Making bars consistent also is not
hard. But I don't see it happen soon. After all, we're decades along the road and no
one bothered much about it till now, and above all, it will never be complete. I wonder
if there ever has been a good analysis, extensive description and a watertight arguing
from the TEX community about what should go in Unicode and fonts. It was easy to
point to existing fonts and the names used in macro packages and that shows.

To the above we can add:

e There are some combinations of arrows and e.g.rules missing that could have made
adding composed constructs easier when there is demand for that. After all, this is
what existing characters are also used for. And these chemistry ones fit into this.

Our solution is to just accept that the TgX community got what it deserved: a bit of
chaos, unreliable cur’'n’paste support, symbols but no meaning, imperfect Unicode cov-
erage and therefore imperfect coverage in fonts. The good news is that we can adapt.
But we have to be honest: it is not perfect.

23.4 How about

As mentioned we have a problem with base glyphs versus extensibles and these com-
bined hooked things are bad for that. In the chemistry macros the first four are the ones
that we always had and the last two are examples of how we can render the two leaning
extras.

<-=> A4+B «—— C
-> A+B — --—> A+4+B — C
<- A+B —— <-- A+B «—— C

<-> A+B «— C
C
C
<=> A4+B = C <==> A+B — C
C
C

==> A+B == C
== A+B — C

=> A+B ==
<= A+4+B =

Watch the longer should arrow. Not al fonts have it as extensible, which indicates that
not that much thought has been put in usage patterns. That said, more interesting
would be to use something like this, where we fake a character from two existing arrows:

We deserved it 202

- el e

However, not all math fonts provide these dashed arrows and therefore here we have
to use Cambria (here). And even if it has such dashed hashes, they don't come with
an extensible. I just want to point out that by looking at what we already have, it might
make more sense to extend some (combinations) of those.

It is good to notice that these arrows come with qualifications like “code for undetermined
script”, so one can wonder how much they relate to math. Actually the fact that we
have these holes in alphabets already indicates that math is not really seen as script.
Occasionally (old) scripts get added and they get lots of code points, while one can
argue for sharing there too, but maybe their status is higher than the status of math. In
OpenType fonts math is seen as script but that’s because it is basically a selector. One
can actually argue for chemistry as a math language in fonts.

The main point I want to make here is that adding some new symbol that is somewhere
used but never made it in Unicode in the first place needs some thought. Especially
when used in a setting of formulas, where size matters.

23.5 Also

In ConTgXt we have stackers: text above and/or below an extensible, or extensibles
above and/or below text. The mentioned arrows are using this mechanism. However,
when playing with \iff, \implies and impliedby in math mode, we noticed some
spacing side effects. Originally these double arrows got skips around them but that in-
terfered with our alignment mechanism. However, that could be solved without much
hassle by letting the commands check the nature (class) of the previous atom (an in-
dication of being at the start of a next alignment line). In the end that we decided that
an extra ‘implication” class was more flexible than adding glue. More interesting was
the observation that in Latin Modern and some other math fonts these arrows have
different dimensions, which leads to yet another alignment issue.

Again that could be solved by taking the usage into account but one can wonder why
the opportunity was lost to make the glyphs consistent with each other, read: come up
with a proper analysis of requirements based on decades of TEX usage. At least there
could have been recommended alternates. But wait, aren’t alternates kind of bad as they
demand user intervention (choices)? Sure, but there are more examples of alternates,
take the 7" (dotless i). It has a textual code point but is not in the math alphabets, so one
needs alternates as way out (and yes, fonts then have a blackboard and fraktur dotless

i).

One can argue that these are visual aspects, but with arrows as well as symbols, we
have ended up in a somewhat curious inconsistent situation: there are no established
command names for the single arrows, so there we speak \ . .arrow. . while for some
there are names, like \iff. The same is true for characters like the dotless i and j. Some
mathematicians use these in the same way as some hard- and software vendors put an

203 We deserved it

‘i” in front of a product name, but in order to get it one has to communicate in terms of
\dotless. or somthing with an i in the macro name.

23.6 Conclusion

To come back to updating chemistry. It makes no sense to add much more. Imple-
menting the left- and right leaning is easy with existing hooks so this is what we will
do. Proper math fonts have these and how likely is it that existing math fonts get new
ones? If it ever comes to more chemistry in Unicode a handful of them will not help
much. It is probably not that hard to find an existing symbol that can act as standard
state symbol. In fact, some code points have several additional descriptions so we could
just add some to existing one. It’s not like we have gone over the top with doing that
for math yet.

We deserved it 204

205 We deserved it

Testing RiscV 24

24.1 Introduction

Having played with and being interested in electronics since I was kid, it will be no
surprise that I also keep an eye on RiscV. And because of that I already wondered for
a while how easy it would be to compile LuaMetaTEX on that architecture. Although
there are now some decent small boards that can be used, I don’t have these, which
made me check out if one could emulate it.

24.2 Virtual machines

Back in the days I used VMWare to run a linux machine on my Windows laptop, but
nowadays the Linux Subsystem is pretty good for what I want. On the servers we al-
ways used (OpenSUSE) linux although at some point we switched from bare metal to
virtual machines on top of Proxmox. So, there is some experience with virtual machin-
ery. Of course a question to be asked is “What does it do with performance?” but plenty
about that has been said in the past so I stick to a summary.

Given enough memory and a decent disk setup, for us running TgX in a virtual machine
is not that significant slower as on bare metal. For instance, running a NAS on the same
virtual host is quite efficient, because of the more or less direct connection, while using
the same NFS setup over different machine comes at a higher price. The same is true
for compiling in the Linux Subsystem: a single core TgX process can benefit from the
other core being used by the host for file management.

Performance of TgX depends not only on the cpu. Just compare making a format file on
a freshly restarted computer with a second make: it’s way faster due to the operating
system caching the many files that get loaded. The same is true for making the font
database although that happens seldom. The console is actually one of the factors that
has a high influence.

However, in al these cases we use a real cpu for the task. In the case of this test with
RiscV I had to use an emulator (QEMU) so I knew that performance would be kind of
bad. Of course that’s relative because even (say) 20 times slower would just bring us
back to the beginning of this century and it’s not like performance was a show stopper
then.

24.3 Compiling LuaMetaTgX

I used my linux laptop that has the same specification as the Windows one: a refur-
bished Dell Precision 7520 with plenty memory, a fast large ssd, and mobile XEON
cpu’s.

Testing RiscV 206

The linux machine runs OpenSUSE and I was able to install a RiscV virtual machine
using QEMU, once I'd figured out how to boot one. It’s a bit of a hassle but in the end
it works. Compiling LuaMetaTgX boils down to:

installing the gcc compiler (in this case version 13)
installing cmake

fetching the LuaMetaTgX git repository (I used work)
running the build. sh script

When we had to support the Raspberry Pi and the Apple M* architectures we had to
adapt a few compiler flags and have some specific platform detection (not that dra-
matic). So I expected that I had to tune for RiscV but in the end the code just compiled.
It took however quite some time. Later I gave the virtual machine four cores and then
compilation time was sort of acceptable. So, I had a binary!

24.4 Running TEX

Next comes a challenge: how to test LMTX when there is no installer. I mounted my
main disk to the virtual machine and just copied the TgX tree from there. Then I copied
the binary from build/native to the texmf-1inux-64/bin path and voila, after ex-
tending the PATH variable I could make a format. Because TgX is a single core process,
one has to be patient.

RiscV 178 s
linux 1.0s
Windows 2.0s

The winner is linux. The Windows binary is a cross compiled MingW one and I think
that the difference in performance is mainly due to file handling. In all tree cases the
log is piped to a file, otherwise these times are quite a bit higher.

Next I ran the following file, which results in 223 pages:

\starttext
\dorecurse {1000} {
\samplefile{tuftel}\par

}
\stoptext

This time we need:

RiscV 46.1s
linux 29s
Windows 2.8s

The reason why linux and Windows are the same is that there is less file access. We
load the format file, some fonts, the main file, and output a few hundred pages pdf.

207 Testing RiscV

The emulated RiscV machine is about 15 times slower so not really an option for pro-
duction but that was not the objective anyway. Actually, if I remember right, the first
Raspberry’s were not that fast either and those were bare metal and currently most
RiscV boards are in its version 3 performance range. Also, this test is mostly done to
see what is needed to support RiscV: nothing special.

24.5 Conclusion

The main conclusion is that it was actually quite easy to support this new architecture.
Of course I now need to come up with an installer but I delay that till I have hardware
because buying some just for testing makes little sense. After all I don’t have an M3 for
testing either.

The installation script has been extended with a -~—native option (one can also set that
in the installer file) in which case files will be updated. This assumes that the user has
compiled a binary and put it in the installations bin path alongside the mtxrun.lua
file there. The user also has to make sure that tex/texmf-native has the updated
binary. It’s a bit more work but at least one has an updated system.

In the end a 15 time slowdown is not that dramatic. We've made ConIgXt a bit faster
with LuaMetaTgX anyway. My best laptop will be 1.5 times (or more) faster and I expect
upcoming RiscV boards to catch up too, just like all these arm machines did.

Just for the record: I didn't try to compile LuaTgX. That source tree is much larger and
there are all kind of dependencies involved. It takes way more time to compile anyway.
But I expect it to works out well too.

Testing RiscV 208

209 Testing RiscV

(Ab)use of font features 25

25.1 Introduction

In early May 2024 Karl Berry forwarded me a mail by Nelson Beebe referring to a dis-
cussion on a font forum where surprising ligature replacement in OpenType fonts was
mentioned in the perspective of abuse: fonts as programs. Anyone familiar with this
technology will surely confirm that ligatures are a feature that can be abused, but also
that in practice it seldom happens. So let’s explore this a bit. Before I show some exam-
ples I'll summarize how TgX deals with ligatures. I'll also make clear that it is unlikely
that ligatures are used for unexpected replacements.

This article appeared in a 2024 TugBoat. As usual, thanks to Karl for making it better!

