
enumext
��������� �������� ������

v2.1 2026-01-15∗

ctan: https://www.ctan.org/pkg/enumext
Github https://github.com/pablgonz/enumext

©2024–2026 by Pablo González L†

Abstract

This package provides enumerated list environments compatible with tagging PDF for creating “simple
exercise sheets” along with “multiple choice questions”, storing the “answers” to these in memory using
multicol package.

Contents
1 Introduction . 1

1.1 Description and usage 2
1.2 The concept of left margin 3
1.3 User interface 3

1.3.1 Public counters 3
1.3.2 Public dimension 3
1.3.3 Support for multicol 3
1.3.4 Support for minipage 4
1.3.5 The \label and \ref system . . . 4
1.3.6 Support for \footnote 4

2 The environments provided 5
2.1 The environment enumext 5
2.2 The environment enumext* 5
2.3 The command \item* 5

2.3.1 Keys for \item* 6
2.4 The command \item in enumext* 6

3 The command \setenumext 6
4 The command \setenumextmeta 6
5 The keyval system 7

5.1 Keys for label and ref 7
5.2 Keys for penalties 8
5.3 Keys for spaces 8

5.3.1 Vertical spaces 8
5.3.2 Horizontal spaces 9

5.4 Keys for add code 10
5.5 Keys for start, series and resume . . . 10
5.6 Keys for reset 11

5.6.1 The command \resetenumext . . 11

5.7 Keys for multicols 11
5.8 Keys for minipage 12

5.8.1 The command \miniright 12
5.8.2 The key mini-right 12

6 The storage system 12
6.1 Keys for storage system 12

6.1.1 Keys for label and ref 13
6.1.2 Keys for wrap and marks 13
6.1.3 Keys for debug and checking 14

6.2 The command \anskey 14
6.2.1 Keys for \anskey 15

6.3 The environment anskey* 15
6.3.1 Keys for anskey* 15

6.4 The environment keyans 16
6.4.1 The \item* in keyans 17

6.5 The environment keyanspic 17
6.5.1 Keys for keyanspic 18
6.5.2 The command \anspic 18

6.6 Printing stored content 19
6.6.1 The command \getkeyans 19
6.6.2 The command \foreachkeyans . 19
6.6.3 The command \printkeyans . . . 20

7 Full examples 21
8 Tagged PDF examples 24
9 The way of non-enumerated lists 24
10 References . 26
11 Change history 27
12 Index of Documentation 28
13 Implementation 30
14 Index of Implementation 151

Motivation and acknowledgments
Usually, it is enough to use the classic enumerate environment to generate “simple exercise sheets” or “multiple
choice questions”, the basic idea behind enumext is to cover three points:
1. To have a simple interface to be able to write “lists of exercises” with “answers”.
2. To have a simple interface for writing “multiple choice questions”.
3. To have a simple interface for placing “columns” and “drawings” or “tables”.
This package would not be possible without Phelype Oleinik who has collaborated and adapted a large part of
the code and all LATEX team for their great work and to the different members of the TeX-SX community who
have provided great answers and ideas. Here are notes on the main ones:
1. Answer given by Alan Munn in \topsep, \itemsep, \partopsep, \parsep - what do they each mean (and what

about the bottom)?
2. Answer given by Enrico Gregorio in Understanding minipages - aligning at top
3. Answer given by Ulrich Diez in Different mechanics of hyperlink vs. hyperref
4. Answer given by Enrico Gregorio in Minipage and multicols, vertical alignment

∗This file describes a documentation for v2.1, last revised 2026-01-15.
†E-mail: «pablgonz@educarchile.cl».

1 / 167

https://www.ctan.org/pkg/enumext
https://github.com/pablgonz/enumext
https://tex.stackexchange.com
https://tex.stackexchange.com/a/300418
https://tex.stackexchange.com/a/300418
https://tex.stackexchange.com/a/34172
https://tex.stackexchange.com/a/553839/7832
https://tex.stackexchange.com/a/294460/7832
mailto:pablgonz@educarchile.cl

enumext v2.1 §.1 Introduction

License and Requirements
Permission is granted to copy, distribute and/or modify this software under the terms of the LaTeX Project
Public License (lppl), version 1.3 or later (https://www.latex-project.org/lppl.txt). The software has
the status “maintained”.
The enumext package loads and requires multicol[3] package, need to have a modern TEX distribution such
as TEX Live or MiKTEX. It has been tested with the standard classes provided by LATEX: book, report, article
and letter on 10pt, 11pt and 12pt.

BOMB The minimum requirement is LATEX release 2025-11-01.

1 Introduction
In the LATEX world there are many useful packages and classes for creating “lists of exercises”, “worksheets” or
“multiple choice questions”, classes like exam[1] and packages like xsim[2] do the job perfectly, but they don’t
always fit the basic day to day needs.
In my work (and in the work of many teachers) it is common to use “simple exercise sheets” also known as
“informal lists of exercises”, for example:
1. Factor 𝑥2 − 2𝑥 + 1
2. Factor 3𝑥 + 3𝑦 + 3𝑧
3. True False

(a) 𝛼 > 𝛿
(b) LATEX2e is cool?

4. Related to Linux

(a) You use Linux?
(b) Usually uses the package manager?
(c) Rate the following package and class

i. xsim-exam
ii. xsim
iii. exsheets

Sometimes we are also interested in showing the “answers” along with the questions:
1. Factor 𝑥2 − 2𝑥 + 1
∗ (𝑥 − 1)2

2. Factor 3𝑥 + 3𝑦 + 3𝑧
∗ 3(𝑥 + 𝑦 + 𝑧)
3. True False

(a) 𝛼 > 𝛿
∗ False

(b) LATEX2e is cool?
∗ Very True!

4. Related to Linux

(a) You use Linux?
∗ Yes

(b) Usually uses the package manager?
∗ Yes, dnf

(c) Rate the following package and class
i. xsim-exam

∗ doesn’t exist for now :(
ii. xsim

∗ very good
iii. exsheets

∗ obsolete

Or we are interested in referring to a specific question and its “answer”, for example:
The answer to 3.(b) is “Very True!” and the answer to 4.(c).ii is “very good”.
Or we are interested in printing all the “answers” :
1. (𝑥 − 1)2 ※
2. 3(𝑥 + 𝑦 + 𝑧) ※
3. (a) False ※

(b) Very True! ※
4. (a) Yes ※

(b) Yes, dnf ※
(c) i. doesn’t exist for now :(※

ii. very good ※
iii. obsolete ※

Another very common thing to use in my work is “multiple choice questions”, for example:
1. First type of questions

A) value
B) correct

C) value
D) value

2. Second type of questions
I. 2𝛼 + 2𝛿 = 90∘

II. 𝛼 = 𝛿
III. ∠𝐸𝐷𝐹 = 45∘

A) I only
B) II only
C) I and II only

D) I and III only
E) I, II, and III

b 3. Third type of questions
(1) 2𝛼 + 2𝛿 = 90∘

(2) ∠𝐸𝐷𝐹 = 45∘

A) value
B) value
C) value

D) value
E) value

4. Question with image and label below:

A)

A
B)

B
C)

A

D)

A
E)

5. Question with image on right side:

A) value
B) value
C) value
D) correct
E) value

B

2 / 167©2024–2026 by Pablo González L

https://www.latex-project.org/lppl.txt

enumext v2.1 §.1 Introduction

Where we are interested in the 〈label〉 and a “short note” that we leave as an explanation, and then print them:
1. B) 𝑥 = 5 ※
2. D) ※
3. C) some note ※

4. E) A duck ※
5. D) “other note” ※

The enumext package was created and designed to meet these small requirements in the creation of “simple
worksheets” and “multiple choice questions”.

BOMB These “simple worksheets” or “multiple choice questions” appear to be easy to obtain using a combination of the enumerate,
minipage and multicols environments, but like many things, what “looks simple” is not so simple.

1.1 Description and usage
The enumext package defines enumerated environments using the list environment provided by LATEX, but
“does not redefine” any internal commands associated with it such as \list, \endlist or \item outside of the
“scope” in which they are defined.

BOMB This package is NOT intended to replace the enumerate environment nor replace the powerful enumitem[6], the approach
is intended to work without hindering either of them.

This package can be used with xelatex, lualatex, pdflatex and the classical latex»dvips»ps2pdf and
is present in TEX Live and MiKTEX, use the package manager to install. For manual installation, download
enumext.zip and unzip it, run luatex enumext.ins and move all files to appropriate locations, then run
mktexlsr. To produce the documentation run arara enumext.dtx.

enumext.sty » TDS:tex/latex/enumext/
enumext.pdf » TDS:doc/latex/enumext/
README.md » TDS:doc/latex/enumext/
enumext.dtx » TDS:source/latex/enumext/
enumext.ins » TDS:source/latex/enumext/

The package is loaded in the usual way:

\usepackage{enumext}

1.2 The concept of left margin
There is a direct relationship between the parameters \leftmargin, \itemindent, \labelwidth and
\labelsep plus an “extra space”, which makes it difficult to obtain the desired horizontal spaces in a list
environment. Usually we don’t want the list to go beyond the left margin of the page, but since these four
values are related, that causes a problem.
The enumitem[6] package adds the \labelindent parameter to solve some of these problems. A simplified
representation of this in the figure 1.

margin page

\labelindent \labelwidth \labelsep

\leftmargin \itemindent

Figure 1: Representation of horizontal lengths in enumitem.

The enumext package does NOT provide a user interface to set the values for \leftmargin and \itemindent,
instead it provides the keys list-offset and list-indent which internally set the values for \leftmargin
and \itemindent. The concepts of \leftmargin and \itemindent are different in enumext. The figure 2
shows the visual representation of idea.

margin page

list-offset \labelwidth \labelsep

list-indent

Figure 2: Representation of horizontal lengths concept in enumext.

In this way we reduce a little the amount of parameters we have to pass. With the default values of keys
list-offset, list-indent, labelwidth and labelsep the lists will have the (usually) expected output for
“simple worksheets”. The figure 3 shows the visual representation.

margin page

labelwidth labelsep

list-indent

Figure 3: Default horizontal lengths list-offset=0pt, list-indent=\labelwidth+\labelsep in enumext.

3 / 167©2024–2026 by Pablo González L

http://mirrors.ctan.org/macros/latex/contrib/enumext.zip

enumext v2.1 §.1 Introduction

1.3 User interface
The user interface consists of two main list environments enumext (vertical) and enumext* (horizontal),
the environment anskey* and the command \anskey to “store content” and the environments keyans,
keyans* and keyanspic for multiple choice. It also provides the commands \getkeyans to print individual
stored content, \printkeyans to print all stored content, \foreachkeyans to print a range of stored content,
\miniright for minipage, \setenumext to config [〈key = val〉], \setenumextmeta to add a “meta-key”
and \resetenumext to reset counters.

1.3.1 Public counters

The package enumext uses the enumXi, enumXii, enumXiii, enumXiv counters for the four nesting levels
of the enumext environment, the enumXv counter for the keyans environment, the enumXvi counter for the
keyanspic environment, the counter enumXvii for enumext* environment and the counter enumXviii for
keyans* environment.

BOMB If any package defines these counters or they are user-defined in the document, the package will return a “fatal error” and
abort the load.

1.3.2 Public dimension

The package enumext only provides a single public dimension \itemwidth and is intended for user convenience
only and is NOT for internal use as such. The dimension \itemwidth is a rigid length and contains the “width
of the content” of each \item regardless of labelwidth and labelsep.

BOMB If any package defines \itemwidth or the user defines \itemwidth in the document, the package will overwrite it without
warning.

1.3.3 Support for multicol

The package provides direct support for using the multicol[3] package. This allows for a two-column output
as shown in the figure 4.

labelwidth labelsep

column one
nested items

column two
nested items

list-indent column-sep
\columnbreak

Figure 4: Representation of the two column output for a nested level in enumext environment.

The “non starred” version of the multicols environment is always used together with the \raggedcolumns
command and is controlled by columns and columns-sep keys. It can be used in all nesting levels of the
environment enumext and the environment keyans and can together with the mini-env key. If you need to
force a start a new column \columnbreak must be used (see §5.7).

BOMB The \columnseprule command is not available as a key and is set to “zero” for the inner levels and the keyans environment.
If the value of this is set inside the document, it will affect “all environments” that use the columns key.

1.3.4 Support for minipage

The package provides direct support for minipage environment, this allows you to obtain an output like the
one shown in figure 5.

labelwidth labelsep

minipage left
nested list

minipage right
drawing or tabular

list-indent mini-env mini-sep
\miniright

Figure 5: Representation of the mini-env output for a nested level enumext environment.

The minipage environments on the “left side” and “right side” are always used with “aligned on top” [t]. It
can be used in all nesting levels of the environment enumext and the environment keyans and is controlled by
mini-env and mini-sep keys. In order to switch from the “left” side minipage environment to the “right”
side one must use the command \miniright (see §5.8).

1.3.5 The \label and \ref system

This package provides a user interface like the enumitem[6] package to customize the references which is
activated by the ref key (§5.1), the standard LATEX \label and \ref commands work as usual. It also provides
an “internal reference” system for the “stored content” by means of the key save-ref (§6.1.1) when the key
save-ans is active (§6.1).

1.3.6 Support for \footnote

The enumext* and keyans* environments and the mini-env key use the minipage environment in their
implementation but in a transparent way for the user, it is only used for typesetting. The implementation
supports \footnote and is compatible with hyperref and works the same way as if used anywhere in the
document.

4 / 167©2024–2026 by Pablo González L

enumext v2.1 §.2 The environments provided

Unfortunately, if hyperref is loaded and tagged PDF is not active, it will not produce the “links”, the internal
implementation uses \footnotetext[〈number〉] and \footnotemark[〈number〉]{〈text〉} and “links” for
this are not supported by the hyperref package.
The best way to solve this if tagged PDF is NOT active is to use Jean-François Burnol’s footnotehyper[9]
package. It will support keeping the “links” if hyperref is loaded with the hyperfootnotes=true option
(default). Load it is as follows:

\IfDocumentMetadataF
{

\usepackage{footnotehyper}
\makesavenoteenv{enumext}
\makesavenoteenv{enumext*}

}

TagAt the moment the footnotehyper package v1.1f (2025/11/15) is not compatible with tagged PDF.