25.2 Ligatures

When TgX adds characters to the horizontal list it can replace successive character pairs
into a single character, a so-called ligature. We end up with a mix of character and
ligature nodes. When the paragraph is broken into lines hyphenation is applied when
it makes sense which in turn means that these ligatures (and kerns) are temporarily
discarded for the word being checked. For that purpose the node that stores a ligature
keeps track of the characters that made the ligature. Although it is not that relevant for
what we discuss here, it is good to keep in mind that whatever sequence of characters
we convert to another sequence of characters, hyphenation can be an influence and
whatever we intend might not work well at a line break.

In LuaTgX we don't have character and ligature nodes but only glyph nodes that can
be either a normal character or a ligature. We (can) still provide the components that
made the ligature but in LuaMetaTgX we don’t have these. If needed, the subtype can
be used to distinguish between a character and ligature. We don’t need the components
because hyphenation has already happened before ligatures and kerns are applied.*

Although there are these differences between engines in how and when they construct
(and in traditional TEX deconstruct) ligatures, in both cases they are the same: a mul-
tiple to singular mapping. The TgX engine looks at two characters. For example, an ’f’
and ‘i"become an fi”and an ’f followed by a ‘f becomes ‘ff". Of course that only happens
when a font has such a ligature. The new character ‘ff" itself can combine with a follow-
ing ‘i into a ‘ffi’. So, even for a three character ligature we go via dual replacement, so
for more complex ligatures we need intermediate ligatures or bogus characters.

Deep down TgX has several kinds of ligatures (the following description is taken from
the LuaTgX manual). When TgX inserts a new ligature, it puts the new glyph in the

40" An exception is Arabic where marks are anchored to shape ligatures.

(Ab)use of font features 210

middle of the left and right glyphs. The original left and right glyphs can optionally
be retained, and when at least one of them is kept, it is also possible to move the new
“insertion point” forward one or two places. The glyph that ends up to the right of the
insertion point will become the next ‘left’. In this table the | indicates the final insertion
point.

case characters ligature outcome

0 alb lc

1 alb T | cb
2 alb | ac
3 alb | ach
4 alb c|b
5 alb alc
6 alb C albc
7 alb abl|c

In the first four cases the current position (pointer in the node list) moves to the front,
and in the last four to somewhere in the middle. This means that a ligature can combine
with the next character into a new ligature. In practice only the first variant is used and
all of these work on pairs. There are very few fonts in the TgX distributions that use
the others. In general, the number of ligatures in traditional TEX fonts is small, simply
because the 256 slots we have there are easily exhausted. But it shows that in principle
complex replacements are possible.

In OpenType fonts we also have ligatures but here they are part of several substitution
features.

substitute replace one character by one other character

alternate replace one character by one taken from a set of alternatives
ligature replace multiple characters by a single character

multiple replace a single character by multiple characters

In addition to simple replacements like these there are also contextual lookups that
look at (a range of) characters, and are optionally triggered by what comes before and
what comes after and then perform one of the above substitutions. It’s a bit off-topic
but TEX was written with Latin scripts in mind, so imagine what is needed to handle for
instance Arabic with its much more complex ligatures. Fortunately hyphenation is not
commonly used there so we don’t need to deal with ligatures crossing the pre-, post-
and replacement parts of a discretionary.

In the table above we have a ligature substitution feature but that name is misleading.
For instance an ‘ff ligature can indeed be a single glyph but quite often in OpenType
it is implemented as two glyphs with some kerning, or with the second glyph being
replaced by one that can blend with the first, which means that we end up with two
glyphs with some negative kerning in between. The construction of ligatures can even
be script- and language-dependent. But still this combination of single replacement

211 (Ab)use of font features

and positioning is called “‘ligature” and put under the 1iga feature. In TEX on the
other hand ligatures are just multiple to single replacements.

As mentioned, the reason for this article is that there are users who fear that this ligature
mechanism can be abused for malicious purposes. For instance, that we can replace
one word by another word. A natural question for TgXies is then: does OpenType make
users more vulnerable than when they’d use traditional fonts? As we explained before,
it will be clear that even with simple fonts one can do unexpected replacements but in
both cases a multiple to single replacement is not what achieves this: we need a multiple
to multiple replacement.

25.3 How it can be done in OpenType

Let’s start with OpenType. Here we can do a multiple to multiple replacement using
a chain substitution. We use the ConIgXt (font loader) Lua interface to define a new
feature.

\startluacode
fonts.handlers.otf.addfeature {
name = "mytesta",
type = "chainsubstitution",
lookups = {
{
type = "multiple",
data = {

[llgll] = { "b", nan, ngqn }’
["b”] — { ugn’ "O”, "O", udn }

1,
1,
1,
data = {
rules = {
{
current = { { "g" }, { "o" }, { "o" }, { "d" } },
lookups = { 1 7},
},
{
current = { { "b" }, { "a" }, { "d" } },
lookups = { 1 },
},
},
},
+
\stopluacode

(Ab)use of font features 212

Here current is a list of characters to match and every position can have multiple
matches. When there is a match the lookup sequence points back to the lookups table
where one of the mentioned substitutions can take place. This newly created feature
can now be applied:

\definefontfeature [mytestal [default] [mytesta=yes]
\definedfont [SerifBold*mytesta sa 1.2] good or bad

Here the default feature sets enable ligature building (1iga), kerning (kern) and other
features considered standard. We also default to so-called node mode because instead
of using the TEX engine, we delegate feature handling to Lua. The output is:

bad or good

Indeed the words good and bad get swapped. We can add a before and after se-
quence too and you can imagine that when this logic is translated into a binary Open-
Type format a regular user will not know that this can happen. So, indeed a font de-
signer or someone who can intercept and replace a font can hide replacements like this.
If we replace mytesta by 1iga it becomes part of the regular everyday ligature feature
and because that one is often enabled by default it could go unnoticed for a long time.
Because OpenType fonts can be huge and have lots of rules like these this cheat can
be hidden very well. To some extent TEX users are somewhat better protected because
they can always turn features on and off, while in less configurable situations defaults
are used.

So, to summarize, in OpenType we do this: as we run over the list, at every character we
check for the sequences good and bad. When we have a match we replace the matched
characters by something else. The next variant shows a bit more complex setup with
more lookups and different substitutions.

\startluacode
fonts.handlers.otf.addfeature {
name = "mytex",
type = "chainsubstitution",
lookups = {
{
type = "substitution",
data = {
['T"] = "t
["E"] = "e",
["x"] = "x",
s
s
{
type = "multiple",
data = {
("] = { "c¢", "o", "n", "t", "e", "x", "t" I},

213 (Ab)use of font features

["l"] - { IICII’ "O", "Il", "t", neu’ "X", "t" },

},
1,
1,
data = {
rules = {
{
current = {
{ "z, "t 3}, { "e", "E" }, { "x", "X" }
1,
lookups = { 1, 1, 1 },
},
{
current = {
{ "1, "L" X, { "a", "A" },
{ ", "t 3}, { "e", "E" }, { "x", "X" }
1,
lookups = { 2 1},
},
},
1,
+
\stopluacode

This might look a bit intimidating but it’s just a way to enhance (or fix) a font and is in
fact used in practice. This newly defined feature can now be applied:

\definefontfeature [mytex] [default] [mytex=yes]

\definedfont [SerifBold*mytex sa 1.2]

Using TeX (or TEX) logos, like LaTeX or (LaTEX), sometimes can look
a bit silly.

Using tex (or tex) logos, like context or (context), sometimes can look
a bit silly.

Because we have control over the engine we can add more substitution features, not
present in OpenType, because after all, control is what users love TgX for.

25.4 How it can be done in traditional TX

In traditional TEX we don’t have such a repertoire of replacements available but we can
use a different trick. Again we use Lua to emulate it.

\startluacode
local function initialize(tfmdata,value)
if value then

(Ab)use of font features 214

local characters = tfmdata.characters
local y = utf.byte("y")
local e = utf.byte("e")
local s = utf.byte("s")
local n = utf.byte("n")
local o = utf.byte("o")
local cy = charactersl[y]
local ce = charactersl[e]
local cs = characters[s]
local cn = characters[n]
local co = characters(o]
characters[y].ligatures = {
[e] = { char = 255 }
+
characters[255] = {
ligatures = {
[s] = { char = 254 }
},
+
characters[n].ligatures = {
[o] = { char = 253 }
+
characters[254] = {

width = cn.width + co.width,
height = math.max(cn.height, co.height),
depth = math.max(cn.depth, co.depth),
commands = {

{ "char", n 7},

{ "char", o 7},
+,

}
characters[253] = {

width = cy.width + ce.width + cs.width,
height = math.max(cy.height, ce.height, cs.height),
depth = math.max(cy.depth, ce.depth, cs.depth),
commands = {

{ "char", y I},

{ "char", e },

{ "char", s 7},
+,

i
tfmdata.properties.hasligatures = true
tfmdata.properties.virtualized = true
end
end

215 (Ab)use of font features

local specification = {
name = "myhacka",
description = "myhacka",
manipulators = {
base = initialize,
}
¥

fonts.handlers.otf.features.register(specification)
\stopluacode

Because in the end we need multiple characters we create a virtual font where a single
slot (character) renders multiple characters. Of course one should also add proper
kerning between the characters that make no and yes; copy the rightmost characters to
the kerns table, and patch the ones that kern with the left character but we leave that
as an exercise.

\definefontfeature[myhacka] [mode=base,myhacka=yes,liga=yes,kern=yes]
\definedfont [SerifBold*myhacka sa 1.2] yes or no

Where in the OpenType example we delegated processing to Lua, here we let the TgX
engine do the job. This is called base mode. Node mode picks up the data it needs
for ligaturing and kerning from the font via Lua; in base mode it is part of the font
definition that gets passed to the engine (like the 1igatures tables here).

no or yes

In the previous example we do this at runtime but if you use for instance pdfTgX you
need to make a real virtual font file (a v£ file alongside the tfm file). Here the commands
entry provides the recipe for the virtual character where we draw from the same font.