2 The environments provided
The package enumext provides two main list environments, the vertical environment enumext and the horizontal
environment enumext*.

\begin{enumext}[〈keyval list〉]
\item 〈item content〉
\item [〈custom〉] 〈item content〉
\item*[〈symbol〉][〈offset〉] 〈item content〉

\end{enumext}

\begin{enumext*}[〈keyval list〉]
\item 〈item content〉
\item [〈custom〉] 〈item content〉
\item*[〈symbol〉][〈offset〉] 〈item content〉

\end{enumext*}

enumext
enumext*

2.1 The environment enumext
The enumext is an environment that works in the same way as the standard enumerate environment provided
by LATEX, \item and \item[〈custom〉] commands work in the usual way. The environment can be nested with
at most “four levels” and the options can be configured globally using \setenumext command and locally
using [〈key = val〉] in the environment.

Example with columns=2

1. This text is in the first level.

(a) This text is in the second level.

i. This text is in the third level.

A. This text is in the fourth level.

X This text is in the first level.

b 2. This text is in the first level.

2.2 The environment enumext*
The enumext* is a horizontal list environment similar to the shortenumerate or tasks environments provided
by the shortlst[16] and tasks[17] packages, \item and \item[〈custom〉] work as usual. The options can
be configured globally using \setenumext command and locally using [〈key = val〉] in the environment.
Some considerations to take into account for this environment:

• The environment cannot be nested within itself or in the environment keyans*, but it can be nested
within enumext and vice versa.

• Each “item content” in the environment is placed within a minipage environment whose width is stored
in the dimension \itemwidth does NOT include labelwidth and labelsep, only the width of the
content.

• You cannot have floating environments like figure or table or \marginpar but \footnote with
hyperref is supported. If you want to activate links “without” tagged PDF active you must load
footnotehyper and hyperref packages (see §1.3.6).

• You cannot have any standard list environments like itemize, enumerate, description, quote,
quotation, verse, center, flushleft, flushright, verbatim, tabbing, trivlist, list and all
environments created with \newtheorem.

Example with columns=2

1. This text is in the first level. 2. This text is in the first level.

X This text is in the first level. b 4. This text is in the first level.

2.3 The command \item*

\item*[〈symbol〉][〈offset〉]

The \item*, \item*[〈symbol〉] and \item*[〈symbol〉][〈offset〉] works like the numbered \item, but places
a 〈symbol〉 to the “left” of the 〈label〉 separated from it by the 〈offset〉 set by the the second optional argument.
The starred argument ‘*’ cannot be separated by spaces ‘␣’ from the command, i.e. \item* and the first optional
argument does NOT support verbatim content. It can be configured with the keys item-sym* and item-pos*
locally in the environment or globally using \setenumext command (§3).

\item*

5 / 167©2024–2026 by Pablo González L

enumext v2.1 §.4 The command \setenumextmeta

BOMB The behavior of \item* in the enumext and enumext* environments is NOT the same as in the keyans and keyans*
environments.

2.3.1 Keys for \item*

item-sym* = {〈symbol〉} default: \textborn
Sets the symbol to be displayed to the “left” of the box containing the current 〈label〉 set by labelwidth
key for \item* in enumext and enumext*. The symbol can be in text or math mode, for example item-
sym*={\star}.

item-pos* = {〈rigid length〉} default: by levels
Sets the offset between the box containing the current 〈label〉 defined by labelwidth key and the 〈symbol〉 set
by item-sym* key. The default values are set by labelsep key at each level. If positive values are passed, it
will offset to the left ; if negative values are passed it will offset to the right.

2.4 The command \item in enumext*
The \item command for the enumext* environment provides a “first optional argument” \item(〈columns〉)
which “joins items” between columns. Let’s consider the following examples adapted directly from the tasks
package:

\begin{enumext*}[widest=10,columns=4]
\item The first
\item* The second
\item The third
\item The fourth
\item(3)* The fifth item is way too long for this and needs three columns
\item The sixth
\item The seventh
\item(2)[X] The eighth item is way too long for this and needs two columns

(\the\itemwidth)
\item The ninth
\item[Z] The tenth (\the\itemwidth)

\end{enumext*}

1. The first b 2. The second 3. The third 4. The fourth

b 5. The fifth item is way too long for this and needs three columns 6. The sixth

7. The seventh X The eighth item is way too long for this and needs
two columns (196.17749pt)

9. The ninth

Z The tenth (89.28171pt)

3 The command \setenumext

\setenumext{〈key = val〉}
\setenumext[〈enumext , level〉]{〈key = val〉}
\setenumext[〈enumext*〉]{〈key = val〉}
\setenumext[〈keyans〉]{〈key = val〉}

\setenumext[〈keyans*〉]{〈key = val〉}
\setenumext[〈print , level〉]{〈key = val〉}
\setenumext[〈print , *〉]{〈key = val〉}
\setenumext[〈print*〉]{〈key = val〉}

The command \setenumext sets the 〈keys〉 on a global basis for environments enumext, enumext*, keyans,
keyans* and the \printkeyans command. It can be used both in the preamble and in the body of the document
as many times as desired.

\setenumext

The 〈keys〉 set in the optional argument of environments and commands have the highest precedence, overriding
both options passed by \setenumext. If the optional argument is not passed, the first level of the environment
enumext will be taken by default.

BOMB For security reasons the keys resume “with value”, resume*, reset, reset*, series and save-ans they can NOT be set
by this command and are ignored. The key save-ans that activate the “storage system” must be passed directly in the
optional argument of the “first level” of the environment in which they are executed.

4 The command \setenumextmeta
\setenumextmeta[〈1〉]{〈key name〉}{〈key-one = val, key-two = val, …〉}
\setenumextmeta[〈2〉]{〈key name〉}{〈key-one = val, key-two = val, …〉}
\setenumextmeta[〈3〉]{〈key name〉}{〈key-one = val, key-two = val, …〉}
\setenumextmeta[〈4〉]{〈key name〉}{〈key-one = val, key-two = val, …〉}
\setenumextmeta[〈*〉]{〈key name〉}{〈key-one = val, key-two = val, …〉}
\setenumextmeta*{〈key name〉}{〈key-one = val, key-two = val, …〉}
The command \setenumextmeta adds a new “meta-key” for the environments enumext and enumext*, the
{〈key name〉} must be different from those defined by the package. The optional argument of the form [1],
[2], [3], [4] adds a new “meta-key” for levels 1, 2, 3 and 4 of the enumext environment, the form [*] adds a
new “meta-key” for the enumext* environment. If it is run without the optional argument, it will adds a new
“meta-key” for the “first level” of the enumext environment.

\setenumextmeta

6 / 167©2024–2026 by Pablo González L

enumext v2.1 §.5 The keyval system

The starred argument ‘*’ will create the new “meta-key” for the environment enumext* and for “all levels” of the
environment enumext. For example: \setenumextmeta*{midsep}{topsep=3pt, partopsep=0pt} will
create a new key midsep available for all levels of the enumext environment and the enumext* environment
and we can use it like any other key so \begin{enumext}[midsep] and \begin{enumext*}[midsep] will
be valid.

5 The keyval system
The 〈key = val〉 system used by the enumext package is implemented using l3keys so it must be noted that
〈keys〉 marked as “value forbidden”, that is 〈key〉 is different from 〈key=〉.
All 〈keys〉 described in this section are available for the enumext, enumext*, keyans and keyans* environ-
ments with the exception of the keys series, resume, resume*, reset and reset* which are only available
for the enumext and enumext* environments; and the keys mini-right, mini-right* which are only
available for the enumext* and keyans* environments.
All 〈keys〉 related to vertical or horizontal spacing accept a “skip” or “dim” expression if passed between braces,
i.e. you do not need to use \dimeval or \dimexpr to perform calculations.

BOMB It should be kept in mind that using any 〈key〉 that sets rubber lengths or rigid lengths for vertical or horizontal space on a
level will influence the vertical and horizontal space for inners levels and keyans, keyans* and keyanspic environments.

5.1 Keys for label and ref
mode-box 〈value forbidden〉 default: not used

This is a “switch-key” that does not receive an argument and is “only” available for the “first level” of the
enumext environment and the enumext* environment. When this is set the label, font, wrap-label and
wrap-label* keys are executed within \makebox for the enumext and keyans environments.
TagThis key is intended for compatibility with tagged PDF and is forcibly “enabled” when \DocumentMetadata is present. If
you want to get the same document output whether \DocumentMetadata is active or not, you must enable this key.

BOMB In the enumext* and keyans* environments \makelabel is redefined using \makebox by default. If enumext or keyans
is used in the enumext* environment the key must be activated manually.

label = {〈\alph* | \Alph* | \arabic* | \roman* | \Roman* 〉} default: by levels

Sets the 〈label〉 that will be printed at the current level and default value for labelwidth key. The default value
for the first level of the environments enumext and enumext* is \arabic*., for second level are (\alph*),
for third level are \roman*. and for fourth level is \Alph*.. For keyans and keyans* environments the
default value is \Alph*).

BOMB This key is intended to give the basic structure with which the 〈label〉 will be displayed, and the form in which it is used
by standard “label and ref” and the “internal label and ref” system with the save-ref key. You cannot use commands
with 〈label〉 as an argument, for example \emph{〈\alph*〉} will return an error. For full customization of how 〈label〉 is
displayed use the font, wrap-label and/or wrap-label* keys.

labelsep = {〈rigid length〉} default: 0.3333em
Sets the horizontal space between the box containing the current 〈label〉 defined by label key and the text of
an item on the first line. Internally sets the value of \labelsep for the current level.

labelwidth = {〈rigid length〉} default: by label
Sets the width of the label box containing the current 〈label〉 set by the label key. Internally sets the value of
\labelwidth for the current level. The default values are calculated by means of the width of a box by setting
a value to the current counter set by label key using ‘0’ for \arabic*, ‘M’ for \Alph*, ‘m’ for \alph*, ‘VIII’
for \Roman* and ‘viii’ for \roman*.

widest = {〈integer | string〉} default: empty
Sets the labelwidth key passing the 〈integer〉 or converting the 〈string〉 of the form \Alph, \alph, \Roman
or \roman to a value for the current counter defined by label key, then calculating the width by means of
a box. For example widest={XXIII} or widest={23} are equivalent. This key is useful when the default
values of the labelwidth key are smaller than those actually used.

font = {〈font commands〉} default: empty
Sets the font style for the current 〈label〉 defined by label key. You cannot use commands with an argument,
for example font={\small\textbf{#1}} will return an error, but font={\bfseries\small} it will work.
For full customization of how 〈label〉 is displayed use wrap-label and/or wrap-label* keys.

align = {〈left | right | center〉} default: left
Sets the aligned of 〈label〉 defined by label key on the current level in the label box of width set by labelwidth.

wrap-label = {〈code {#1} more code〉} default: empty

Wraps the current 〈label〉 defined by label key referenced by {#1} after executing the align and font keys.
The {〈code〉} must be passed between braces and it does not modify the value set by the labelwidth key and
is applied only on \item and \item*. When using it in the \setenumext command it is necessary to use the
double ‘{##1}’. For example wrap-label={\fbox{#1}} or you can create a command:

7 / 167©2024–2026 by Pablo González L

enumext v2.1 §.5 The keyval system

\NewDocumentCommand \mywrap { s m }
{

\IfBooleanTF{#1}
{\textcolor{red}{\textbf{Q}}\textcolor{blue}{\textbf{.}}\textcolor{gray}{#2}}
{\textcolor{blue}{\textbf{Q}}\textcolor{red}{\textbf{.}}\textcolor{gray}{#2}}

}

and then pass it through the key wrap-label={\mywrap{#1}} or wrap-label={\mywrap*{#1}}.
wrap-label* = {〈code {#1} more code〉} default: empty

The same as the wrap-label key but also applies on \item[〈custom〉].
ref = {〈code {\alph*| \Alph*| \arabic*| \roman*| \Roman*} more code〉} default: empty

Modifies the way cross references are displayed. The label key sets the default form of the cross references, by
using this key you can define a different format, for example: ref=\emph{〈\alph*〉} is valid.
Internally it renews the command associated with each counter when it is executed, i.e., in the environment
enumext the command \theenumXi is modified when the key is executed at the first level, \theenumXii
when it is executed at the second level and \theenumXiii together with \theenumXiv when it is executed at
the third and fourth levels.

BOMB This must be kept in mind, since the values set by the label and ref keys are not cumulative by levels, so if you have
used the ref key in the first level and then want to associate the counter with label or ref in the second level you must
use the direct commands, i.e. \arabic{eunumXi} to indicate the count of the first level instead of using \theenumXi.

5.2 Keys for penalties
Page breaks in the provided environments are controlled by the following three parameters, which work
together to ensure they look good, avoiding unsightly page breaks that could distort the output.

beginpenalty = {〈integer〉} default: -51
Set the page breaking penalty for breaking at the beginning of the enumext, enumext*, keyans and keyans*
environments. Internally sets the value of \@beginparpenalty.

midpenalty = {〈integer〉} default: -51
Set the page breaking penalty for breaking between items of the enumext, enumext*, keyans and keyans*
environments. Internally sets the value of \@itempenalty.

endpenalty = {〈integer〉} default: -51
Set the page breaking penalty for breaking at the end of the enumext, enumext*, keyans and keyans*
environments. Internally sets the value of \@endparpenalty.

BOMB The values passed to these 〈keys〉 affect the nested environments in which they were set and cannot be reset. LATEX default
is -\@lowpenalty, that is, -51. Because it is negative, it somewhat encourages a page break at each spot. Change it with,
e.g., \@beginparpenalty=9999; a value of 10000 prohibits a page break. Please, refer to your LATEX or TEX manual about
how penalties control page breaks.

5.3 Keys for spaces
show-length = {〈true | false〉} default: false

Displays on the terminal the values for all list parameters at the current level. For vertical spaces show the values
of \topsep, \itemsep, \parsep and \partopsep. For horizontal spaces show the values of \labelwidth,
\labelsep, \itemindent, \listparindent and \leftmargin.

5.3.1 Vertical spaces

topsep = {〈rubber length | rigid length〉} default: by levels

Set the vertical space added to both the top and bottom of the list. Internally sets the value of \topsep for
the current level. The default value for the first level of the environments enumext and enumext* are 8.0pt
plus 2.0pt minus 4.0pt, for second level are 4.0pt plus 2.0pt minus 1.0pt, for third and fourth
level are 2.0pt plus 1.0pt minus 1.0pt. For keyans and keyans* environments the default value is
4.0pt plus 2.0pt minus 1.0pt.

parsep = {〈rubber length | rigid length〉} default: by levels

Set the vertical space between paragraphs within an item. Internally sets the value of \parsep for the current
level. The default value for the first level of the environments enumext and enumext* are 4.0pt plus 2.0pt
minus 1.0pt, for second level are 2.0pt plus 1.0pt minus 1.0pt, for third and fourth level are 0pt. For
keyans and keyans* environments the default value is 2.0pt plus 1.0pt minus 1.0pt.

BOMB In the enumext* and keyans* environments this value is passed to \parskip within the minipage environment where
“item content” is placed.

partopsep = {〈rubber length | rigid length〉} default: by levels

Set the vertical space added, beyond topsep, to the “top” and “bottom” of the entire environment if the
environment instance is preceded by a “blank line” or \par command. Internally sets the value of \partopsep
for the current level. The default values for first and second level in environment enumext are 2.0pt plus
1.0pt minus 1.0pt, for third and fourth level are 1.0pt minus 1.0pt. For the keyans environment the

8 / 167©2024–2026 by Pablo González L

enumext v2.1 §.5 The keyval system

default value is 2.0pt plus 1.0pt minus 1.0pt, and for the keyans* and enumext* environments it is
available but without effect.

BOMB The value of this parameter also affects the inner levels and the environments keyans, keyanspic and keyans*. Caution
should be taken with “blank lines” or \par command “before” each environment or nested level when formatting the
source code of document. TEX will enter 〈vertical mode〉 and apply this value to the “top” and “bottom” the environment or
nested level.

itemsep = {〈rubber length | rigid length〉} default: by levels
Set the vertical space between items, beyond the parsep. Internally sets the value of \itemsep for the current
level. The default value for the first level of the environments enumext and enumext* are 4.0pt plus 2.0pt
minus 1.0pt, for the rest of the levels are 2.0pt plus 1.0pt minus 1.0pt. For keyans and keyans*
environments the default value is 4.0pt plus 2.0pt minus 1.0pt.

BOMB In the enumext* and keyans* environments this value corresponds to the separation between rows.

noitemsep 〈value forbidden〉 default: not used
This is a “meta-key” that does not receive an argument. Set itemsep and parsep equal to 0pt the entire level
of environment.

nosep 〈value forbidden〉 default: not used
This is a “meta-key” that does not receive an argument. Sets all keys for vertical spacing equal to 0pt the entire
level of environment.

base-fix 〈value forbidden〉 default: not used

This is a “switch-key” that does not receive an argument available only for the “first level” of environment
enumext. Fix the baseline when an environment enumext is nested in enumext* and there is no material
between the \item and the start of the environment for example \item \begin{enumext} within the envi-
ronment enumext*. Internally sets the keys topsep, above and above* at 0pt.

BOMB This key is provided as a way to work around this minor issue, but you should be aware that if for some reason you have the
itemindent key set in the enumext* environment it will be lost and you will need to adjust it using the list-offset
key in the enumext environment.

Extra vertical spaces

BOMB The following 〈keys〉 should be used with “caution”, they are intended to be used at the “top” and “bottom” of the
environment when the columns or mini-env keys do not provide adequate vertical spaces. The values passed can be
rubber or rigid lengths, the way they are applied is the way you differ, using the star ‘*’ 〈keys〉 applies \vspace* so that
LATEX does not discard this space at page break.

above = {〈rubber length | rigid length〉} default: not used

Set the extra vertical space added, beyond topsep, to the top of the entire level of environment. This key is
intended to give a “fine adjustment” of the vertical space “above” the environment without hindering the value
of the topsep key. The space is added with \vspace so is “discardable”.

above* = {〈rubber length | rigid length〉} default: not used

Set the extra vertical space added, beyond topsep, to the top of the entire level of environment. This key is
intended to give a “fine adjustment” of the vertical space “above” the environment without hindering the value
of the topsep key. The space is added with \vspace* so is “not discardable”.

below = {〈rubber length | rigid length〉} default: not used

Set the extra vertical space space added, beyond topsep, to the bottom of the entire level of environment.
This key is intended to give a “fine adjustment” of the vertical space on the “below” the environment without
hindering the value of the topsep key. The space is added with \vspace so is “discardable”.

below* = {〈rubber length | rigid length〉} default: not used

Set the extra vertical space space added, beyond topsep, to the bottom of the entire level of environment.
This key is intended to give a “fine adjustment” of the vertical space on the “below” the environment without
hindering the value of the topsep key. The space is added with \vspace* so is “not discardable”.

5.3.2 Horizontal spaces

list-offset = {〈rigid length〉} default: 0pt
Sets the horizontal translation of the entire environment level from the left edge of the box defined by the
labelwidth key. Internally sets the values of \leftmargin and \itemindent for the current level.

list-indent = {〈rigid length〉} default: labelwidth + labelsep
Sets the indentation of the whole environment under the box defined by labelwidth and labelsep keys.
Internally sets the value of \leftmargin and \itemindent for the current level. If list-indent=0pt is set
in the environments enumext and keyans the 〈label〉 will be part of the text, separated by the value of the
labelsep key and the first word, in simple terms it will look like a “common paragraph”.

BOMB The enumext* and keyans* environments are implemented using \makebox and minipage which causes “list indent” to
always be equal to the value passed to labelwidth plus labelsep. Passing a value to this key is equivalent to setting the
value for the list-offset key.

9 / 167©2024–2026 by Pablo González L

enumext v2.1 §.5 The keyval system

itemindent = {〈rigid length〉} default: 0pt

Sets the extra horizontal indentation, beyond labelsep, of the “first line” of each \item that is not followed by
a “blank line” or the \par command . This value must be greater than or equal to 0pt and is applied internally
using \hspace without modifying the value of \itemindent.

BOMB This key is intended for the enumext* and keyans* environments where, by their implementation, it is not possible to
adjust labelwidth and list-indent without modifying the output. If you use enumext or keyans and want to get
around the blank line limitation or the \par command followed by \item you can modify labelwidth and list-indent
and get the same effect.

rightmargin = {〈rigid length〉} default: 0pt

Set the horizontal space between the right margin of the environment and the right margin of the enclosing
environment, the value it takes must be greater than or equal to 0pt. Internally sets the value of \rightmargin
for the current level.

listparindent = {〈rigid length〉} default: 0pt
Sets the horizontal space indentation, beyond list-indent, for second and subsequent paragraphs within a
list item. Internally sets the value of \listparindent for the current level.

BOMB In the enumext* and keyans* environments this value is passed to \parindent within the minipage environment where
“item content” is placed.

5.4 Keys for add code
The following 〈keys〉 should be used with “caution”, they are intended to inject {〈code〉} into different parts of
the defined environments. We must keep in mind that the defined environments are based on the list base
environment provided by LATEX which is defined (simplified) as plain form \list{〈arg one〉}{〈arg two〉}. Using
the before* key does not allow access to the list parameters defined by [〈key = val〉].

before = {〈code〉} default: not used
Execute {〈code〉} “before” the environment starts. The {〈code〉} must be passed between braces, is executed
“after” all calculations related to the list parameters in the environment and the 〈keys〉 sets by [〈key = val〉] have
been performed, that is, in the second argument of the list: \begin{list}{〈arg one〉}{〈arg two〉{〈code〉}}.

before* = {〈code〉} default: not used
Execute {〈code〉} “before” the environment starts. The {〈code〉} must be passed between braces, is executed “be-
fore” performing all calculations related to the list parameters and the 〈keys〉 sets in [〈key = val〉] of the environ-
ment that is, “before” the arguments defining the list environment are executed: {〈code〉}\begin{list}{〈arg
one〉}{〈arg two〉}.

first = {〈code〉} default: not used
Executes {〈code〉} when “starting” the environment. The {〈code〉} must be passed between braces, is executed
right “after” all list parameters are done, after the second argument of list, just before the first occurrence of
\item: \begin{list}{〈arg one〉}{〈arg two〉}{〈code〉}\item.

BOMB Keep in mind that the {〈code〉} set in this 〈key〉 will affect the entire “body” of the environment and therefore the inner
levels of the list and the keyans, keyans* and keyanspic environments. It is recommended to set this 〈key〉 per level. In
the enumext* and keyans* environments this 〈key〉 is executed “after” the listparindent, parsep and itemindent
〈keys〉 within the minipage environment in which the “item content” is placed.

after = {〈code〉} default: not used
Execute {〈code〉} “after” finishing the environment. The {〈code〉} must be passed between braces.

5.5 Keys for start, series and resume
start = {〈integer | integer expression〉} default: 1

Sets the start value of the numbering on the “current level”. The {〈integer expression〉} must be passed between
braces, internally is evaluated and pass to the “counter” defined by label key on the current level, i.e. it is
equivalent to enter start={\dimeval{100*\value{chapter}} or start={100*\value{chapter}}.

start* = {〈integer | string〉} default: not used
Sets the start value of the numbering on the “current level”. Internally 〈string〉 is converted and passed as value
to the “counter” defined by label key on the current level, i.e. it is equivalent to enter start*=5, start*=E
or start*=v.
TagThe start value are set in the second argument of the list environment and “before” the execution of the keys before and
first: \begin{list}{〈arg one〉}{〈arg two〉\setcounter}.

BOMB The following 〈keys〉 are available only for the enumext and enumext* environments.
series = {〈series name〉} default: not used

Stores the keys of the optional argument of the “current level” of the environment in which it is executed in
{〈series name〉} which is used as an argument in the resume key. The 〈keys〉 stored in {〈series name〉} are NOT
cumulative and are overwritten if the same {〈series name〉} is used again at the “same level” at which the key
was executed.

BOMB For security reasons the series key will never save in {〈series name〉} the 〈keys〉 series, resume, resume*, reset,
reset*, save-ans, save-key, start* and start.

10 / 167©2024–2026 by Pablo González L

enumext v2.1 §.5 The keyval system

resume = {〈series name〉} default: not used
Sets the start value and options for the “current level” continuing the numbering and options of the “same level”
as the environment in which the series={〈series name〉} key was executed, the start value will continue
numbering according to the last execution of resume={〈series name〉}. If passed “without value” this will
only set start value continue the numbering of the “same level” from the last environment and level in which
series={〈series name〉} or resume={〈series name〉} is NOT present and if the save-ans key is active (on the
left) it will continue the numbering from the “last” environment in which it was executed. The start value can
be overwritten using start or start* keys.

BOMB The resume key passed “without value” must be exactly “without value”, i.e. resume= cannot be used and if executed before
resume* it will affect the start value.

resume* 〈value forbidden〉 default: not used
Sets the start value and options for the “current level” continuing the numbering and options of the “same level”
as the last environment and level in which the series={〈series name〉} or resume={〈series name〉} keys are
NOT present and if the save-ans key is active (on the left) it will continue the numbering and options from the
“last” environment in which it was executed. The start value can be overwritten using start or start* keys.

BOMB When using the key resume={〈series name〉} or resume* you will have hierarchy in the 〈keys〉 that are stored in {〈series
name〉} or in an internal version of {〈series name〉} in the case of resume*. If you want to reset the value of a 〈key〉 that is
already stored in {〈series name〉} or in an internal version of {〈series name〉} this must be placed to the right of the key
resume={〈series name〉} or resume*.

BOMB When the resume* key is executed consecutively, it does not rewrite the 〈keys〉 stored in the internal version of {〈series
name〉} and if the environment that precedes it does not have the optional argument, it will just continue with the
numbering.

5.6 Keys for reset
reset 〈value forbidden〉 default: not used

Resets the start value of the “counters” in the enumext and enumext* environments along with the “internal
counters” used by the resume without value and resume* keys at the “level” at which it is executed. The start
value can be overwritten using the start or start* keys.

reset* 〈value forbidden〉 default: not used
Resets the start value of the “counters” in the enumext and enumext* environments along with the “internal
counters” used by the resume without value and resume* keys at the “level” at which it is executed and in the
“levels below” it in the case of the enumext environment. The start value can be overwritten using the start
or start* keys.

BOMB These keys are intended to be used in cases where the \resetenumext command does not work, e.g. after an unnumbered
chapter. It should preferably be set only on the first level, although it is available for all levels.

5.6.1 The command \resetenumext

\resetenumext[〈1〉]{〈some counter〉}
\resetenumext[〈2〉]{〈some counter〉}
\resetenumext[〈3〉]{〈some counter〉}

\resetenumext[〈4〉]{〈some counter〉}
\resetenumext[〈*〉]{〈some counter〉}
\resetenumext*{〈some counter〉}

The \resetenumext command “resets” the start value of the “counters” for the enumext and enumext*
environments along with the “internal counters” used by the keys resume without value and resume* according
to the value of {〈some counter〉}. For example \resetenumext{chapter} will “reset” the numbering of “all
levels” of the enumext environment for each execution of a “numbered” chapter.

\resetenumext

The optional argument of the form [1], [2], [3], [4] “reset” the values for levels 1, 2, 3 and 4 of the enumext
environment, the form [*] “reset” the values for the enumext* environment. If is run without the optional
argument, it will “reset” the values for “all levels” of the enumext environment.
The starred argument ‘*’ will “reset” the values for “all levels” of the enumext and enumext* environments.