So, to summarize this approach: we check each character for being the start of a ligature.
When we have a match we replace the pair by a new character, in the case of no this is
the final one, and in the case of yes an intermediate one that gets a follow-up check.
Do you see the problem? If we enter this:

\definefontfeature [myhacka] [mode=base,myhacka=yes,liga=yes,kern=yes]
\definedfont [SerifBold*myhacka sa 1.2] yes or no or yep

no or yes or p

We get an unexpected replacement, because character 255 is already taken. The solution
is to add this:

characters[255] = {
ligatures = {
[s] = { char = 254 }
1,

(Ab)use of font features 216

width cy.width + ce.width,
height math.max(cy.height, ce.height),
depth math.max(cy.depth, ce.depth),
commands = {
{ "char", y },
{ "char", e },
¥,
b

\definefontfeature [myhackb] [mode=base,myhackb=yes,liga=yes,kern=yes]
\definedfont [SerifBold*myhackb sa 1.2] yes or no or yep

no or yes or yep

25.5 It’s trickier than this

It’s clear that where in OpenType one can use different means than ligatures, in tradi-
tional TEX where we only have ligatures as a tool we have to combine them with another
(powerful) magic: virtual fonts. In the end there is not much to worry about: access to
the font and the user’s machine is needed in order to achieve this. In fact, the previous
examples are not even right.

There is one aspect that we didn’t mention yet that makes an OpenType font more suit-
able. If we only want to replace words we need to add a boundary check so let’s give
an example of that.

\startluacode
local punctuation = { { n n " . n n n n . n nm.n } }

fonts.handlers.otf.addfeature {

name = "myteste",
type = "chainsubstitution",
lookups = {
{
type = "multiple",
data = {
["g"] = { "b", "a", "d" },
["b"] = { "g", "o", "o", "d" }
s
s
¥,
data = {
rules = {
{
before = punctuation,
current = { { "g" }, { "o" }, { "o" }, { "d" } },

217 (Ab)use of font features

after = punctuation,

lookups = { 1 },
+,
{
before = punctuation,
current = { { "b" }, { "a" }, { "d" } },
after = punctuation,
lookups = { 1 7},
+,
s
+,
}
\stopluacode
This can now be applied:

\definefontfeature[myteste] [default] [myteste=yes]
\definedfont [SerifBold*myteste sa 1.2] goody or badass and good or
bad

goody or badass and bad or good

Getting this to work in TgX is hard because we run out of slots and because TgX in base
mode (traditional) has no space. And even in OpenType we probably need to do more
to get it right all times: punctuation, digits, all kinds of quotes, etc. So with the given
TEX example we get even more unexpected changes because every work that contains
the lookup replacement happens.

25.6 Unexpected ligatures in practice

Of course in practice fonts don’t get hacked this way. But you can have surprises in
some fonts. An example is Font Awesome Brands:

\definedfont [FontAwesome5Brands-Regular-400*default]
dropbox windows android apple linux wikipedia

Sometimes fonts have such goodies built in and as long as stylistic features are used for
this it is just a handy feature (or you might call it a gimmick). Emoji fonts are good
candidates for combining emoji into new ones, but changes in shapes (this could be
driven by social or political influences) can also make for surprises. It demonstrates
that it is always good to proofread what you typeset. The problem with such features
is that when you decide to use another font, it is unlikely to work there so maybe it’s
best not to rely on it and use similar features that the macro package (might) provide
instead.

(Ab)use of font features 218

A recent trend is to let monospaced fonts perform ligaturing, so we get for instance
a ‘less equal” symbol instead of a ‘less” plus an ‘equal’. And it can be highly annoying if
that can’t be turned off. Feature creep is probably more troublesome than an occasional
nasty font, one that probably isn’t worth using anyway.

25.7 Some final words

The suggestion in the post that fonts are programs is not entirely true because we're
only dealing with lookups: it’s data that we're talking about. That is not to say that fonts
can’t become programs. As explained in Niklaus Wirth’s “Algorithms + Data Structures
= Programs”, one needs the algorithms too and that’s what the OpenType composition
code does, with specific features either supported or not by a user interface or hard-
coded assumptions. And although the descriptions of OpenType have improved over
time, occasionally one has to ponder how to deal with complex combinations. And as
usual bugs can become features. In that sense, the limitations of the TgX model are a
protection against unexpected (but intended) side effects. If you nevertheless consider
an OpenType font to be a program, you also should expect it to come with a manual
explaining the reasoning behind the way it handles all this as well as showing the user
what to expect, but I doubt that this is on the mind of a font developer.

So, while it is for instance no big deal in LuaTgX to add functions to the repertoire of
features we can go further. At BachoIgX 2024 I was told that there are (premature)
ideas about adding Web Assembly to fonts, which for sure will give some users the
creeps, but then we're talking application-specific trickery which is outside our scope.
The most recent color extensions are an example of undesired complexity and the ques-
tion is if we want more of that. Maybe it makes sense on the web but on paper (and
with TgEX) we can often achieve the same independent of fonts that then need to have
these programs embedded in every instance (one can wonder how updating and bug
fixes works out then). Once we lock our workflows into libraries that themselves have
dependencies we also enter the realm of programs with potential back doors, leaks,
insecurity, compatibility issues, etc. But that’s for another article. I only mention this
in order to stress that the currently provided OpenType features are the least of our
worries.

219 (Ab)use of font features

The shift (or: just moving on) 26

When you use a programming language like C or Pascal, the language TgX was origi-
nally written in, there can be various results, most of which have little relation to each
other. A word processor written in some language is not the same as a program that
controls traffic lights. In addition to the core language, which provides data types,
loops, conditionals, etc. there can be specific features like native support for strings, or
a defined set of libraries to be provided, for instance for memory management or math.
At some point if was fashion to add layers of abstraction to languages, for instance ob-
ject oriented layers, or database oriented functionality. One can add to a language or
use pre-processors for that. One can talk macros and templates.

If we look at TEX we also have a core language but at the same time there is a rather large
set of builtin functionality. You can mix programming with content and the content gets
processed into something that eventually might end up on paper or on a screen. The
built in functionality deals with paragraphs of text, rendering math formulas, splitting
of pages, making tables, and so on. It’s actually an attractive mix.

When TEX showed up the idea was that one writes a specific set of macros that help
to structure and render the input. Although there is a basic set of plain TgX macros,
the look and feel got programmed per document. However, as not all authors have the
skills to program or want to be bothered with that larger sets of macros popped up:
macro packages. Some survived, some went extinct, but in the end we only find a few.

If you go back in time, the users of TgX found each other in shared interest and a com-
mon need for resources. Of course there is the program, that needs to be available for
the platform that one uses, then there was the backend driver needed for previewing or
printing, and of course fonts and hyphenation patterns could be shared too. There was
even some common ground for further development. At user group meetings it was
not uncommon to hear about something new, successes and failures, usage patterns
that can inspire etc.

But over the decades things changed. New engines showed up that added functionality.
For instance LuaTgX brought an efficient mix of TgX, Lua, and MetaPost, and LuaMeta-
TEX adds to the language as well as typesetting functionality. The first one resulted in
the more hybrid ConTgXt variant MkIV, and the second in MkXL (aka LMTX as it pairs
with the engine in a lean and mean installation). The later is what most users nowadays
use. And the principles can be summarized as:

e We use the TEX input method by default, which means commands that start with
a backslash. As always with ConTgXt commands can have options: keywords (ar-
rays), key/value pairs (hashes), or both. We do also accept xml, Lua (so called cld
documents), some other formats and a mix of it.

e It being a major TgX features, we support math in the usual way but we don’t want
users to tweak to much which is made possible by the enhanced engine.

The shift (or: just moving on) 220

e Solutions not available via the more high level user commands can be programmed
using the regular TgX language, Lua, or MetaPost or a combinations. There are of
course helpers but we don’t discourage going primitive.

e We consider TgX as a niche product. For sure it excels at math but for many it is not
beforehand a better solution than alternatives like word processors and web based
rendering. It should never be enforced. Using ConTgXt is best a positive choice.

e Itis users and usage that drives what features are added, extended, upgraded. As
development and support is volunteer work there is also no or at least little (occa-
sional projects) that binds it to big tech, publishers and hidden backend usage.

So how does ConTgXt then fit into the larger TgX picture. As mentioned above in the
beginning there was common ground but today one can wonder if that is still the case.
With for instance IXTEX moving to the web and competing with other large scale word
processing, there is little in common. Also, we never had the same approach to styles
(low level hacking) and definitely don’t want to enforce some intermediate program-
ming layer hides (and discourages) the use of the primitive language, although we do
impose some restrictions with respect to overloading. We don’t want to end up in com-
petition with other systems out there either: one should be free to use whatever ones
likes. There is no overlap in development and macro package development is rather
isolated. You can see that reflected in use group meetings: they are small compared to
the early days. The generic meetings bring little news and the more dedicated ones are
(indeed) dedicated to specific solutions (macro packages). There is still some common
ground to be found, like in distributions, specific resources like hyphenation patterns,
and journals but even there macro packages go their own way. One has to look deep
down to see to what extend they share concepts and usage patterns. Of course this is
natural for a program that has evolved over four decades and where usage patterns also
evolved.

So to come full circle, if we see TEX as a programming language it is not much different
from other languages. Of course its domain is typesetting but in what way the results
are achieved can differ a lot. When someone says to be using TX that doesn’t tell much
more than saying that one programs in Pascal, although it is an indication of how type-
setting solutions can be reached.

In a nostalgic mood I took a look at the rather large archive of Modula files I wrote in
the second half of the 80’s and first half of the 90’s. Among the dozens of programs are
a few that sort of translate to what we have today. We're talking msdos here using a
common text based windowing system that I wrote for vax mainframes and ported to
the personal computer.

There is an editor that could handle relatively large files, supported a project structure,
had syntax highlighting and did real time spell checking. I just translated that to SciTE
extensions and for instance the project structure (including fast opening of files) is not
much different from what we have now. The syntax highlighting evolved to a mixture

221 The shift (or: just moving on)

of languages but still determines how I look at files and thereby how ConlIgXt is pro-
grammed.

But before we actually used TgX that same editor was used for just ascii based rendering
so in addition we then had a converter that turned simple tagged text into something for
a printer. It actually is not that different from these markdown ways of coding. We also
could split of pages and move reserved areas (floats) around. Of course all that was left
behind when we moved on to TgX. It is kind of curious that much of this actually was
written for terminals connected to a VAX (at the university) where we printed out on
these fast daisy wheel line printers. Only decades later we figured that already at that
time there could have been TgX or precursors running on those machines, probably of
little use because there one needs an (expensive) phototypesetter and some workstation
for previewing.

Yet another program was the one that we used for making computer assisted learning
programs, think of presenting text, questions, feedback, video and audio. Equipment
was controlled via serial connections connected to for instance random access video
tape players. We made a small language for that with regular programming features
enhanced with some specific for learning environments. Interesting is that it involved
parsers, scripts in that language, efficient storage, and bytecode ran through what I later
learned was called a virtual machine. I guess that around that time, when we were not
connected to the (not yet existing) web, many people were inventing the same wheels.
As a side note: there was never a real market in a small country like ours so this was
typically only applied in projects where it somehow fit in, as goodie. Of course all this is
now done in browsers and JavaScript, but I guess the experiences somehow translated
into interfaces mixed into ConIgXt. I never felt the need to abstract TeX away behind
layers like the one mentioned her because nowadays we have these interpreted scripting
languages.

Then there were graphics. At some point we were involved in making a heavy duty
(3D) milling machine using simple robust of the shelf components. The friend we did
this with needed it for some production process. We controlled motors with brakes
and couplers and feedback happened with optical feedback. All was programmed in
Modula and controlled via an io board. Here again we made some simple language
for describing shapes but also handled output from drawing programs (exporting to
hpgl). Looking backward it was a lot of fun and there was nothing on the market that
could do the same for that price but the (more than square meter devices) were mostly
used for milling displays and components for an automated film development machine.
Here we can wonder how that translated to today’s ConIgXt. Using MetaPost for this
is not an option although with the library we have we could actually cook up some
backend. Also, you can now use micro controllers that cost a few euros and stepper
motors than come cheap. So, looking back it’s probably mostly the learning experience
that translates. And the recent serial ConTgXt signal gadget brings us back to connected
hardware.

There are more programs, some concern databases, others concern for instance dis-
tributing structured handbooks (on floppies, meant for portable simple laptops). One

The shift (or: just moving on) 222

easily forgets what has been done. The same is true for manuals: we can find plenty
of early ConIgXt manuals dating from the time it evolved. Most never made it into the
public. Much also had to be done on computers from the i386 times. And it definitely
was from before we were connected to the internet. But in the end, with intermediate
steps using Perl and Ruby for scripting and run management, we eventually arrived at
this TgX, Lua and MetaPost mix, now with even a bit of connected hardware to watch
the process. There is no need to look back apart from realizing that we didn’t arrive
here by accident.

So to wrap this up: at some point we arrived at using TgX combined with various pro-
grams we made that themselves evolved but eventually all those became obsolete and
the Lua plus TgX plus MetaPost approach was the winner, with an occasional resem-
blance of what came before. First we operated in isolation, then entered the TgX com-
munity that at that time was also exploring several solutions for similar problems and
adapting itself to what it was confronted with. But in the end, just as we forget the
past, that TgX related past also starts fading away: the current TeX solutions evolved
independent and share little. But what remains is that they are built upon Don Knuths
masterpiece and that we share forever.

comment: this text is not yet corrected for errors

223 The shift (or: just moving on)

Illiterate programming 27

27.1 Introduction

I write this 20 years after we started the LuaTgX project, which was 2005. At that time
I used pdfTEX, for obvious reasons: it was a mature engine, had a pdf backend built
in, came with nice features like expansion, had a few extensions at the primitive level,
and I was involved in the development, testing, discussions etc. I was quite happy
with it and ConTgXt always supported the latest greatest smoothly. And after decades
MLKII still works well with the current pdfTEX, which has evolved a little but we never
followed up on that.

During the 20 years we reported frequently about how we moved on to LuaTgX, which
got frozen after some 15 years but got a follow up in LuaMetaTgX. Among the reasons
mentioned for starting the project were the potential to extend the inner working of a
TeX engine via a Lua interface, the fact that the world moved on to Unicode and Open-
Type fonts becoming more popular and widespread. We also had to support right-to-
left typesetting in a more comfortable way which is why the Oriental TgX project became
instrumental in the first five years.

In the next sections I will reflect a bit on how the code base evolved and how that fits
into how the average TEX code base looks like. The bottom line is that we moved from
literate to “illiterate’ programming.

27.2 Woven webs

If you look at the TgX live codebase for the familiar engines of course your first try to
find the original. In the October 2025 snapshot we find:

1,031,999 tex.web
180,075 tex.ch

Here the big file defines the program and the file is big because it has program code
as well as documentation. If you open the file you'll notice that it’s quite dense. If
spacing had be more liberal and the various directives more verbose the file would
be way bigger but think for a moment about those times: the first 10 MB hard disks
in personal computers that showed up years after TeX was written were larger than a
modern mini pc and weighted more than a decent laptop. You not only have that 1 MB
text file, you also need to compile it, so you need a software infrastructure, you need
to test the binary, which also takes space, save a memory dump, collect some fonts,
generate bitmaps, etc. It’s a miracle all worked out so well. Oh, and we didn’t mention
that in those times printing hundreds of pages in a decent resolution took some time
too.

Illiterate programming 224

41

42

The small file is what is called a change file. From the big .web file we can ‘weave’
documentation (like the TEX the program book) and ‘tangle” a Pascal program. The
change file is applied in the process and it patches the to be woven web. Such a change
tile typically deals with system dependent issues but can also add or upgrade features.
If you keep in mind that the first version of TgX was configured for 32 bit memory words,
it will not come as a surprise that the first change was going 64 bit so that the engine
for instance could handle more so called nodes.*!

An example of change file that adds functionality is e-TgX, one of the first extension
projects:*

225,207 etex.ch

That one is about a quarter of the original. There is no .web file because it patches the
original TgX file. This is not the case for pdfTgX:

1,577,910 pdftex.web
16,272 pdftex.ch

Here we see a copy of tex.web with adaptations but still there is some change file. It
deals with the fact that the tex. ch file is also applied as well as some mlTgX functional-
ity. Keep in mind that we operate in an infrastructure where code is shared, especially
interfaces to the file system and environment (web2c & kpse). The pdfIgX program
has a backend and interfaces to various graphic libraries and all those are done in C.
So, in addition to these .web and . ch files we also find .h and . c files. We have a mix
if literate and less literate code.

We see the same with XgIEX, where due to less added functionality (code and docu-
mentation) the web file has grown less but that is compensated by more of the new
front-end functionality done in C. Also, keep in mind that this program delegates the
pdf backend to dvipdfmx by piping out dvi.

1,378,780 xetex.web
31,800 xetex.ch

An interesting case is Aleph, the production version of Omega. At TgX meetings this
multi-directional, large font variant was often presented in a way that made it sound
like it was not coded like TEX due to various limitations, e.g. hardware. It would even
be in a transition to C. However, when you look at the code base in TgXLive you'll notice
thatitis all change files and a few C files. It actually stays within the concept of patching
the original and where in one way it does away with limitations that other engines work
around, it otherwise is kind of conservative. Of course it might relate to the fact that
the added functionality is in transforming input and feeding the backend. For instance,

These are the times of big and huge TgX’s and hooking into memory extenders on 640K personal com-
puters. The times when processing pages could make for a coffee break.

I first heard about e-TEX and Omega at the first TgX conference I attended, 1995, Arnhem NL. I was a bit
amazed that there was this competition going on.

225 Illiterate programming

43

the directionality doesn’t really need many changes in core code. The 35 change files
add up to 813,829 bytes and files range from 124 to 174,831 bytes.

We end with MetaPost. Here we have no .web files but . v files because this program
is not written in Pascal but in C. There are no change files in its directory. Some func-
tionality is delegated to specific files, like the number systems that are supported. The
binary, decimal and double variants depend on other code, so in the end we do use
additional header and code files. The optional png and svg backends also add (quite
huge) dependencies.

1,213,713 mp.w
63,738 mpmath.w
68,096 mpmathbinary.w
73,831 mpmathdecimal.w
52,224 mpmathdouble.w
45,035 mpost.w
12,369 mpstrings.w

Here the big one is actually the library and the small mpost.w implements the com-
mand line program.

27.3 Changing the web

In the previous lists of programs we miss LuaTgX, so let’s look at that now. Because we
started from pdfTEX the first version was just a copy and therefore quite similar. The
Lua interface gave access to a few internals and we could write back to the input. Of
course by adding Lua some C files were added. Apart from some extra primitives the
TEX system was just the same.

However, as we decided to go forward and really open up the internals it became clear
that the single file approach would not accommodate that well. But, with future Lua
interfaces being C driven and with upcoming demands with respect to fonts in mind, it
made sense to move away from Pascal. Keep in mind that for instance for oriental TeX
we had to load relatively large fonts (for which we initially took code from FontForge)
and process the so called node lists that makes boxes and paragraphs. We didn’t want to
go the XgIEX route by depending on operating system features and/or specific libraries
that could change (and in the end did change).*® For us, Lua was the way to go: after all,
what is a standard (fonts, pdf, graphics) if they lock into specific libraries; we wanted
a programmable extensions system, pretty much like TX itself.

So, to summarize a few years into a few sentences: Taco and Hartmut split up the code
base, moved from Pascal web (.web) to C (but kept the comments) and eventually
ended up with C web (. w) files. The idea was even to write new code as a web but in

We do support XgIEX in ConTgXt MKII but never used its features beyond loading fonts because they
didn’t match our approach. So, I can't really comment on how it works internally.