5.7 Keys for multicols
columns = {〈integer〉} default: 1

Set the number of columns to be used by the multicols environment within the environments enumext
and keyans. The value must be a positive integer less than or equal to 10. In the enumext* and keyans*
environments they correspond to the default number of columns (without joining) and internally adjust the
value of \itemwidth.

columns-sep = {〈rigid length〉} default: by level

Set the space between columns used by the multicols environment within the environments enumext and
keyans. Internally sets the value of \columnsep, by default its value is equal to the sum of the values set in
the keys labelwidth and labelsep of the current level. In the enumext* and keyans* environments they
correspond to the space between columns (without joining) and internally adjust the value of \itemwidth.

11 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

5.8 Keys for minipage
mini-env = {〈rigid length〉} default: not used

Sets the width of the minipage environment on the “right side”. This value added to the value set by the
mini-sep key to determines the width of the minipage environment on the “left side”, taking \linewidth as
the maximum reference value.

mini-sep = {〈rigid length〉} default: 0.3333em

Sets the space between the minipage environment on the “left side” and the minipage environment on the
“right side”. This separation is applied together with \hfill.

5.8.1 The command \miniright

\begin{enumext}[mini-env={〈rigid length〉}] 〈item’s before〉 \item \miniright 〈content〉 \end{enumext}
\begin{enumext}[mini-env={〈rigid length〉}] 〈item’s before〉 \item \miniright*〈content〉 \end{enumext}

\miniright

The \miniright command close the minipage environment on the “left side” and opens the minipage
environment on the “right side” by starting it with the \centering command. It must be placed “after” the
last \item of the current environment and “before” starting the material to be placed on the “right side”.
The starred argument ‘*’ inhibits the use of \centering command i.e. the usual LATEX justification is maintained
in the minipage on the “right side”.

5.8.2 The key mini-right

In the horizontal list environments enumext* and keyans* it is not possible to use the \miniright command
and the mini-right key must be used instead.

mini-right = {〈content〉} default: not used

Set the content for the drawing or tabular to be placed in the minipage environment on the “right side” by
starting it with \centering. The {〈content〉} must be passed between braces.

mini-right* = {〈content〉} default: not used

Same as above, but without starting with \centering.

6 The storage system
The entire mechanism for “storing content” it is activated according to save-ans key on the “first level” of
enumext or enumext* environments and it is ignored if they are established when they are nested inside
each other. Only when this 〈key〉 is “active” the \anskey command and the environments anskey*, keyans,
keyans* and keyanspic are available.

\begin{enumext}[save-ans={〈store name〉}]
\item Text \anskey{answer}
\item Text

\begin{keyans}
⋯

\end{keyans}
\end{enumext}

\begin{enumext}[save-ans={〈store name〉}]
\item Text \anskey{answer}
\item Text

\begin{keyanspic}
⋯

\end{keyanspic}
\end{enumext}

By executing the key save-ans={〈store name〉} the entire “structure” of the environment (excluding the first
level) including the optional argument passed to the inner levels or the environment nested in it, along with the
〈content〉 passed to \anskey or anskey*, the current 〈labels〉 for \item* and \anspic* in the environments
keyans, keyans* and keyanspic will be “stored” in a sequence {〈store name〉} and at the same time will be
“stored” (without the “structure” or optional argument) in a prop list {〈store name〉}.
For security reasons the optional argument of the inner levels or the nested environment are filtered by excluding
all 〈keys〉 related to the “storage system” (§6.1) along with the keys mini-env, mini-sep, mini-right, mini-
right*, series, resume and resume* when storing in sequence {〈store name〉} set by save-ans key.

6.1 Keys for storage system
The only 〈keys〉 available for all levels of the enumext environment and the enumext* environment are no-
store and save-key, the rest of the 〈keys〉 described in this section must be passed directly in the optional
argument of the “first level” of the environment in which the key save-ans is executed. The key save-ans
should NOT be passed with the command \setenumext.

save-ans = {〈store name〉} default: not set
Sets the name of the sequence and prop list in which the {〈contents〉}will be “stored” by \anskey and anskey* in
enumext and enumext* environments and the current 〈labels〉 for \item* and \anspic* in the environments
keyans, keyans* and keyanspic. If the sequence or prop list {〈store name〉} does not exist, it will be created
globally and will not be overwritten if the key is used again.

save-key = {〈key list〉} default: not set
This key overrides the default “stored keys” of the optional argument of the inner levels or nested environment
that will be passed to the sequence {〈store name〉} set by save-ans key. The 〈key list〉 passed to this key
ignores any 〈keys〉 in the “stored structure” and must be passed between braces. For example, if we execute at a
second level:

12 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

\begin{enumext}[save-ans={〈store name〉}]
\item Text \anskey{answer}
\item Text

\begin{enumext}[nosep, columns=2, save-key={columns=3}]
⋯

\end{enumext}
\end{enumext}

The “stored keys” by default in the sequence {〈store name〉} would be nosep and columns=2, but using the
key save-key={columns=3} will overwrite and the “stored key” in the sequence {〈store name〉} are only
columns=3 ignoring all the others.

save-sep = {〈text symbol〉} default: {, }
Sets the text symbol that will separate the current 〈label〉 to the optional argument passed to the \item* and
\anspic* in the environments keyans, keyans* and keyanspic and storing them in the sequence and prop list
{〈store name〉} set by save-ans key. The {〈text symbol〉} must always be passed between braces, whitespace
‘␣’ is preserved within the braces and only affects the “stored content” and not what is displayed when using the
show-ans or show-pos keys.

no-store 〈value forbidden〉 default: not used

This is a “switch-key” that does not receive an argument and disables the “storing content” in the sequence and
prop list {〈store name〉} set by save-ans key at the entire level or a nested environment in which it runs. This
key is intended for use in internal levels or nested enumext or enumext* environments in which you want
to use enumext or enumext* but “without” using the \anskey command or use anskey* environment and
“without” interfering with the check-ans key.

6.1.1 Keys for label and ref

save-ref = {〈true | false〉} default: false
Activates the “internal label and ref” mechanism for referencing “stored content” in prop list {〈store name〉}
set by save-ans key. To reference the location of the “stored content” within the environment you must use
\ref{〈store name : position〉}, where 〈position〉 corresponds to the position occupied by the “stored content”
in the prop list {〈store name〉} returned by the show-pos key. For example \ref{test:4} will return 3.(b)
which corresponds to the location of the “stored content” at position 4 in prop list test within the environment
in which the key save-ans=test was set.

mark-ref = {〈symbol〉} default: \textreferencemark
Sets the symbol that will be displayed by the \printkeyans command only if the hyperref package is detected
and the save-ref key are active. This “symbol” is used as a “link” between the environment in which the
save-ans key was used and the place where the command is executed.

6.1.2 Keys for wrap and marks

The enumext package provides a set of 〈keys〉 to set and manipulate “symbol marks” associated with “answers”
 and how they are displayed and stored in the sequence and prop list.
The 〈keys〉 available for the \anskey command and the anskey* environment can be passed “only” in the
optional argument in the “first level” of the enumext or enumext* environment.
The 〈keys〉 available for the keyans and keyans* environments can be passed locally in the optional argument,
at the “first level” of the enumext or enumext* environment or via the \setenumext command with one
minor difference, when 〈keys〉 are passed through the “first level” of the enumext or enumext* environment
they are set in “both” environments, but when they are passed using the \setenumext command they are set
“individually” in each environment.

show-ans = {〈true | false〉} default: false
Display the symbol set by the mark-ans key to the left of the mandatory argument 〈content〉 passed to the
\anskey command and 〈body〉 for the anskey* environment using the wrap-ans key if set. For \item* and
\anspic* the keyans, keyans* and keyanspic environments it will display the symbol set by the mark-ans*
key to the left of the current 〈label〉 and optional argument. If the optional argument is present in \item* or
\anspic* it will be shown using wrap-opt key.

Keys for \anskey and anskey*

mark-ans = {〈symbol〉} default: \textasteriskcentered
Sets the symbol to be displayed in the left margin for \anskey command and anskey* environment when
using the key show-ans. The “symbol” is placed in a box of width equal to the value of labelwidth at the
current level, separated by the value of the key mark-sep and aligned by the value of the key mark-pos. This
key is not affected by the keys font or wrap-label so if you want to apply styling you have to do it directly,
for example: mark-ans={\textcolor{red}{\textbf{\textasteriskcentered}}.

mark-pos = {〈left | right | center〉} default: left
Sets the aligned of the “symbol” defined by mark-ans key for \anskey command and anskey* environment.
The “symbol” is aligned in a box with the same dimensions of the label box defined by labelwidth key on the
current level and separated by the value of the mark-sep key.

13 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

mark-sep = {〈rigid length〉} default: labelsep
Sets the horizontal space between the box containing the “symbol” defined by mark-ans key and the mandatory
argument 〈content〉 passed to the \anskey command and the 〈body〉 in anskey* environment.

wrap-ans = {〈code {#1} more code〉} default: \fbox+\parbox{#1}
Wraps the mandatory argument 〈content〉 passed to the \anskey and the 〈body〉 in anskey* environment
referenced by {#1} when using the show-ans or show-pos keys. The {〈code〉} must be passed between braces
and only affects how the 〈content〉 or 〈body〉 is displayed and NOT the “stored content” in the sequence and prop
list {〈store name〉} set by save-ans key. If this key is passed using \setenumext it is necessary to use double
‘{##1}’.

Keys for keyans, keyans* and keyanspic

mark-ans* = {〈symbol〉} default: \textasteriskcentered
Sets the symbol to be displayed in the left margin for \item* and \anspic* for the keyans, keyans*
and keyanspic environments when using the key show-ans. The “symbol” is placed in a box of width
equal to the value of labelwidth of the environment in which it is executed, separated by the value
of the key mark-sep* and aligned by the value of the key mark-pos*. This key is not affected by
the keys font or wrap-label so if you want to apply styling you have to do it directly, for example:
mark-ans*={\textcolor{red}{\textbf{\textasteriskcentered}}.

mark-pos* = {〈left | right | center〉} default: left
Sets the aligned of the “symbol” defined by mark-ans* key for the keyans, keyans* and keyanspic environ-
ments. The “symbol” is aligned in a box with the same dimensions of the label box defined by labelwidth key
of the environment in which it is executed and separated by the value of the mark-sep* key.

mark-sep* = {〈rigid length〉} default: labelsep
Sets the horizontal space between the box containing the “symbol” defined by mark-ans* key and the current
〈label〉 for \item* and \anspic* in the keyans, keyans* and keyanspic environments.

wrap-ans* = {〈code {#1} more code〉} default: not used
Wraps the current 〈label〉 when using the show-ans key for \item* and \anspic* referenced by {#1} in
the keyans, keyans* and keyanspic environments after executing the align and font keys. The {〈code〉}
must be passed between braces and only affects how the 〈label〉 is displayed and NOT the “stored label” in the
sequence and prop list {〈store name〉} set by save-ans key. This key overwrites the key wrap-label and if is
passed using \setenumext it is necessary to use double ‘{##1}’. For example, if you want the 〈label〉 to be
displayed in red when using show-ans you just set wrap-ans*={\textcolor{red}{#1}}.

wrap-opt = {〈code {#1} more code〉} default: [{#1}]
Wraps the optional argument passed to the \item* and \anspic* referenced by {#1} in the keyans, keyans*
and keyanspic environments when using the show-ans or show-pos keys. The {〈code〉} must be passed
between braces and only affects the current optional argument and NOT the “stored content” in the sequence
and prop list {〈store name〉} set by save-ans key. If this key is passed using \setenumext it is necessary to
use double ‘{##1}’.

6.1.3 Keys for debug and checking

show-pos = {〈true | false〉} default: false

Displays the position occupied by the “stored content” by \anskey, anskey*, \item* and \anspic* in the
prop list {〈store name〉} set by save-ans key. This position is used by the \getkeyans command and by the
\ref command if the save-ref key is active.

check-ans = {〈true | false〉} default: false

Enables the checking answer mechanism displaying an appropriate message on the terminal. This key works
under the logic that each \item or \item* that does not open an inner level or nested environment contains
“only one answer” or “only one execution” of the \anskey or anskey*. It is intended to be used in conjunction
with the no-store key.

6.2 The command \anskey

\anskey[〈keys〉]{〈content〉}

The command \anskey takes a mandatory non empty argument {〈content〉} and “stores” it in the sequence and
prop list {〈store name〉} set by save-ans key. By design the command cannot be nested or passed verbatim
material in the argument and it is assumed that each numbered \item or \item* within the environment in
which it is active it has a “single execution” of \anskey unless \item or \item* open a nested level or use the
no-store key.
If save-ref key are active and the hyperref[8] package is detected, \hyperlink and \hypertarget will
be used, otherwise the usual “label and ref” system provided by LATEX will be used.

\anskey

The \anskey command is available for all levels of the enumext environment and the enumext* environment,
but is disabled for the keyans, keyans* and keyanspic environments.

14 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

6.2.1 Keys for \anskey

By default the mandatory argument 〈content〉 passed to \anskey when “storing” in the sequence {〈store name〉}
has the form \item 〈content〉, the following 〈keys〉 allow modifying the way in which it is “stored” in the
sequence.

break-col 〈value forbidden〉 default: not used

Stores {〈content〉} in the sequence {〈store name〉} of the form \columnbreak \item 〈content〉.
item-join = {〈columns〉} default: not set

Set the number of columns to be used for \item(〈columns〉) and stores {〈content〉} in the sequence {〈store
name〉} of the form \item(〈columns〉) 〈content〉.

item-star 〈value forbidden〉 default: not used

Stores {〈content〉} in the sequence {〈store name〉} of the form \item* 〈content〉.
item-sym* = {〈symbol〉} default: not set

Sets the symbol for \item* when using the key item-star and stores {〈content〉} in the sequence {〈store
name〉} of the form \item*[〈symbol〉] 〈content〉. The symbol can be in text or math mode, for example
item-sym*={\ast} stores \item*[\ast] 〈content〉.

item-pos* = {〈rigid length〉} default: not set
Sets the offset for \item* when using the keys item-star and item-sym* and stores {〈content〉} in the
sequence {〈store name〉} of the form \item*[〈symbol〉][〈offset〉] 〈content〉.

Example

\begin{enumext}[save-ans=test,show-ans=true]
\item* Text containing our instructions or questions. \anskey{〈first answer〉}
\item Text containing our instructions or questions.

\begin{enumext}
\item Question.\anskey{〈second answer〉}

\end{enumext}
\item Text containing our instructions or questions. \anskey{〈third answer〉}
\item Text containing our instructions or questions. \anskey{〈fourth answer〉}

\end{enumext}

b 1. Text containing our instructions or questions.
∗ first answer
2. Text containing our instructions or questions.

(a) Question.
∗ second answer

3. Text containing our instructions or questions.
∗ third answer
4. Text containing our instructions or questions.
∗ fourth answer

6.3 The environment anskey*

\begin{anskey*}[〈key = val〉] 〈body content〉 \end{anskey*}

The environment anskey* takes a mandatory {〈body content〉} and “stores it” in the sequence and prop list
{〈store name〉} set by save-ans key. If save-ref key are active and the hyperref[8] package is detected
\hyperlink and \hypertarget will be used, otherwise the usual “label and ref” system provided by LATEX
will be used.

anskey*

By design the environment cannot be nested but full supports “verbatim material” in the 〈body〉 and it is
assumed that “each numbered” \item or \item* within the environment in which it is active it has a “single
execution” unless \item or \item* open a nested level or use the no-store key.
The anskey* environment is implemented using the new “collect code” c-type argument part of LATEX release
2025-06-01[13]. \begin{anskey*} and \end{anskey*} must be in different lines and should not appear
within verbatim environments or commands. All 〈keys〉 must be passed separated by commas and “without
separation” of the start of the environment.
Comments ‘%’ or any character after \begin{anskey*} or [〈key = val〉] on the same line are NOT supported,
LATEX will return an “error” message if this happens. In a similar way comments ‘%’ or any character after
\end{anskey*} on the same line LATEX will return a “warning” message.

6.3.1 Keys for anskey*

The anskey* environment uses the same 〈keys〉 as the \anskey command next to the 〈keys〉 write-env,
overwrite and force-eol. The environment is available for all levels of the enumext environment and the
enumext* environment, but it is disabled for the keyans, keyans* and keyanspic environments.

write-env = {〈file.ext〉} default: not used

Sets the name of the 〈external file〉 in which the 〈contents〉 of the environment will be written. The 〈file.ext〉
will be created in the working directory, relative or absolute paths are not supported. If 〈file.ext〉 does not exist,
it will be created or overwritten if the overwrite key is used.

15 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

overwrite = {〈true | false〉} default: false
Sets whether the 〈file.ext〉 generated by write-env from the anskey* environment will be rewritten.

force-eol = {〈true | false〉} default: false

Sets if the last end of line for the 〈stored content〉 is hidden or not. This key is necessary only if the last line is the
closing of some environment defined by the fancyvrb package as \end{Verbatim} or another environment
that does not support a comments ‘%’ after closing \end{Verbatim}%.

Example

\begin{enumext}[save-ans=test,show-pos=true,start=5]
\item* Text containing our instructions or questions.

\begin{anskey*}[item-star]
〈first answer〉

\end{anskey*}

\item Text containing our instructions or questions.
\begin{enumext}
\item Question.
\begin{anskey*}

〈second answer〉
\end{anskey*}

\end{enumext}

\item Text containing our instructions or questions.
\begin{anskey*}

〈third answer〉
\end{anskey*}

\item Text containing our instructions or questions.
\begin{anskey*}

〈fourth answer〉
\end{anskey*}

\end{enumext}

b 5. Text containing our instructions or questions.
[5] First answer with verbatim
6. Text containing our instructions or questions.

(a) Question.
[6] second answer

7. Text containing our instructions or questions.
[7] third answer
8. Text containing our instructions or questions.

[8] fourth answer

6.4 The environments keyans and keyans*

\begin{keyans}[〈key = val〉] \item \item[〈custom〉] \item* \item*[〈content〉] \end{keyans}
\begin{keyans*}[〈key = val〉] \item \item[〈custom〉] \item* \item*[〈content〉] \end{keyans*}

The keyans and keyans* environments are “enumerated list” environments designed for “multiple choice”
questions activated by the save-ans key.
This environments can NOT be nested and must always be at the “first level” of the enumext environment, the
commands \item and \item[〈custom〉] work in the usual and the command \item(〈columns〉) is available
for the keyans* environment.

BOMB The behavior of \item* in keyans and keyans* environments is NOT the same as in the enumext or enumext* environ-
ments.

keyans
keyans*

\begin{enumext}[save-ans=test]
\item 〈item content〉

\begin{keyans}[〈key = val〉]
\item 〈item content〉
\item [〈custom〉] 〈item content〉
\item* 〈item content〉
\item*[〈content〉] 〈item content〉

\end{keyans}
\end{enumext}

\begin{enumext}[save-ans=test]
\item 〈item content〉

\begin{keyans*}[〈key = val〉]
\item 〈item content〉
\item [〈custom〉] 〈item content〉
\item* 〈item content〉
\item*[〈content〉] 〈item content〉

\end{keyans*}
\end{enumext}

The 〈keys〉 set in the optional argument of the environment are the same (almost) as those of the enumext and
enumext* environments and have higher precedence than those set by \setenumext[〈keyans〉]{〈key = val〉}
or \setenumext[〈keyans*〉]{〈key = val〉}. If the optional argument is not passed or the 〈keys〉 are not set by
\setenumext, the default values will be the same as the “second level” of the enumext environment with the
difference in the 〈label〉 which will be set to label=\Alph*).
The keys mark-ans*, mark-pos*, mark-sep*, save-sep, wrap-opt, wrap-ans*, show-ans and show-pos
are available for both environments.

16 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

6.4.1 The \item* in keyans and keyans*

\item*
\item*[〈content〉]

The \item* and \item*[〈content〉] command “store” the current 〈label〉 set by label key next to the optional
argument 〈content〉 in sequence and prop list {〈store name〉} set by save-ans key in the “first level” of the
enumext or enumext* environments.

\item*

The starred argument ‘*’ cannot be separated by spaces ‘␣’ from the command, i.e. \item* and the optional
argument does “NOT” support verbatim content. By design it is assumed that the \item* will only appear “once”
within the environment.

Example

\begin{enumext}[save-ans=test,columns=2,show-ans=true]
\item Text containing a question.

\begin{keyans*}[nosep,columns=2]
\item Choice
\item* Correct choice
\item Choice
\item Choice
\item Choice

\end{keyans*}

\item Text containing a question and image.

\begin{keyans}[nosep,mini-env={0.4\linewidth}]
\item Choice
\item Choice
\item Choice
\item Choice
\item*[〈note〉] Correct choice
\miniright
\includegraphics[scale=0.25]{example-image-a}
Some text

\end{keyans}
\end{enumext}

1. Text containing a question.
A) Choice ∗ B) Correct choice
C) Choice D) Choice
E) Choice

2. Text containing a question and image.
A) Choice
B) Choice
C) Choice
D) Choice

∗ E) [note] Correct choice

A
Some text

6.5 The environment keyanspic

\begin{keyanspic}[〈key = val〉] \anspic*[〈content〉]{〈drawing or tabular〉} \end{keyanspic}

The keyanspic environment is an “enumerated list” environment activated by the save-ans key that has the
same configuration for “spacing” and 〈label〉 as the keyans environment that uses the \anspic command
instead of \item. It is intended for placing drawings or tabular with 〈label〉 centered above or below in a single
line or upper and lower layout style.
When the keyanspic environment is used without keys the 〈labels〉 are centered below the drawings or tabular
in a single line layout style.

keyanspic

A representation of the output can be seen in the figure 6.

number of drawings or tabular upper

layout-sep

number of drawings or tabular lower

labelwidth labelsep

item text above the keyanspic environment

above one
drawing or tabular

label

above two
drawing or tabular

label

above three
drawing or tabular

label

below one
drawing or tabular

label

below two
drawing or tabular

label

item text below the keyanspic environment

Figure 6: Representation of the keyanspic environment with layout-sty={〈3, 2〉} in enumext.

This environment cannot be nested and must always be at the “first level” of the enumext environment, the
\item command is disabled and 〈keys〉 cannot be set using \setenumext.

17 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

6.5.1 Keys for keyanspic

label-pos = {〈above | below〉} default: below

Set the position of 〈label〉 to be centered “above” or “below” drawings or tabular when the \anspic command
is executed.

label-sep = {〈rubber length | rigid length〉} default: internal adjustment

Set the vertical spacing between the 〈label〉 centered “above” or “below” and drawings or tabular when running
the \anspic command.

layout-sty = {〈n° upper , n° lower〉} default: not set

Set the number of drawings or tabular that will be distributed “upper” and “lower” within the environment
when executing the \anspic command. The value must be passed in braces and if not set or the 〈nº lower〉 is
omitted the drawings or tabular will be put on a single line.

layout-sep = {〈rubber length | rigid length〉} default: adjusted parsep from keyans

Set the vertical separation between the number of drawings or tabular placed at the “upper” and “lower” within
the environment when executing the \anspic command. Internally adjusts the parsep value taken from the
keyans environment.

layout-top = {〈rubber length | rigid length〉} default: adjusted topsep from keyans

Set the vertical space added to both the top and bottom of the environment. Internally adjust the value of
topsep taken from keyans environment.
The keys mark-ans*, mark-pos*, mark-sep*, save-sep, wrap-opt, wrap-ans*, show-ans and show-pos
are available for this environment.

6.5.2 The command \anspic

\anspic{〈drawing or tabular〉}
\anspic*[〈content〉]{〈drawing or tabular〉}

The \anspic command take three arguments, the starred argument ‘*’ store the current 〈label〉 next to the
optional argument 〈content〉 in sequence and prop list {〈store name〉} set by save-ans key.

\anspic

The starred argument ‘*’ cannot be separated by spaces ‘␣’ from the command, i.e. \anspic* and the optional
argument does “NOT” support verbatim content. By design it is assumed that the starred argument ‘*’ will only
appear “once” within the environment.

Example

\begin{enumext}[save-ans=test,show-ans=true,nosep]
\item Question with images and labels below.

\begin{keyanspic}[layout-sty={3,2}]
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-b}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic*[note]{\includegraphics[scale=0.15]{example-image-a}}

\end{keyanspic}

\item Question with images and labels above.

\begin{keyanspic}[label-pos=above, layout-sty={3,2},layout-sep=0.25cm]
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-b}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic*[note]{\includegraphics[scale=0.15]{example-image-a}}

\end{keyanspic}

\item Question with images and labels below on a single line.

\begin{keyanspic}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-b}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic*[note]{\includegraphics[scale=0.15]{example-image-a}}

\end{keyanspic}

\end{enumext}

18 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

1. Question with images and labels below.

A)

A
B)

B
C)

A

D)

A
∗ E) [note]

A
2. Question with images and labels above.

A)

A
B)

B
C)

A
D)

A
∗ E) [note]

A
3. Question with images and labels below on a single line.

A)

A
B)

B
C)

A
D)

A
∗ E) [note]

A

TagRemember to pass the alt={〈description〉} key to the \includegraphics command when creating a tagged PDF.

6.6 Printing stored content
6.6.1 The command \getkeyans

\getkeyans{〈store name : position〉}

The command \getkeyans prints the “stored content” in prop list {〈store name〉} defined by save-ans key in
the 〈position〉 returned by the show-pos key.
The “stored content” can only be accessed after it is stored, if {〈store name〉} does not exist the command will
return an error.

\getkeyans

The form taken by the argument {〈store name : position〉} is the same as that used to generate the “in-
ternal label and ref” system when save-ref key are active, so to refer to a “stored content”. For example
\getkeyans{test:4} will return the “stored content” at position 4 of the environment in which the key
save-ans=test was set.

6.6.2 The command \foreachkeyans

\foreachkeyans[〈key = val〉]{〈store name〉}\foreachkeyans

The command \foreachkeyans goes through and executes the command \getkeyans on the contents in prop
list {〈store name〉}. If you pass without options run \getkeyans on all contents in prop list {〈store name〉}.

Options for command

sep = {〈code〉} default: {; }

Establishes the separation between “each” {〈content〉} stored in prop list {〈store name〉}. For example, you can
use sep={\\[10pt]} for vertical separation of stored contents.

step = {〈integer〉} default: 1

Sets the step (increment) applied to the value set by key start for “each” {〈content〉} stored in prop list {〈store
name〉}. The value must be a 〈positive integer〉.

start = {〈integer〉} default: 1

Sets the position of the prop list {〈store name〉} from which execution will start. The value must be a 〈positive
integer〉.

stop = {〈integer〉} default: 0

Sets the position of the prop list {〈store name〉} from which execution will finish. The value must be a 〈positive
integer〉.

19 / 167©2024–2026 by Pablo González L

enumext v2.1 §.6 The storage system

before = {〈code〉} default: empty

Sets the {〈code〉} that will be executed 〈before〉 each {〈content〉} stored in prop list {〈store name〉}. The
{〈code〉} must be passed between braces.

after = {〈code〉} default: empty

Sets the {〈code〉} that will be executed 〈after〉 each {〈content〉} stored in prop list {〈store name〉}. The {〈code〉}
must be passed between braces.

wrapper = {〈code {#1} more code〉} default: empty

Wraps the {〈content〉} stored in prop list {〈store name〉} referenced by {#1}. The {〈code〉} must be passed
between braces. For example \foreachkeyans[wrapper={\makebox[1em][l]{#1}}]{〈store name〉}.