Illiterate programming 226

practice that was just too much work and never really happened. It anyway meant that
we no longer used the web2c route but the cweb route.

This process actually took years because at the same time we also added functionality,
improved some existing mechanisms (like more efficient expansion), did some cleanup,
etc. We tried out ideas, implemented solutions in Lua, adapted as we went and had to
document as well as report on it: see ConIgXt documentation, TugBoat, Maps, etc. It
was very convenient that we let ConTeXt MKII evolve into MkIV and that ConTEXt users
just joined in testing. Basically LuaTEX could always be used in real production flows,
as long as one kept ConTgXt and the engine in sync.

When we decided to more of less freeze the engine, around version 1 in 2016, we had
a mixed code base, which was a good moment because Taco no longer could allocate
time; keep in mind that this is all unpaid volunteer work. After that I started to add
pending functionality and some more interfaces, while Luigi took care of integration
in TeXLive. It kept us busy for a few years. In the process we change the .w files to
just .h and .c files and keep the comments as such. We didn’t expect anyone to ever
generate a pdf from the source anyway, also because it never could match the original
Knuth quality. One needs discipline for reaching that level and the combined workload
(TgX, MetaPost, macro package, documenting, usage) simply didn’t provide room for
that. Also, editors with syntax highlighting, cross file searching, grepping, high res-
olution windowed display technology, and whatever, had evolved and looking at the
documented source was as good as looking at a (to be generated) pdf on screen.

There was an exception to the rule: MetaPost. That big file was already in documented
cweb and splitting it up is a major effort. It did mean that we had a dependency on a
converter but we’ll see how that worked out.

27.4 Becoming illiterate

We've now arrived at LuaMetaTgX. When the more definitive code freeze of LuaTgX
was decided in 2018, the development moved to a new variant. At that time the code
base can be summarized as follows. There is a set of files that can be divided in those
implementing the TEX engine and user interface (interpreter), Lua libraries that are
kind of stand alone, Lua libraries that interface with the engine, libraries that give access
to fonts or generate pdf, and of course the MetaPost library. Even libraries dealing with
bitmap images could be replaced by Lua solutions. The files are stored in a TgXLive
compliant structure, and use its build infrastructure. It’s a bit messy mix. An optional
library interface makes it possible to add specific features via Lua but ConTgXt will never
depend on that.

Among the decisions made when I started LuaMetaTgX was that the font loader code
could go away, because after all in ConTgXt we already did all of this in Lua. The same
was true for the backend: we experimented that in LuaTgX in MKIV (but later removed
that option there). The decision also made for a new version of ConTeXt: MkXL or, as
distribution LMTX, because at that time it became clear that we had to distribute both
at the same time.

227 llliterate programming

44

I was surprised to find out that in the end compilation was not that hard, not even
with the native windows compiler.** It made for a way more convenient development
cycle but there was one dependency left: MetaPost was still webbed. In order not to
be dependent on the web2c toolchain I wrote a Lua script that did the same and also
had the possibility for plugging in Lua code to fix certain issues. A side effect was that
I got better formatting of the C (which presumingly was not meant to be looked at, just
compiled) and a few compiler warnings related to indentation. When I really started
to extend MetaPost the . c file was used and back ported to .w so after a few years,
sentiments set aside, the cweb was dropped from the source tree. It triggered another
round of cleanups.

So, is there anything literate left? The answer is “partial”. The various comments are
spread over the sources as C comments. They come from original TeX, pdfTgX, LuaTgX
and of course from the author. The original comments do not always apply but there is
also a history to be told and the general ideas and approaches of TgX don’t change. We
deliberately always tried to stay close to the original when possible.

I have it on my todo list to clean it up a bit more. The challenge is to keep the explana-
tions, even if they no longer apply that way. History also matters, and it’s not like many
people read it. A better source of explaining what the engine does are the articles, de-
velopment documents, low level manuals and ConTgXt code base. It’s more important
to write for users than for whoever looks at the source.

What I didn’t stress enough is that the code base is independent. There is some third
party module code, like (of course) Lua, memory management, compression, pdf pars-
ing, specialized graphic stuff related to MetaPost but all of it is in the tree and dis-
tributed with ConTgXt. Updates never happen automatically, changes a are checked
(diffed) first. When a user installs cmake and a compilers building a binary is easy.
The codebase can quite well be explored from Visual Studio, VSCode or likewise. (But
rest assured: it’s free of Al interference.)

27.5 Conclusion

The LuaTgX and LuaMetaTgX code bases differ from other TeX engines. Where LuaTgX
integrates in the TgXLive code base, LuaMetaTgX is independent. Both don’t use the
web main file plus change files approach, although LuaTgX does so for mplib, which
actually then has its own source tree. So, both don’t really qualify any longer as literate
programs, but they do have plenty traces of the idea that the source should explain a
bit what happens.

When working on LuaTgX, I cross compile on the Linux subsystem for Windows using a build script
that Luigi made. The files are organized in the TgXLive way, and the build script fits into that. Cross
compiling LuaMetaTgX is faster and for various platforms we use Mojca’s ConIEXt garden build infra-
structure. Installing ConTgXt and LuaMetalgX is done by the engine itself as it can act as Lua interpreter
and therefore download and install files. It is a self-contained setup.

Illiterate programming 228

I never realized that LuaTgX is an outlier because it doesn’t have this change file model.
The objectives of the project also made us change for instance the size of nodes and font
resources which means that there are lots of accumulated changes. In an other musing
I talk a bit about the way character nodes are managed in original TgX and derivates.
The change file model is a sort of insurance that the related optimizations are kept but
also might limit the solution space. So it’s a blessing on the one hand and maybe a curse
on the others. I can safely say that we would not have gone as far as we went if we’d
locked into the approach that the other engines took.

So, kudos to Hartmut Henkel and Taco Hoekwater for having the courage to divert
soon after we started and of course thanks to Don Knuth for providing the well known
and very literate documented source to do all this, the ultimate source I still go back to
when in doubt.

In a ConTgXt development team discussion, Keith McKay offered to write some docu-
mentation and we all agreed to adopt his more futuristic style of literate programming.
Here is an example:

~ AN W AN~ VAN St WV TS e s S A
AN NN (o TS ~ 2\ N RV TS L
S (5> € IV CNOAATT W AN D S T N T A
TOILNAWINR NN 3, N2 WA (O~ UL An VN

&%M/d(
2\ 7 7

OO WX TN\ ¥

A~ () RIIN LV 5L ” @ d -
I B nrg~p 2 g A i 1 3 (27

(S“J\h\._‘?uﬁy\- A

S

VOO TN
LR 2 O e
A Y
WY e Bivis T UN
NS da oD

A NN VT an AL LG ST STIN W AN 5N
W g ST T AN N D Al A AN) N A2 O
v~ A CHNC Y A A e WV AW 9 @
~U AN ANy v NS NN S NN N L~

After all, there is no need to stick to TgX alone and we have to make sure that only
humans can get the picture what we want to achieve: it’s all about beauty, not about
turning what we do in artificial slop.

229 Illiterate programming

Fake quality 28

In these days of running into so called ‘fake news” it is no surprise that we also can run
into fake quality typesetting. Of course, as with news, it is can be hard to figure out
what actually is real or fake, so with typesetting we also need to be careful in what we
claim. For that reason I will not mention names of programs, nor refer to claims made
about how well programs behave, even when they compare themselves to for instance
TEX, in which perspective one can read strange assumptions with respect to what TgX
can do or not, nor will I comment on claims made by designers of journals who brag
about the improved quality due to choice of fonts, applied trickery, design choices and
what more. I just stick to some abstract visual examples that might help the reader to
identify false claims, especially when to have to defend their use of TgX and friends.
What follows below is about awareness. Trust your eyes. If looking at some text gives
so a feeling that something is off, wonder why. If it looks kind of weird, find a reason.

We start with the challenge. When typesetting a paragraph of text, a typesetting engine
has to make choices. When words can be hyphenated, a potentially overfull line can be
prevented by breaking a word. When spaces have stretch or shrink, that can be used to
make better decisions. In the case of TgX a first look at the paragraph might result in
breaking without hyphenation. If the result is too bad, a second attempt will be made,
this time with hyphenation. If we're still not okay, the criteria can be more liberal and
we can permit additional stretch between (either ot not hyphenated) words. When set
up right, the final result will not have any overfull lines but spaces can be excessive in
some lines. However, in practice that seldom happens. The engine looks at the whole
paragraph, builds a solution tree and chooses the best possible outcome. That of course
comes at the cost of runtime but nowadays that can be neglected.

Starting with pdfTgX some more wiggle room became available: character expansion.
This is a variant on so called hz optimization, a trick inspired by Herman Zapf, loosely
based on Gutenbergs “choose a wider or narrower variant of a shape”. In this case we permit
a glyph to scale in the horizontal direction and we can use different scales per glyph.
Of course that means that one has to set up fonts properly and the engine has to work
harder because now it has to take potential stretch or shrink into account as well. The
more constraints we have the more runtime is needed.

In LuaTgX this mechanism has been optimized so there the impact is less, although more
complex feature processing obscures that, which means that in the end this engine is
more demanding when it comes to typesetting a paragraph. In LuaMetaTEX we go even
further by permitting more than the usual up to three passes: we can follow different
scenarios to get to an optimal result. In practice the additional runtime for e.g. up to six
passes can be neglected.

So, when we look at the result, and assuming that we have expansion applied, we can
end up with a paragraph that have lines where no expansion took place, or lines where

Fake quality 230

45

glyphs became a bit narrower or wider, depending on what was needed to make lines
visually compatible. And that last fact is what we need to stress: the TeX engine tries
to make neighboring lines look compatible! Again, in LuaMetaTgX we can do that for
three, five, seven etc lines, where the distance between lines is taken into account, so we
can be more tolerant the further away we are. And yes, that comes at a price in runtime,
but as said, in practice one wil be fine: runtime matters but getting a performance of 50
pages per second on my 2018 laptop for moderate complex documents, where typeset-
ting the paragraph only accounts for a small portion of the process, I guess we're good.
And it can only get better with more modern machines.