6.6.3 The command \printkeyans

\printkeyans{〈store name〉}
\printkeyans[〈keys〉]{〈store name〉}
\printkeyans*[〈keys〉]{〈store name〉}

The command \printkeyans prints “all stored content” in sequence {〈store name〉} defined by save-ans key
placing this inside the enumext or enumext* environment if the starred argument ‘*’ is used.
The “stored content” can only be accessed after it is stored in the sequence, if {〈store name〉} does not exist the
command will return an error.

\printkeyans

The optional argument allows managing the 〈keys〉 in the “first level” of the environment in which the “stored
content” of the sequence {〈store name〉} will be printed, if the starred argument ‘*’ is used it will be enumext*
otherwise enumext.
The default values for the “first level” are the same as the default values for the enumext and enumext*
environments along with the keys nosep,first=\small,font=\small and columns=2. For the inner levels
of the environment enumext saved in the sequence {〈store name〉} the default values are the same as those
established for the second, third and fourth levels plus the keys nosep,first=\small,font=\small. If the
environment enumext* is saved within the sequence {〈store name〉} it will have the same default values plus
the keys nosep,first=\small, font=\small.
Since the command encapsulates by default the enumext environment or the enumext* environment, we must
take some considerations:

• If we execute \printkeyans*{〈store name〉} and the sequence {〈store name〉} already contains any
enumext* environment an error will be returned as we cannot nest.

• If we execute \printkeyans*{〈store name〉} and the sequence {〈store name〉} contains any enumext
environments, they will start with the 〈keys〉 set for the first level unless they are set in the optional
argument or save-key is used to modify it.

• If we execute \printkeyans{〈store name〉} and the sequence {〈store name〉} contains any environment
enumext*, they will start with the 〈keys〉 set by default unless they are set in the optional argument or
save-key is used to modify it.

The default values for the “first level” of \printkeyans commands and \printkeyans* are established using
\setenumext[〈print , 1〉]{〈keys〉} and \setenumext[〈print*〉]{〈keys〉}.
If we need to set the 〈keys〉 for the environment enumext “saved” in the sequence {〈store name〉} we will use
\setenumext[〈print , level〉]{〈keys〉} and if we need to set the 〈keys〉 for the environment enumext* “saved”
in the sequence {〈store name〉} we will use \setenumext[〈print , *〉]{〈keys〉}.

Example

\begin{enumext}[save-ans=sample,columns=1,show-pos=true,nosep,save-ref=true]
\item Factor $3x+3y+3z$. \anskey{$3(x+y+z)$}
\item True False

\begin{enumext}[nosep]
\item \LaTeX2e\ is cool? \anskey{Very True!}

\end{enumext}

\item Related to Linux

\begin{enumext}[nosep]
\item You use Linux? \anskey{Yes}
\item Rate the following package and class
\begin{enumext}[nosep]
\item \texttt{xsim} \anskey{very good}
\item \texttt{exsheets} \anskey{obsolete}

\end{enumext}
\end{enumext}

\end{enumext}

20 / 167©2024–2026 by Pablo González L

enumext v2.1 §.7 Full examples

The answer to \ref{sample:4} is \getkeyans{sample:4} and the answers to
all the worksheets are as follows:

\printkeyans{sample}

1. Factor 3𝑥 + 3𝑦 + 3𝑧.

[1] 3(𝑥 + 𝑦 + 𝑧)

2. True False

(a) LATEX2e is cool?
[2] Very True!

3. Related to Linux

(a) You use Linux?
[3] Yes

(b) Rate the following package and class
i. xsim

[4] very good
ii. exsheets

[5] obsolete

The answer to 3.(b).i is very good and the answers to all the worksheets are as follows:

1. 3(𝑥 + 𝑦 + 𝑧) ※
2. (a) Very True! ※
3. (a) Yes ※

(b) i. very good ※
ii. obsolete ※

7 Full examples
Here I will leave as an example some adaptations questions taken from TeX-SX. The examples are attached to
this documentation and can be extracted from your PDF viewer or from the command line by running:

$ pdfdetach -saveall enumext.pdf

and then you can use the excellent arara1 tool to compile them.

Example 1

Adapted from the response given by Enrico Gregorio in Squares for answer choice options and perfect alignment
to mathematical answers .

1. La velocità di 1,00 × 102 m/s espressa in km/h è:

A 36 km/h.
B 360 km/h.
C 27,8 km/h.
D 3,60 × 108 km/h.

2. In fisica nucleare si usa l’angstrom (simbolo: 1 Å =
1 × 10−10 m) e il fermi o femtometro (1 fm = 1 ×
10−15 m). Qual è la relazione tra queste due unità di
misura?

A 1 Å = 1 × 105 fm.
B 1 Å = 1 × 10−5 fm.
C 1 Å = 1 × 10−15 fm.
D 1 Å = 1 × 103 fm.

3. La velocità di 1,00 × 102 m/s espressa in km/h è:

A 36 km/h.
B 360 km/h.
C 27,8 km/h.
D 3,60 × 108 km/h.

4. In fisica nucleare si usa l’angstrom (simbolo: 1 Å =
1 × 10−10 m) e il fermi o femtometro (1 fm = 1 ×
10−15 m). Qual è la relazione tra queste due unità di
misura?

A 1 Å = 1 × 105 fm.
B 1 Å = 1 × 10−5 fm.
C 1 Å = 1 × 10−15 fm.
D 1 Å = 1 × 103 fm.

1. B
2. A
3. B
4. A

Example 2

Adapted from the response given by Florent Rougon in Multiple choice questions with proposed answers in
random order — addition of automatic correction (cross mark) .

1The cool TEX automation tool: https://www.ctan.org/pkg/arara

21 / 167©2024–2026 by Pablo González L

% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log] }
\documentclass{article}
\usepackage{siunitx,amssymb,enumext}
\sisetup{output-decimal-marker={,}}
\DeclareSIUnit{\angstrom}{\textup{\AA}}
\pagestyle{empty}
\begin{document}
\setenumext[keyans]{label=\Alph*,labelsep=10pt,font=\small,nosep,itemsep=2pt,wrap-label={\fbox{\makebox[\height]{##1}}}}
\begin{enumext}[mode-box,columns=2,columns-sep=1cm,save-ans=sabastiano]
 \item La velocità di \qty{1,00e2}{m/s} espressa in \unit{km/h} è:
 \begin{keyans}
 \item \qty{36}{km/h}.
 \item* \qty{360}{km/h}.
 \item \qty{27,8}{km/h}.
 \item \qty{3,60e8}{km/h}.
 \end{keyans}

 \item In fisica nucleare si usa l'angstrom (simbolo:
 $\qty{1}{\angstrom} = \qty{1e-10}{m}$) e il fermi o femtometro
 ($\qty{1}{fm} = \qty{1e-15}{m}$). Qual è la relazione tra queste due
 unità di misura?
 \begin{keyans}
 \item* $\qty{1}{\angstrom}=\qty{1e5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-15}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e3}{fm}$.
 \end{keyans}

 \item La velocità di \qty{1,00e2}{m/s} espressa in \unit{km/h} è:
 \begin{keyans}
 \item \qty{36}{km/h}.
 \item* \qty{360}{km/h}.
 \item \qty{27,8}{km/h}.
 \item \qty{3,60e8}{km/h}.
 \end{keyans}

 \item In fisica nucleare si usa l'angstrom (simbolo:
 $\qty{1}{\angstrom} = \qty{1e-10}{m}$) e il fermi o femtometro
 ($\qty{1}{fm} = \qty{1e-15}{m}$). Qual è la relazione tra queste due
 unità di misura?
 \begin{keyans}
 \item* $\qty{1}{\angstrom}=\qty{1e5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-15}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e3}{fm}$.
 \end{keyans}
\end{enumext}

\printkeyans[columns=4]{sabastiano}
\end{document}

% arara: lualatex: { branch: developer }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage{siunitx,amssymb,tikz,enumext,libertinus}
\usetikzlibrary{shapes.geometric}
\sisetup{output-decimal-marker={,}}
\DeclareSIUnit{\angstrom}{\textup{\AA}}
\newcommand*{\mySquared}[1]{%
 \begin{tikzpicture}[baseline=(number.base),square/.style={regular polygon,regular polygon sides=4}]
 \node[square, rounded corners=1pt, inner sep=1pt, draw=none, fill=gray!40] (number) {\makebox[\height]{#1}};
 \end{tikzpicture}%
}
\pagestyle{empty}
\begin{document}
\setenumext[keyans]{label=\Alph*,font=\small,nosep,wrap-label={\mySquared{##1}}}
\begin{enumext}[columns=1,save-ans=sabastiano2,mark-sep*=2pt,mark-ans*={\textcolor{gray}{✔}},save-ref=true,show-ans=true,itemsep=0pt]
 \item La velocità di \qty{1,00e2}{m/s} espressa in \unit{km/h} è:
 \begin{keyans}
 \item \qty{36}{km/h}.
 \item* \qty{360}{km/h}.
 \item \qty{27,8}{km/h}.
 \item \qty{3,60e8}{km/h}.
 \end{keyans}

 \item In fisica nucleare si usa l'angstrom (simbolo:
 $\qty{1}{\angstrom} = \qty{1e-10}{m}$) e il fermi o femtometro
 ($\qty{1}{fm} = \qty{1e-15}{m}$). Qual è la relazione tra queste due
 unità di misura?
 \begin{keyans}
 \item* $\qty{1}{\angstrom}=\qty{1e5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-15}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e3}{fm}$.
 \end{keyans}

 \item La velocità di \qty{1,00e2}{m/s} espressa in \unit{km/h} è:
 \begin{keyans}
 \item \qty{36}{km/h}.
 \item* \qty{360}{km/h}.
 \item \qty{27,8}{km/h}.
 \item \qty{3,60e8}{km/h}.
 \end{keyans}

 \item In fisica nucleare si usa l'angstrom (simbolo:
 $\qty{1}{\angstrom} = \qty{1e-10}{m}$) e il fermi o femtometro
 ($\qty{1}{fm} = \qty{1e-15}{m}$). Qual è la relazione tra queste due
 unità di misura?
 \begin{keyans}
 \item* $\qty{1}{\angstrom}=\qty{1e5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-5}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e-15}{fm}$.
 \item $\qty{1}{\angstrom}=\qty{1e3}{fm}$.
 \end{keyans}
\end{enumext}

\printkeyans[columns=4]{sabastiano2}
\end{document}

https://tex.stackexchange.com
https://tex.stackexchange.com/q/461730/7832
https://tex.stackexchange.com/q/461730/7832
https://tex.stackexchange.com/q/529034/7832
https://tex.stackexchange.com/q/529034/7832
https://www.ctan.org/pkg/arara

enumext v2.1 §.7 Full examples

1. La velocità di 1,00 × 102 m/s espressa in km/h è:

A 36 km/h.
✔ B 360 km/h.

C 27,8 km/h.
D 3,60 × 108 km/h.

2. In fisica nucleare si usa l’angstrom (simbolo: 1 Å =
1 × 10−10 m) e il fermi o femtometro (1 fm = 1 ×
10−15 m). Qual è la relazione tra queste due unità di
misura?

✔ A 1 Å = 1 × 105 fm.
B 1 Å = 1 × 10−5 fm.
C 1 Å = 1 × 10−15 fm.
D 1 Å = 1 × 103 fm.

3. La velocità di 1,00 × 102 m/s espressa in km/h è:

A 36 km/h.
✔ B 360 km/h.

C 27,8 km/h.
D 3,60 × 108 km/h.

4. In fisica nucleare si usa l’angstrom (simbolo: 1 Å =
1 × 10−10 m) e il fermi o femtometro (1 fm = 1 ×
10−15 m). Qual è la relazione tra queste due unità di
misura?

✔ A 1 Å = 1 × 105 fm.
B 1 Å = 1 × 10−5 fm.
C 1 Å = 1 × 10−15 fm.
D 1 Å = 1 × 103 fm.

1. B ※ 2. A ※
3. B ※ 4. A ※

Example 3

A “simple multiple choice” test .
1. First type of questions

A value B correct
C value D value

2. Second type of questions
I. 2𝛼 + 2𝛿 = 90∘

II. 𝛼 = 𝛿
III. ∠𝐸𝐷𝐹 = 45∘

A I only
B II only
C I and II only

D I and III only
E I, II, and III

3. Third type of questions
(1) 2𝛼 + 2𝛿 = 90∘

(2) ∠𝐸𝐷𝐹 = 45∘

A value
B value
C value

D value
E value

4. Question with image and label below:

A

A
B

B
C

A
D

A
E

5. Question with image on right side:
A value
B value
C value
D correct
E value

B

Test keys
1. B, 𝑥 = 5 ※
2. D ※
3. C, some note ※

4. E, A duck ※
5. D, other note ※

Example 4

A “simple worksheet” using ducks :) .
1.

Factor 𝑥2 − 2𝑥 + 1
2.

Factor 3𝑥 + 3𝑦 + 3𝑧
The following questions need to be cuaqtified :)

3.

True False
(a) 𝛼 > 𝛿
(b) LATEX2e is cool?

4.

Related to Linux
(a) You use Linux?