All that said, we now come to the point where we can look at what one can encounter
in documents. For this we visualize two processes that we see applied in other appli-
cations. The first is inter-character kerning, the second is horizontal scaling. When we
talk TgX, the first method can be applied but that is normally only done in special sit-
uation, like some title. If it is needed for a regular text run one should make a better
choice of fonts. The second process can be part of TEX's typesetting but as discussed
before, it happens as part of decision making and is granular with respect to glyphs. It
is not applied after the lines have been broken, it is applied as we decide to break. It is
not a last resort, it is part of the decision making.

In order not to fake news, I will not make any assumption about how other applications
construct a paragraph. I just don’t know any other application than by name: I never
use a word processor, page construction program, or any batch processing system other
than TgX. I just have no reason and application and am not even interested on how
things are done elsewhere. When we develop solutions the driving force is not “Can
you do this or that as done in program such or so?” but more “We have this problem, can we
handle that?”. And of course we just start and follow up on where TgX ended up decades
ago. It’s all about having fun solving challenges.*

But, if you look at some typeset page, you might wonder how it is done. For instance,
when you see excessive horizontal stretch or space between characters but also notice
that there are better ways to hyphenate, you can be sure that TgX is not used., First of
all, it does not expand kerns unless told so and even then does that within limits that
go unnoticed. When glyphs get scaled normally, a macro package will put constraints
on that, although I admit that I've seen badly done TgX documents too.

So, when you wonder about quality of what you see, maybe it is due to the fact that
the program used went on line by line, not much helped by proper hyphenation, and
eventually started to apply extra kerning between glyphs either of not combined with
stretch or shrink. The main objective likely was to get rid of too wide spacing and
sacrifice quality of the text over that. It’s like hammering screws into wood instead of
using a screwdriver: it might work out but looks bad. In such cases just ask yourself:
was the whole paragraph taken into account, was hyphenation properly applied, did

Quite often we have applied TEX in situations where other solutions failed. Manipulating and cleaning
up bad and unstructured input was then part of the game. The fact that we could typeset decent results
mattered less, it only made the work more rewarding.

231 Fake quality

[= = T = T == e e = T e)

= = = T =)

.00 00 1000
.05 00 1050
.00 12 1000
.05 12 1050
.00 10 1000
.05 10 1050
.00 08 1000
.05 08 1050

.00 00 1000
.05 00 1050
.00 12 1000
.05 12 1050
.00 10 1000
.05 10 1050
.00 08 1000
.05 08 1050

.00 00 1000
.05 00 1050
.00 12 1000
.05 12 1050
.00 10 1000
.05 10 1050
.00 068 1000
.05 08 1050

anyone actually look at the result? The latter is actually a pretty valid question. If you
consider workflows it can be that for instance in journal a lot of time went into the peer
review and editing, then out-sourcing all to some typesetting company, assuming that
all is okay and done to specs and finally goes to print. The programs used are supposed
to do the best they can and be properly applied. The whole process is managed in steps,
and following these steps is the assumed guarantee for quality. We can see results in
scientific journals and books that really make you wonder if someone even look at the
typeset results. Compare that to children books, where it is actually hard to find bad
examples.

We can visualize the methods. We use simple sequences of glyphs and apply stretch or
shrink as well as add some proportion of the width as kerns between. We use word of
9,10 or 11 characters. These are not real text examples so we let the text overflow the
line width for the sake of showing what happens.

We start with compensating spaces by making the words wider. The first line is what
comes out naturally. The second line applies a bit of stretch. The next pairs of lines
show what happens when we add kerns, with or without stretch. The spaces become
less but the picture worsens.

In the margin we see three numbers: the width, kern and horizontal scale.

BBEBBBBBBB_____ BBBBBBBBB __~~_ BBBBBBBBB ~~~_ BBBBBBBBB______BBBBBBBBB
BBBBBBBBB ____ BBBBBBBBB_____BBBBBBBBB _~ BBBBBBBBB. ____ BBBBBBBBB
BBBBBBBBB ____ BBBBBBBBB. ____BBBBBBBBB_ ~~_ BBBBBBBBB ~—~ BBBBBBBBB
BBBBBBBBB. ___ BBBBBBBBB ~~ BBBBBBBBB_ _~_ BBBBBBBBB ~ BBBBBBBBB
BBBBBEBBBB__~_ BBBBBBBBB ~ BBBBBBBBB —~ BBBBBBBBB]

BBBBBBEBBB ___ BBBBBBBBB ~_ BBBBBBBBB____ BBBBBBBBB _ BBBBBBBBB
BBEBBBBBBB____ BBBBBBBBB ~~ BBEBBBBBBB ~~_ BBBBBBBBB ~ BBBBBBBBB
BBBBBBBBB ~_ BBBBBBBBB ~ BBBBBBBBB ~ BBBBBBBBB ~ BBBBBBBBB

BEBBBBBBBB____ BBBBBBBBBB ~~~ BBBBBBBBBB____ BBBBBBBBBB ~ BBBBBBBBBB
BBBBBBBBBB ___ BBBBBBBBBB___ _BBBBBBBBBB____BBBBBBBBBB ___ BBEBBBBBBBB
BBBBBBBBBB ___ BBBBBBBBBB___ _BBBBBBBBBB — BBBBBBBBBB __ BBBBBBBBBB
BBBBBBBBBB ~_BBBBBBBBBB _ BBBBBBBBBB — BBBBEBBBBBB ___BBBBBBBBBB
BBBBBBBBBB __BBBBBBBBBB _ BBBBBBBBBB ~ BBBBBBBBBB BBBBBBBBBB
BBBBBBBBBB _BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB_ _BBBBBBBBBB
BBEBBBBBBBB __BBBBBBBBBB _ BBBBBBBBBB BBBBBBBBBB __BBBBBBBBBB
BBBBBBBBBB_ _BBBBBBBBBB _BBBBBBBBBB _BBBBBBBBBB_ _BBBBBBBBBB

BBEBBBBBBBBB___ BBBBBBBBBBB_ __ BBBBBBBBBBB ~~ BBBBBBBBBBB __ BBBBBBBBBBB
BBEBBBBBBBBB __BBBBBBBBBBE __ BBEBBBBBBBBB __ BBBBBBBBBBE __ BEBBBBBBBBB
BEBBBBBBBBB__BBBBBBBBBBB__BBBBBBBBBBB__BBBBBBBBBBB__BBBBBBBBBBB
BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB__BBBBBBBBBBB_BBBBBBBBBBB
BBEBBEBBEBBB__BEBBBBBBBBBB__BBBBBBBBBBB BBBBBBBBBBB_BBEBBBBBBBBB
BBBBBBBBBBB _BBBEBBBBEBBE BEBBEBBBBBBB BBBBBBBBEBBB_BBBBBBBBBBB
BBBBBBEBBEBBB BBBEBBBBBEBBB BBBEBBBBBBBEB_ _BBBBBBBBBBB_ BBBBBBBBBBB
BBBBBBBBBBB BBBEBBBBBBBB BBBEBBBBBBBB BBBBEBBBEBBB_BBBBBBBBBBB

The next examples show what shrink does. Maybe it is good to know that TgX, when it
comes to shrinking spaces never goes below zero but when stretch is permitted it can
go beyond what is specified, the plus value is used relative to other stretch applied.

Fake quality 232

.00
.90
.00
.90
.00
.90
.00
.90

.00
.90
.00
.90
.00
.90
.00
.90

.00
.90
.00
.90
.00
.90
.00
.90

00
00
12
12
10
10
08
08

00
00
12
12
10
10
08
08

00
00
12
12
10
10
08
08

1000
0900
1000
0900
1000
0900
1000
0900

1000
0900
1000
0900
1000
0900
1000
0900

1000
0900
1000
0900
1000
0900
1000
0900

1.00 00 1000

1.65 00 1050

0.90 00 0900

1.00 12 1000

1.05 12 1050

0.90 12 0900

1.00 00 1000

1.05 00 1050

0.90 00 0900

1.00 10 1000

1.05 10 1050

0.90 10 0900

1.00 08 1000

1.05 08 1050

0.90 08 0900

BBBBBBBBB _ BBBBBBBBB ~~~ BBBBBBBBB__~ BBEBBBBBBB ~ BBBBBBBBB
BBBBBEBBB_____ _BBBBBBBBB_____ BBBBBBBBB _____ BBBBBBBBB______BBBBBBBEB
BBBBBBBBB___BBBBBBBBB____BBBBBBBBB __ _BBBBBBBBB ___BBBBBBBBB
BBEBBBBBBB____ BBBBBBBBB ___ BBBBBBBBB____ BBBBBBBBB ____BBBBBBBBB
BBBBBBBBB___BBBBBBBBB___ BBEBBBBBBB __ BBBBBBBBB B)
BBBBBBBBEB _ BBEBBBBBBB ~~ BBBBBBBBB_~ BBBBBBBBE ~ BBBBBBBBB
BBBBBBBBB __BBBBBBBBB __BBBBBBBBB _BBBBBEBBBB __BBBBBBBBB
BBBBBBBBB ___ BBBBBBBBB ___ BBBBBBBBB____BBBBBBBBB __ BBBBBBBBB

BBBBBBBBBB.___ BBEBBBBBBBB __ BBBBBBBBBB __ BBBBBBBBBB __ _BBBBBBBBBB
BBBBBEBBBB____ BBBBBBBBBB ___ BBBBBEBBBB____ BBBBBBBBBB ___ _BBBBBBBBEB
BBBBBBBBBB__BBBBBBBBBB__BBBBBBBBBB__BBBBBBBBBB__BBBBBBBBBB
BEBBBBBBBB___ BBBBBBBBBB _~ BBBEBBBBBB ~~ BBBBBBBBBB ~ BBBBBBEBBBB
BBBBBBBBBB _BBBBBBBBBB.__BBBBEBBBBBB__BBBBBBBBBB_BBBBBBBBBB
BBBBBBBBBB___BBBBBBBBBB __ BBBBBBBBBB __ BBBEBBBBBBB ___BBBBBBBBBB
BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB
BBBBBBBEBBB __BBBBBBBBBB __BBBBBBBBBB _BBBBBBBBBB __BBBBBBBBBB

BBBBBBBBBBB _BBBBBBBBBBB _BBBBBBBBBBB__BBBBBBBBBBB__BBBBBBBBBBB
BBBBBEBBBBB___ BBBBBBBBBBB __ BEBBBBBBBBB _ BBBBBBEBBBBEB BBEBBBBBBBEB
BBBBBBBBBBB BBBBBBBBEBBB BBBBBEBBEBBB BEBBBBBBBBB BBBBBBBBBBB
BBBBBBBBBBB__BBBBBBBBBBB__BBBBBBBBBBB__BBBBBBBBBBB__BBBBBBBBBBB
BBBBBBBBBBB BBBBBBBBBBB BBEBEBEBBBEEBBE BEBBBBBBEBBE BBBBBBBBBB
BBBBBBBEBBB _BBBBBBEBBBB__BBBBBBBBBBB__BBBBBBBBBBEB__BBBBBBBBBBB
BBBBEBBBBEBBBBBBEBBBBBBBBBEBBBBBEBBEBBBBBBBBBEBEBBBBBBBBBBBB

BBBBBBEBBBB _BBBBBBBBBBB _BBBBBBBBBBB BBEBBEBBBBBBB_BBBBBBBBBBB

Last we show triplets of lines and those extreme differences is what one can observe
when an application doesn’t consider visual compatibility and permits such extremes.
And yes, you can run into these cases in journals, newspaper and books. We only show
one words size.

BBBBBBBBBB____ BBBBBBBBBB ~~~ BBBBBBBBBB____ BBBBBBBBBB ~_ BBBBBBBBBB

BBBBBBBBBB ___ BBBBBBBBBB___ _BBBBBBBBBB____BBBBBBBBBB ___ BBBBBBBBBB
BBBEBEBBBB___ BBBBBBBBBB __ BBBBBBBBBB _~~_ BBEBBBBBBB___ BBBBBBBBBB
BBBBBBBBBB ___BBBBBBBBBB___ BBBBBBBBBB ~~ BBBBBBBBBB — BBBBBBBBBB
BBBBBBBBBB ~_BBBBBBBBBB _BBBBBBBBBB BBBBBBBBBB _BBBBBBBBBB
BBBBBBBBBB____ BBBBBBBBBB ~~ BBBBBBBBBB___ BBBEBBBBBB ___ BBBBBBBBBB
BEBBBBBBBB____ BBBBBBBBBB ~~~ BBBBBBBBBB__ BBBBBBBBBB ~~ BBBBBBBBBB
BBBBBBBBBE ___ BBBBBBBBBB__ _BBBBBBBBBB____BBBBBBBBBB __ BBBBBBBBBB
BBBBBEBBBB_____ BBBBBBBBBB __ BBBBBBBBBB ~ BBBBBBBBBB___ BBBBBBBBBB
BBBBBBBBBB __BBBBBBBBBB ~ BBBBBBBBBB ~ BBBBBBBBBB BBBBBBBBBB
BBBBBBBBBB _BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB__BBBBBBBBBB
BBBEBBBBBB____ BBBBBBBBBB ~ BBBBBBBBBB___ BBBBBBBBBB ~~ BBBBBBBBBB
BBEBBBBBBBB __BBBBBBBBBB ~ BBBBBBBBBB ~BBBBBBBBBB _BBBBBBBBBB
BBBBBBBBBB _BBBBBBBBBB _BBBBBBBBBB _BEBBBBBBBB_ _BBBBBBBBBB
BBBBBBBBBB____ BBBBBBBBBB ~~ BBBBBBBBBB____ BBBBBBBBBB ~~~ BBBBBBBBBB

Our main objective is to make you aware of these two tricks being applied by applica-
tions. I want to stress again that in TgX this kerning doesn’t happen, although it is able

233 Fake quality

= e

=

1.

.00 00 1000
.05 00 1050
.00 12 1000
.05 12 1050
.00 10 1000
.05 10 1050
.00 08 1000

05 08 1050

1.00 00 1000

0.9
1.0

= O = O
o O O ©

0
0
0
0
0
0
0

0.9

® B Rk © B R

© B =B ©

= e

=R = e

00
12
12
10
10
08
08

0900
1000
0900
1000
0900
1000
0900

.00 00 1000
.05 00 1050
.90 00 0900
.00 12 1000
.05 12 1050
.90 12 0900
.00 00 1000
.05 00 1050
.90 00 0900
.00 10 1000
.05 10 1050
.90 10 0900
.00 08 1000
.05 08 1050
.90 08 0900

.05 08 1050
.25 08 1250
.50 08 1500
.05 05 1050
.25 05 1250
.50 05 1500
.05 03 1050
.25 03 1250
.50 03 1500

to widen inter-glyph font kerns as defined by the kern features. One pitfall with adapt-
ing these is that it assumes that scaling doesn’t impact for instance ligature building or
accent anchoring.

We can also use rules instead of glyphs to demonstrate this, so we end with a few ex-
amples of that.

It can get real bad, and don't pretend that you never saw such extreme rendering, after
all with a TgX trained eye you can’t avoid noticing.

Fake quality 234

So how does TgX keeps up with the mainstream typesetting machineries? Here we have
a torture test, a quote from Donald Knuth in Digital Typography.

15. (This procedure maintains four integers (A, B, C, D) with the invariant meaning
that “our remaining job is to output the continued fraction for (Ay + B)/(Cy + D), where y
is the input yet to come.”) Initially set j < k < 0, (A, B,C, D) « (a, b, ¢, d); then input X;
and set (A, B, C, D) « (Ax]- + B, A, ij + D, C), j « j+ 1, one or more times until
C + D has the same sign as C. (When j > 1 and the input has not terminated, we
know that 1 < y < oo; and when C + D has the same sign as C we know therefore that
(Ay + B)/(Cy + D) lies between (A + B)/(C + D) and A/C.) Now comes the general
step: If no integer lies strictly between (A + B)/(C + D) and A/C, output X; < [A/C],
and set (A, B,C,D) « (C,D, A - X;C,B — X\ D), k < k + 1; otherwise input X; and
set (A,B,C,D) « (Axj+ B, A, Cxj + D, C),j « j + 1. The general step is repeated
ad infinitum. However, if at any time the final x; is input, the algorithm immediately
switches gears: It outputs the continued fraction for (Ax i+B)/ (Cx]- + D), using Euclid’s
algorithm, and terminates.

Here we show the bounding boxes of glyphs and the applied font kerns. You might
need to zoom in to see them.

15. (This procedure maintains four integers (A, B, C, D) with the invariant meaning
that “our remaining job is to output the continued fraction for (Ay + B)/(Cy + D), where y
is the input yet to come.”) Initially set j « k < 0, (A, B,C,D) « (a,b,c,d); then input x;
and set (A4, B, C, D) (Ax]- + B, A, Cx]- + D, C),j = j + 1, one or more‘wtimes until
C + D has the same sign as C. (When j > 1 and the input has not terminated, we
know that 1 < y < oo; and when C + D has the same sign as C we know therefore that
(Ay + B)/(Cy + D) lies between (A + B)/(C + D) and A/C.) Now comes the general
step: If no integer lies strictly between (A + B)/(C + D) and A/C, output X < | A/C],
and set (A, B,C,D) « (C,D, A — X;C,B — XyD), k < k + 1; otherwise input x; and
set (A, B,C,D) « (ij + B, A, ij + D, C), j « j + 1. The general step is repeated
ad infinitum. However, if at any time the final x; is input, the algorithm immediately
switchgg gears: It Qgtputs the continued fraction for (ij +B)/ (Cx]- + D), using Euclid’s
algorithm, and terminates.

Below we show the same text with expansion applied. You can see where it gets applied.

15. (This procedure maintains four integers (A, B, C, D) with the invariant meaning that
“our remaining job is to output the continued fraction for (Ay + B)/(Cy + D), where y is
the input yet to come.”) Initially set j < k < 0, (A, B,C, D) « (a,b, c,d); then input x;
and set (A, B,C, D) « (Ax;+ B, A, Cx;+ D, C), j < j+ 1, one or more times until
C + D has the same sign as C. (When j > 1 and the input has not terminated, we
know that 1 < y < oo; and when C + D has the same sign as C we know therefore that
(Ay + B)/(Cy + D) lies between (A + B)/(C + D) and A/C,) Now comes the general
step: If no integer lies strictly between (A + B)/(C + D) and A/C, output X < [A/C],
and set (A, B,C,D) « (C,D, A - X,C, B — X;D), k < k + 1; otherwise input x; and
set (A,B,C, D) « (Ax;+ B, A, Cx;+ D,C), j < j+ 1, The general step is repeated
ad infinitum. However, if at any time the final x; is input, the algorithm immediately

235 Fake quality

switches gears: It outputs the continued fraction for (Ax;+ B)/(Cx;+ D), using Euclid’s
algorithm, and terminates.