22 / 167©2024–2026 by Pablo González L

% arara: lualatex: { branch: developer }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
\documentclass{article}
\usepackage[margin=2cm]{geometry}
\usepackage{tikz}
\newcommand*{\myCircled}[1]{%
 \begin{tikzpicture}[baseline=(number.base)]
 \node[circle, draw=green!10!gray, inner sep=1pt, fill=blue!30!green!10] (number) {#1};
 \end{tikzpicture}%
}
\usepackage[colorlinks]{hyperref}
\usepackage{enumext}
\pagestyle{empty}
\begin{document}
\setenumext[keyans]{labelsep=8pt,label=\Alph*,font=\small,nosep,wrap-label={\myCircled{##1}}}
\setenumext[keyans*]{labelsep=8pt,label=\Alph*,font=\small,nosep,wrap-label={\myCircled{##1}}}
\setenumextmeta[2]{myroman}{no-store, label=\Roman*., noitemsep}
\setenumextmeta[2]{myarabic}{no-store,list-offset=0.5cm,label=(\arabic*),noitemsep}
\begin{enumext}[mode-box,save-ans=simplemc,columns=1,nosep,save-ref=true]
\item First type of questions
 \begin{keyans*}[columns=2,noitemsep]
 \item value
 \item*[$x=5$] correct
 \item value
 \item value
 \end{keyans*}
\item Second type of questions
 \begin{enumext}[myroman]
 \item $2\alpha+2\delta=90^{\circ}$
 \item $\alpha=\delta$
 \item $\angle EDF=45^{\circ}$
 \end{enumext}
 \begin{keyans}[columns=2,noitemsep]
 \item I only
 \item II only
 \item I and II only
 \item* I and III only
 \item I, II, and III
 \end{keyans}
\item Third type of questions
 \begin{enumext}[myarabic]
 \item $2\alpha+2\delta=90^{\circ}$
 \item $\angle EDF=45^{\circ}$
 \end{enumext}
\begin{keyans}[columns=2,noitemsep]
 \item value
 \item value
 \item*[some note] value
 \item value
 \item value
\end{keyans}

\item Question with image and label below:
\begin{keyanspic}[layout-sty={3,2},label-sep=3pt]
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-b}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic{\includegraphics[scale=0.15]{example-image-a}}
\anspic*[A duck]{\includegraphics[scale=0.32]{example-image-duck}}
\end{keyanspic}

\item Question with image on right side:
\begin{keyans}[mini-env=0.5\linewidth, columns=1,noitemsep]
 \item value
 \item value
 \item value
 \item*[other note] correct
 \item value
 \miniright
 \includegraphics[scale=0.15]{example-image-b}
\end{keyans}
\end{enumext}

\medskip

Test keys

\printkeyans{simplemc}
\end{document}

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=2cm,right=2cm]{geometry}%
\usepackage[osf]{libertinus}
\usepackage{unicode-math,tikzducks,graphicx,hyperref,enumext}
\begin{document}
\begin{enumext}[mode-box,save-ans=simplews,labelsep=10pt,columns=2,check-ans=true,show-ans=true,nosep,save-ref=true,wrap-label={\tikz[scale=0.25]\duck[signpost=\scalebox{0.6}{#1}];}]
 \item Factor $x^{2}-2x+1$ \anskey{$\left(x-1\right)^{2}$}
 \item Factor $3x+3y+3z$ \anskey{$3(x+y+z)$}
 \item True False
 \begin{enumext}[nosep]
 \item $\alpha > \delta$ \anskey{False}
 \item \LaTeX2e\ is cool? \anskey{Very True!}
 \end{enumext}
 \item Related to Linux
 \begin{enumext}[nosep]
 \item You use Linux? \anskey{Yes}
 \item Usually uses the package manager? \anskey{Yes, \texttt{dnf}}
 \item Rate the following package and class
 \begin{enumext}[nosep]
 \item \texttt{xsim-exam} \anskey{doesn't exist for now :(}
 \item \texttt{xsim} \anskey{very good}
 \item \texttt{exsheets} \anskey{obsolete}
 \end{enumext}
 \end{enumext}
\end{enumext}

The answer to \ref{simplews:1} is \getkeyans{simplews:1} and the answer
to \ref{simplews:3} is \getkeyans{simplews:3}.

\printkeyans[columns=2]{simplews}
\end{document}

enumext v2.1 §.7 Full examples

(b) Usually uses the package manager?
(c) Rate the following package and class

i. xsim-exam
ii. xsim
iii. exsheets

The answer to 1 is (𝑥 − 1)2 and the answer to 3.(a) is False.
1. (𝑥 − 1)2 ※
2. 3(𝑥 + 𝑦 + 𝑧) ※
3. (a) False ※

(b) Very True! ※
4. (a) Yes ※

(b) Yes, dnf ※
(c) i. doesn’t exist for now :(※

ii. very good ※
iii. obsolete ※

Example 5

Adapted from the response given by Stephen in SAT like question format .
1

Which choice best describes what happens in the
passage?

A) One character argues with another character
who intrudes on her home.

B) One character receives a surprising request
from another character.

C) One character reminisces about choices she
has made over the years.

D) One character criticizes another character
for pursuing an unexpected course of action.

2

Which choice best describes what happens in the
passage?

A) One character argues with another character
who intrudes on her home.

B) One character receives a surprising request
from another character.

C) One character reminisces about choices she
has made over the years.

D) One character criticizes another character
for pursuing an unexpected course of action.

3

Which choice best describes what happens in the
passage?

A) One character argues with another character
who intrudes on her home.

B) One character receives a surprising request
from another character.

C) One character reminisces about choices she
has made over the years.

D) One character criticizes another character
for pursuing an unexpected course of action.

4

Which choice best describes what happens in the
passage?

A) One character argues with another character
who intrudes on her home.

B) One character receives a surprising request
from another character.

C) One character reminisces about choices she
has made over the years.

D) One character criticizes another character
for pursuing an unexpected course of action.

1. A) 2. C) 3. B) 4. D)

Example 6

Adapted from the response to Environment for enumerate environment .

8.5a, KSC 10. sample
A sample

✔ B answer
C sample
D sample

9.5a, KSC 11. sample
A sample
B sample
C sample

✔ D answer

12. sample
A sample
B answer
C sample
D sample

13. sample
A sample
B sample
C sample
D answer

23 / 167©2024–2026 by Pablo González L

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-exa-5-luamml-mathml.html], target: 'enumext-exa-5-mathml.html' }
\DocumentMetadata{
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=2cm,right=2cm]{geometry}%
\usepackage[osf]{libertinus}
\usepackage{unicode-math,xcolor,graphicx,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for SAT style enumext package},
 }
\newsavebox{\satbox}
\sbox\satbox{\small\textbf{67}}%
\NewDocumentCommand \stylesat { m }
 {%
 \setlength{\fboxsep}{2pt}%
 \raisebox{7\fboxsep}{%
 \noindent\colorbox{black}{\textcolor{white}{\makebox[\dimeval{\labelwidth-2\fboxsep}][c]{\small\textbf{\vphantom{67}#1}}}}%
 \colorbox{lightgray}{\phantom{\rule[-\dp\satbox]{\dimeval{\linewidth-2\fboxsep}}{\dimeval{\dp\satbox+\ht\satbox}}}}}%
 }
\begin{document}
\setenumext[keyans]{label=\Alph*),nosep,below*={0.3cm}}
\begin{enumext}[mode-box,label=\arabic*,labelwidth=20pt,labelsep=0pt,columns=2,columns-sep=30pt,save-ans=stylesat, wrap-label={\stylesat{#1}}]
 \item Which choice best describes what happens in the passage?
 \begin{keyans}
 \item* One character argues with another character who intrudes on her home.
 \item One character receives a surprising request from another character.
 \item One character reminisces about choices she has made over the years.
 \item One character criticizes another character for pursuing an unexpected course of action.
 \end{keyans}

 \item Which choice best describes what happens in the passage?
 \begin{keyans}
 \item One character argues with another character who intrudes on her home.
 \item One character receives a surprising request from another character.
 \item* One character reminisces about choices she has made over the years.
 \item One character criticizes another character for pursuing an unexpected course of action.
 \end{keyans}

 \item Which choice best describes what happens in the passage?
 \begin{keyans}
 \item One character argues with another character who intrudes on her home.
 \item* One character receives a surprising request from another character.
 \item One character reminisces about choices she has made over the years.
 \item One character criticizes another character for pursuing an unexpected course of action.
 \end{keyans}

 \item Which choice best describes what happens in the passage?
 \begin{keyans}
 \item One character argues with another character who intrudes on her home.
 \item One character receives a surprising request from another character.
 \item One character reminisces about choices she has made over the years.
 \item* One character criticizes another character for pursuing an unexpected course of action.
 \end{keyans}
\end{enumext}

\printkeyans[columns=4]{stylesat}
\end{document}

% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log] }
\documentclass[letterpaper,twoside]{article}
\usepackage{xcolor,enumext,libertinus}
\newlength{\itemwd}
\settowidth{\itemwd}{\bfseries 10.} % max width
\NewDocumentCommand \rating { }{8.5a, KSC}
\ExplSyntaxOn
\bool_new:N \l_azetina_rating_bool
\NewDocumentCommand \showrating { m }
 {
 \str_case:nn {#1}
 {
 { true }
 {
 \bool_set_true:N \l_azetina_rating_bool
 \setenumext{show-ans=true,save-sep={ ~ }}
 }
 { false }
 {
 \bool_set_false:N \l_azetina_rating_bool
 \setenumext{show-ans=false,save-sep={ ~ }}
 }
 }
 }
\NewDocumentCommand \myans { m +m }
 {
 \bool_if:NTF \l_azetina_rating_bool
 {
 \item*[(#1)] \textcolor{red}{#2}
 }
 {
 \item*[(#1)] \textcolor{black}{#2}
 }
 }
\NewDocumentCommand \azwrapp { m }
 {
 \bool_if:NTF \l_azetina_rating_bool
 {
 \makebox[\dim_eval:n{\marginparwidth}][r]
 {
 \textcolor{red}{\bfseries\footnotesize\rating}
 }
 \hspace{\marginparsep}\textbf{#1}
 }
 {
 \makebox[\dim_eval:n{\marginparwidth+\marginparsep}][l]{ }\textbf{#1}
 }
 }
\ExplSyntaxOff
\setenumextmeta[1]{azetinasty}{label={\arabic*.},labelwidth={\marginparwidth+\marginparsep+\itemwd},list-offset={-\marginparwidth-\marginparsep},}
\setenumext[keyans]{
 label={\Alph*},
 font={\bfseries},
 wrap-ans*={\textcolor{red}{\bfseries##1}},
 mark-ans*={\textcolor{red}{✔}},
 wrap-opt={ },
 }
\begin{document}

\showrating{true}
\begin{enumext}[azetinasty,start=10,wrap-label={\azwrapp{#1}},save-ans=test2024]
 \item sample
 \begin{keyans}
 \item sample
 %\item*[(8.5a, KSC)] answer
 \myans{8.5a, KSC}{answer}
 \item sample
 \item sample
 \end{keyans}
 % Renew \rating here
 \RenewDocumentCommand \rating { }{9.5a, KSC}
 \item sample
 \begin{keyans}
 \item sample
 \item sample
 \item sample
 %\item*[(9.5a, KSC)] answer
 \myans{9.5a, KSC}{answer}
 \end{keyans}
\end{enumext}
\showrating{false}
\RenewDocumentCommand \rating { }{10.5a, KSC}
\begin{enumext}[save-ans=test2024,resume*]
 \item sample
 \begin{keyans}
 \item sample
 %\item*[(10.5a, KSC)] answer
 \myans{10.5a, KSC}{answer}
 \item sample
 \item sample
 \end{keyans}
 % Renew \rating here
 \RenewDocumentCommand \rating { }{11.5a, KSC}
 \item sample
 \begin{keyans}
 \item sample
 \item sample
 \item sample
 %\item*[(11.5a, KSC)] answer
 \myans{11.5a, KSC}{answer}
 \end{keyans}
\end{enumext}
\printkeyans[start=10]{test2024}
\end{document}

https://tex.stackexchange.com/a/691544
https://tex.stackexchange.com/q/728584

enumext v2.1 §.9 The way of non-enumerated lists

10. B (8.5a, KSC)
11. D (9.5a, KSC)

12. B (10.5a, KSC)
13. D (11.5a, KSC)

8 Tagged PDF examples
This section is just to show the compatibility of enumext with tagged PDF using lualatex. The attached files
here are just for testing and are intended as examples and, in a way, to simplify the time of Matthew Bertucci
(@mbertucci) when he sees this excellent package and adds it to The LaTeX Tagged PDF repository.
To compile the tests with lualatex-dev the packages multicol, unicode-math, geometry, graphicx,
luamml and hyperref are required along with the line:

\DocumentMetadata{lang = en-US, pdfversion = 2.0, pdfstandard = ua-2, tagging=on,}

TagAll examples have been checked using veraPDF together with ngpdf.

• The file enumext-01.tex contains the basic tests for the enumext and enumext* environments and the
nesting between them plus the use of the label, labelwidth, labelsep, ref, align and wrap-label
keys. Source file and tagged PDF .

• The file enumext-02.tex contains the tests for the enumext and enumext* environments and the
support for minipage and multicols environments using the keys columns, columns-sep, mini-
env, mini-right and \miniright command. Source file and tagged PDF .

• The file enumext-03.tex contains the tests for the enumext and keyanspic environments activated by
the save-ans key together with the save-sep and save-ref keys and the \printkeyans command.
Source file and tagged PDF .

• The file enumext-04.tex contains the tests for the \anskey command and the anskey* environment
activated by the save-ans key along with the \getkeyans and \printkeyans commands. Source file

and tagged PDF .
• The file enumext-05.tex contains the tests for the environments keyans, keyans* and keyanspic

activated by the key save-ans together with the keys no-store and show-ans and the commands
\setenumext, \setenumextmeta, \printkeyans and \foreachkeyans. Source file and tagged
PDF .

• The file enumext-06.tex contains the tests for the environments enumext and enumext* for fake
itemize and description. Source file and tagged PDF .

• The file enumext-07.tex contains the tests for starting the environments with \setenumext{resume},
the \resetenumext command and the series, resume, resume* and reset keys. Source file and
tagged PDF .

9 The way of non-enumerated lists
It is possible to use (or abuse) the enumext and enumext* environments to mimic non-enumerated list envi-
ronments such as itemize and description, clearly the 〈keys〉 to “store answers”, the keyans, keyans* and
keyanspic environments lose their sense and it is not the focus of enumext package, but, why not to do it?.
Here I leave as an example other uses of the enumext environment that can be helpful for specific pur-
poses. The trick to generate these “fake environments” is set label={} or label={〈some〉} and play with the
list-indent, list-offset, font and wrap-label keys.