In LuaMetaTgX we actually also can apply expansion in math, which is shown next:

15. (This procedure maintains four integers (A, B, C, D) with the invariant meaning that
“our remaining job is to output the continued fraction for (Ay + B)/(Cy + D), where y is
the input yet to come.”) Initially set j — k < 0, (A, B,C, D) < (a,b,c,d); then input x;
and set (A, B,C, D) « (Ax; + B, A, Cx; + D, C), j < j + 1, one or more times until
C + D has the same sign as C, (When j > 1 and the input has not terminated, we
know that 1 < y < o0; and when C + D has the same sign as C we know therefore
that (Ay + B)/(Cy + D) lies between (A + B)/(C + D) and A/C.) Now comes the general
step: If no integer lies strictly between (A + B)/(C + D) and A/C, output X; < |A/C],
and set (A,B,C, D) < (C,D, A = X,C, B — X,(D), k < k + 1; otherwise input x; and
set (A,B,C,D) « (Axj + B, A,Cx; + D,C), j < j+ 1. The general step is repeated
ad infinitum. However, if at any time the final x; is input, the algorithm immediately
switches gears: It outputs the continued fraction for (Ax;+B)/(Cx;+ D), using Euclid’s
algorithm, and terminates.

Although it might not be visible in the next example we also use a more detailed para-
graph pass setup, we use \setupalign[mathbookpasses,hz] here. The more ad-
vanced passes setup actually means that we only apply expansion when other solu-
tions are worse, so we might not get it at all, but we leave it to your eyes to decide if that
happens.

15. (This procedure maintains four integers (A, B, C, D) with the invariant meaning
that “our remaining job is to output the continued fraction for (Ay + B)/(Cy + D), where y
is the input yet to come.”) Initially set j « k < 0, (A, B,C, D) « (a, b, ¢, d); then input X;
and set (A, B,C, D) « (Ax]- + B, A, ij + D,C), j « j+ 1, one or more times until
C + D has the same sign as C. (When j > 1 and the input has not terminated, we
know that 1 < y < oo; and when C + D has the same sign as C we know therefore that
(Ay + B)/(Cy + D) lies between (A + B)/(C + D) and A/C.) Now comes the general
step: If no integer lies strictly between (A + B)/(C 4+ D) and A/C, output X; < [A/C],
and set (A, B,C,D) « (C,D, A - X;C,B — X\ D), k < k + 1; otherwise input X; and
set (A,B,C, D) « (Axj+ B, A,Cx;j+ D,C),j < j+ 1 The general step is repeated
ad infinitum. However, if at any time the final x; is input, the algorithm immediately
switches gears: It outputs the continued fraction for (Ax i+B)/ (ij + D), using Euclid’s
algorithm, and terminates.

Here we also enable expansion in math, so does ity kick in here or not?

15. (This procedure maintains four integers (A, B, C, D) with the invariant meaning
that “our remaining job is to output the continued fraction for (Ay + B)/(Cy + D), where y
is the input yet to come.”) Initially set j « k < 0, (A, B,C, D) « (a, b, ¢, d); then input X;
and set (A, B,C, D) « (Ax]- + B, A, ij + D,C), j « j+ 1, one or more times until
C + D has the same sign as C. (When j > 1 and the input has not terminated, we
know that 1 < y < oo; and when C + D has the same sign as C we know therefore that

Fake quality 236

(Ay + B)/(Cy + D) lies between (A + B)/(C + D) and A/C.) Now comes the general
step: If no integer lies strictly between (A + B)/(C + D) and A/C, output X; < [A/C],
and set (A, B,C,D) « (C,D, A — X;C, B — X;D), k < k + 1; otherwise input X; and
set (A, B,C, D) « (Axj+ B, A,Cxj + D, C), j « j+ 1. The general step is repeated
ad infinitum. However, if at any time the final x; is input, the algorithm immediately
switches gears: It outputs the continued fraction for (Ax j+B)/(Cx;j+D), using Euclid’s
algorithm, and terminates.

When we half the width we still get a reasonable result. If you still think in expansion
only, realize that typesetting math involves more, especially when you don’t want to
break in certain places. We can also enable features that control how many hyphens we
want in a row, how the last line should look, what penalties kick in, if we discourage
similar words at the end of lines, or short words, or ... In that respect often spacing is
the least or our worries. In narrow paragraphs the likelyhood of expansion kicking in
increases.

15, (This procedure maintains four in-
meaning that “our remaining job is to output
the continued fraction for (Ay + B)/(Cy + D),
where y is the input yet to come.”) Initially
setj —k<0,(A B,C,D) < (a,b,c,d);
then input x; and set (A, B, C, D) «
(Ax]« + B, A, ij +D,C),j < j+1,oneor
more times until C + D has the same sign
as C. (When j > 1 and the input has not
terminated, we know that 1 <y << oo;
and when C + D has the same sign as C
we know therefore that (Ay + B)/(Cy + D)

lies between (A + B)/(C + D) and A/C.)
Now comes the general step: If no integer
lies strictly between (A + B)/(C + D)
and A/C, output Xj < |A/C], and set
k < k + 1; otherwise input x; and set
(A, B,C,D) « (Ax] + B, A, ij + D, C),
j < j+ 1. The general step is repeated
ad infinitum, However, if at any time the
final x; is input, the algorithm immediately
switches gears; It outputs the continued
fraction for (Ax; + B)/(Cx; + D), using
Euclid’s algorithm, and terminates.

Our experiences with moving on with engine development, improving rendering of
math, and typesetting in TEX in general has shown that publishers seem to care less
about these matters than one would imagine. Atleast, no matter what we publish about
it, we hear little to nothing from those using TgX who deal with their typesetting. So
as TgXies we just do what we like best, keep a low profile, and focus on our own docu-
ments, which often happens to be in an educational settings where hopefully students
still appreciate the look and feel and don’t want to get distracted by bad typesetting.

Another trick that TgXies like to apply is protrusion. If applied, that must be done
consistently which actually adds a constraint. I always wonder if that then makes for
better results; after all the solution space doesn’t become much larger. But here a typical
TEX user syndrome kicks in: because they know that TgX is good at these things, they
also assume that the result is good. However, the Internet demonstrates that plenty of
users don’t notice overfull boxes, sub-optimal math rendering and other artifacts. In
that respect it is no surprise that journals that these users read also get a pass.

237 Fake quality

In ConTgXt (using LuaMetaTEX) you have a lot of control over the typesetting. For
instance you can locally influence hyphenation, enable or disable font kerning and lig-
ature building between (before and/or after) characters, influence scaling and what
more. In practice users will not do that and just rely on the par builder doing its work,
trusting fonts to be okay. It also defeats a bit the fact that users want this to be done
automatic.

Given the above, we have to come back to the occasional “I use this because it beats that.”
argument when it comes to typesetting systems. First of all, just use what you like. If
seeing a backslash in a source annoys you, find a system with a different escape symbol.
If you think that minimized encoding combined with tricky parsing solves your prob-
lem, go ahead. If performance matter, hunt for faster programs, but realize that, as the
problem doesn’t change, future versions of that solution might run slower when they
do more. But all that doesn’t change how you can look at the result because that is what
matters. The TEX ecosystem has set some standards and inspired some developments
but in many aspects remains a sort of reference.

e How consistent is vertical spacing: lines and between lines, around section titles,
before and after paragraphs, around images, etc.

e Is horizontal spacing uniform: between words, around table cells, are proper font
kerns applied between glyphs, is there additional kerning between specific glyphs
(e.g. in titling) and is it done right, etc.

e Is math properly and consistently spaced, scaled, stacked, aligned, broken across
lines, etc. As with text rendering, once you know what to look at you can’t unsee it.

e Can you identify annoying interference, often visual by inconsistencies all over the
place, weird artifacts, sloppy checking of overfull boxes.

e Are images consistently scaled, especially when they have embedded text, do fonts
in them match the document, is bleeding intentional of just an oversight.

o Is the text properly aligned, has hyphenation been applied when possible to make
for better solutions, is expansion used within reasonable bounds (read: close to
invisible). It’s easy to go overboard here and it can become a reason for not reading
and/or buying books.

e Did the user constraint excessive font abuse, are features properly applied to fonts,
do font sizes make sense. Does the font make reading a pleasure.

We can come up with more but you get the idea. Just look and be honest. A problem
with TgX usage is that one can tweak a lot and thereby also mess up a lot. Bad spacing
in text and math and bad font usage can be seen all over the Internet. The system can
do a lot of good, and users (or styles) a lot of bad. The fact that TgX is used is no excuse
for not looking carefully at the result, nor being critical. But after all these years I'm
convinced that plenty users don’t really care: they key in, render and never look back;
they just assume it’s okay. This is quite understandable because not every (maybe even

Fake quality 238

forced to use it) user cares about, is interested in, or even aware, of typesetting at all.
However, that is not our intended audience but if you came reading this far, you might
be.

In case you want to know how a sample line is typeset, here is some code. We use
EBGaramond as sample font, have a 12pt bodyfont, assume 65 characters per line and
therefore have a fake width of 7.00372pt. This wrap-up is not a tutorial, it just wants to
make the reader aware of what goes on and what to pay attention to

\starttexdefinition Fake #1#2#3#4
\dorecurse {#1} {
\ifconditional\FakeRules
\vrule
height 1\exheight
depth .1\exheight
width #2\FakeWidth
\relax
\else
\glyph
scale \FakeScale
xscale #4
\FakeCharacter
\relax
\fi
\ifcase#3\else
\kern{\FakeWidth/#3}\relax
\fi
+

\stoptexdefinition

\starttexdefinition FakeOne #1#2#3#4#5
\FakeScale{\FakeWidth / 400}
\ruledhbox to 1tw {

\llap {
\ttxx
\hpack {
#3\enspace % width
\twodigits{#4}\enspace 7 kern
#5\quad % xscale
}
}

\dorecurse {#2} {
\Fake{#1}{#3}{#4}{#5}
\unkern
\space

239 Fake quality

\removeunwantedspaces

b

\stoptexdefinition

As a bonus we mention another ‘trick” that sometimes gets applied: making spaces
larger or smaller. In TgX this happens by applying stretch or shrink. We decided to
stick to this model of spaces bound to fonts but not all fonts set up the spacing as we
like. So, if one is desperate one can do this:

The previous fake text can also be typeset with \spaceskipfactor 1500 but does it
look better or worse? Our experience is that there is no reason to mess with the defaults,
so this option is only there to prove a point.

Fake quality 240

241 Fake quality