Fake itemize environment
Here we set the label key using the default settings in LATEX for the four levels \textbullet, \textendash,
\textasteriskcentered and \textperiodcentered together with the nosep key to reduce the vertical
spaces in the left side example and set the label key in mathematical mode for the right side as \ast, \diamond,
\circ and \star for the four levels together with the nosep key

• First level item
– Second level item

∗ Third level item
· Fourth level item

• First level item

∗ First level item
⋄ Second level item

∘ Third level item
⋆ Fourth level item

∗ First level item
Fake description environment
Here we set label={} and list-indent=2.5em,font=\bfseries.

SomeThing A short one-line description.
This is an entry without a label.
Something A short one-line description text.
Something long A much longer description text may take more than one line or more than one paragraph.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.

If we add list-indent=0pt you get widest style:
24 / 167©2024–2026 by Pablo González L

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-01-luamml-mathml.html], target: 'enumext-01-mathml.html' }
\DocumentMetadata
 {
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=1cm,right=1cm]{geometry}
\usepackage{unicode-math,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for enumext package},
 }
\begin{document}
\section{only enumext}
Some text here

\begin{enumext}[labelwidth=1cm,labelsep=0.25cm,align=left, wrap-label=\textbf{(#1}, label=\arabic*.)]
 \item This text is in the first level.\label{A}
 \begin{enumext}
 \item This text is in the second level.\footnote{foot note in enumext}
 \begin{enumext}
 \item This text is in the third level.
 \begin{enumext}
 \item This text is in the fourth level.\footnotemark[20]
 \end{enumext}
 \end{enumext}
 \end{enumext}
 \item[X] This text is in the first level.
 \item* This text is in the first level.
\end{enumext}

Some ref here \ref{A}\footnotetext[20]{foot note in enumext [20]}

\section{only enumext*}

Some text here

\begin{enumext*}[columns=2,labelwidth=1cm,labelsep=0.25cm,align=left, wrap-label=\textbf{#1)}, label=(\arabic*.]
 \item This text is in the first level.\label{B}
 \item[X] This text is in the first level.\footnotemark[30]
 \item* This text is in the first level.\footnote{foot note in enumext*}
 \item This text is in the first level.
\end{enumext*}

Some ref here \ref{B}\footnotetext[30]{foot note in enumext* [30]}

\section{enumext nested in enumext*}

Some text here

\begin{enumext*}
 \item This text is in the first level.\label{C}
 \item \begin{enumext}[base-fix]
 \item This text is in nested enumext.\label{D}\footnote{foot note in neseted enumext}
 \item This text is in nested enumext.\footnotemark[40]
 \end{enumext}
 \item This text is in the first level.
\end{enumext*}

Some refs here \ref{C} and \ref{D} \footnotetext[40]{foot note in neseted enumext [40]}

\section{enumext* nested in enumext}

\begin{enumext}
 \item This text is in the first level. \label{E}
 \item \begin{enumext*}[label=\roman*.]
 \item This text is in nested enumext*.\label{F}\footnotemark[50]
 \item This text is in nested enumext*.\footnote{foot note in neseted enumext*}
 \end{enumext*}
 \item This text is in the first level.
\end{enumext}

Some refs here \ref{E} and \ref{F} \footnotetext[50]{foot note in neseted enumext* [50]}

\section{Custom ref}

\begin{enumext}[ref={enumext-level-\arabic*}]
 \item This text is in the first level. \label{G}
 \item \begin{enumext*}[label=\roman*., ref={nested-\arabic{enumXi}.\roman*}]
 \item This text is in nested enumext*.\label{H}
 \item This text is in nested enumext*.
 \end{enumext*}
 \item This text is in the first level.
\end{enumext}

Some refs here \ref{G} and \ref{H}
\end{document}

1 only enumext
Some text here

(1.)This text is in the first level.

(a) This text is in the second level.1

i. This text is in the third level.
A. This text is in the fourth level.20

X This text is in the first level.

* (2.)This text is in the first level.

Some ref here 1.)

2 only enumext*
Some text here

(1.)This text is in the first level. X This text is in the first level.30

* (3.)This text is in the first level.2 (4.)This text is in the first level.

Some ref here (1.

3 enumext nested in enumext*
Some text here

1. This text is in the first level.
2. 1. This text is in nested enumext.3

2. This text is in nested enumext.40

3. This text is in the first level.

Some refs here 1. and 1.

4 enumext* nested in enumext
1. This text is in the first level.

2. i. This text is in nested enumext*.50

ii. This text is in nested enumext*.4

3. This text is in the first level.

Some refs here 1. and i.
1foot note in enumext

20foot note in enumext [20]
2foot note in enumext*

30foot note in enumext* [30]
3foot note in neseted enumext

40foot note in neseted enumext [40]
4foot note in neseted enumext*

50foot note in neseted enumext* [50]

1

5 Custom ref
1. This text is in the first level.

2. i. This text is in nested enumext*.
ii. This text is in nested enumext*.

3. This text is in the first level.

Some refs here enumext-level-1 and nested-2.i

2

		only enumext

		only enumext*

		enumext nested in enumext*

		enumext* nested in enumext

		Custom ref

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-02-luamml-mathml.html], target: 'enumext-02-mathml.html' }
\DocumentMetadata
 {
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=1cm,right=1cm]{geometry}
\usepackage{unicode-math,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for enumext package},
 }
\begin{document}
\section{enumext + multicols}
Some text here

\begin{enumext}[columns=2, labelwidth=1cm,labelsep=0.25cm,align=left, wrap-label=\textbf{(#1}, label=\arabic*.),partopsep=0.5cm]
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
 \item[X] This text is in the first level.
 \item* This text is in the first level.
\end{enumext}

Some text here

\section{enumext + minipage}

Some text here

\begin{enumext}[labelwidth=1cm,labelsep=0.25cm,align=left,partopsep=0.5cm,mini-env=0.4\linewidth]
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
 \miniright
 This text is in minipage.
\end{enumext}

\section{enumext + minipage + multicols}

Some text here

\begin{enumext}[columns=2,labelwidth=1cm,labelsep=0.25cm,align=left,partopsep=0.5cm,mini-env=0.4\linewidth]
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
 \miniright
 This text is in minipage.
\end{enumext}

Some text here

\section{enumext* + minipage}

Some text here

\begin{enumext*}[columns=2,labelwidth=1cm,labelsep=0.25cm,align=left,partopsep=0.5cm,mini-env=0.4\linewidth, mini-right = {This text is in minipage.}]
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
 \item This text is in the first level.
\end{enumext*}
\end{document}

1 enumext + multicols
Some text here

(1.)This text is in the first level.

(2.)This text is in the first level.

(3.)This text is in the first level.

(4.)This text is in the first level.

X This text is in the first level.

* (5.)This text is in the first level.

Some text here

2 enumext + minipage
Some text here

1. This text is in the first level.

2. This text is in the first level.

3. This text is in the first level.

4. This text is in the first level.

This text is in minipage.

3 enumext + minipage + multicols
Some text here

1. This text is in the first level.

2. This text is in the first level.

3. This text is in the first level.

4. This text is in the first level.

This text is in minipage.

Some text here

4 enumext* + minipage
Some text here

1. This text is in the first level. 2. This text is in the first level.
3. This text is in the first level. 4. This text is in the first level.

This text is in minipage.

1

		enumext + multicols

		enumext + minipage

		enumext + minipage + multicols

		enumext* + minipage

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-03-luamml-mathml.html], target: 'enumext-03-mathml.html' }
\DocumentMetadata
 {
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=1cm,right=1cm]{geometry}
\usepackage{unicode-math,graphicx,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for enumext package},
 }
\begin{document}
\section{enumext+keyanspic}

Some text here

\begin{enumext}[save-ans=test,save-sep={ },save-ref = true]
 \item Question with images.
 \begin{keyanspic}[layout-sty={3,2}]
 \anspic{\includegraphics[scale=0.30, alt={Un pato de color amarillo}]{example-image-duck}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula A}]{example-image-a}}
 \anspic*{\includegraphics[scale=0.15, alt={Una letra mayuscula B}]{example-image-b}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula C}]{example-image-c}}
 \anspic{\includegraphics[scale=0.15, alt={La palabra Image}]{example-image}}
 \end{keyanspic}
 \item Question with images.\label{dos}
 \begin{keyanspic}[label-pos=above, layout-sty={3,2}]
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula A}]{example-image-a}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula B}]{example-image-b}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula C}]{example-image-c}}
 \anspic{\includegraphics[scale=0.15, alt={La palabra Image}]{example-image}}
 \anspic*[A duck]{\includegraphics[scale=0.30, alt={Un pato de color amarillo}]{example-image-duck}}
 \end{keyanspic}
 \item Question with images.
 \begin{keyanspic}
 \anspic*[La letra A]{\includegraphics[scale=0.15, alt={Una letra mayuscula A}]{example-image-a}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula B}]{example-image-b}}
 \anspic{\includegraphics[scale=0.30, alt={Un pato de color amarillo}]{example-image-duck}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula C}]{example-image-c}}
 \anspic{\includegraphics[scale=0.15, alt={La palabra Image}]{example-image}}
 \end{keyanspic}
 \item Question with images.
 \begin{keyanspic}[label-pos=above]
 \anspic{\includegraphics[scale=0.30, alt={Un pato de color amarillo}]{example-image-duck}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula A}]{example-image-a}}
 \anspic*{\includegraphics[scale=0.15, alt={Una letra mayuscula B}]{example-image-b}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula C}]{example-image-c}}
 \anspic{\includegraphics[scale=0.15, alt={La palabra Image}]{example-image}}
 \end{keyanspic}
\end{enumext}

The answer to question \ref{dos} is \getkeyans{test:2}

\printkeyans*{test}
\end{document}

1 enumext+keyanspic
Some text here

1. Question with images.

A) B)

A
C)

B

D)

C
E)

Image

2. Question with images.

A)

A
B)

B
C)

C
D)

Image

E)

3. Question with images.

A)

A
B)

B
C) D)

C
E)

Image

4. Question with images.

A) B)

A
C)

B
D)

C
E)

Image

The answer to question 2. is E) A duck
1. C) ※ 2. E) A duck ※
3. A) La letra A ※ 4. C) ※

1

		enumext+keyanspic

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-04-luamml-mathml.html], target: 'enumext-04-mathml.html' }
\listfiles
\DocumentMetadata
 {
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=1cm,right=1cm]{geometry}
\usepackage{unicode-math,graphicx,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for enumext package},
 }
\begin{document}
\section{enumext + anskey + anskey*}

Some text here

\begin{enumext}[save-ans=test,save-sep={ },save-ref = true]
 \item Question A. \anskey{Answer A}
 \item Question B. \anskey{Answer B}
 \item Question C.
 \begin{anskey*}
 Answer with \verb+code+ and more
 \begin{verbatim}
 Some code here
 \end{verbatim}
 And text
 \end{anskey*}
\end{enumext}

The answer to question \ref{test:2} is \getkeyans{test:2}

\printkeyans*{test}

\section{enumext* + anskey + anskey*}

Some text here

\begin{enumext*}[save-ans=test-2,save-sep={ },save-ref = true]
 \item Question A. \anskey{Answer A}
 \item Question B. \anskey{Answer B}
 \item Question C.
 \begin{anskey*}
 Answer with \verb+code+ and more
 \begin{verbatim}
 Some code here
 \end{verbatim}
 And text
 \end{anskey*}
\end{enumext*}

\printkeyans{test-2}
\end{document}

1 enumext + anskey + anskey*
Some text here

1. Question A.

2. Question B.

3. Question C.

The answer to question 2 is Answer B
1. Answer A ※ 2. Answer B ※
3. Answer with code and more

 Some code here

And text ※

2 enumext* + anskey + anskey*
Some text here

1. Question A.
2. Question B.
3. Question C.

1. Answer A ※
2. Answer B ※
3. Answer with code and more

 Some code here

And text ※

1

		enumext + anskey + anskey*

		enumext* + anskey + anskey*

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-05-luamml-mathml.html], target: 'enumext-05-mathml.html' }
\DocumentMetadata{
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=1cm,right=1cm]{geometry}
\usepackage{unicode-math,graphicx,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for enumext package},
 }
\setenumext[print,1]{columns=2, columns-sep=1cm, font=\bfseries}
\setenumext[print*]{columns=2, columns-sep=1cm,first=\bfseries}
\setenumext[enumext,1]{columns=2,nosep,save-ref=true,save-sep={ },wrap-opt=\fbox{##1}, show-ans=true}
\setenumext[keyans]{columns=2,noitemsep}
\setenumext[keyans*]{columns=2,noitemsep}
\setenumextmeta[2]{myroman}{no-store, label=\Roman*., noitemsep}
\setenumextmeta[2]{myarabic}{no-store,list-offset=0.5cm,label=(\arabic*),noitemsep}
\begin{document}
\section{The enumext package in action}

\begin{enumext}[save-ans=mytest]
\item First type of questions
 \begin{keyans*}
 \item value
 \item*[$x=5$] correct
 \item value
 \item value
 \end{keyans*}
\item Second type of questions
 \begin{enumext}[myroman]
 \item $2\alpha+2\delta=90^{\circ}$
 \item $\alpha=\delta$
 \item $\angle EDF=45^{\circ}$
 \end{enumext}
 \begin{keyans}
 \item I only
 \item II only
 \item I and II only
 \item* I and III only
 \item I, II, and III
 \end{keyans}
\item* Third type of questions
 \begin{enumext}[myarabic]
 \item $2\alpha+2\delta=90^{\circ}$
 \item $\angle EDF=45^{\circ}$
 \end{enumext}
 \begin{keyans}
 \item value
 \item value
 \item*[some note y] value
 \item value
 \item value
 \end{keyans}
\item Question with image and label above:
 \begin{keyanspic}[label-pos=above, layout-sty={3,2}]
 \anspic*[La letra A]{\includegraphics[scale=0.15, alt={Una letra mayuscula A}]{example-image-a}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula B}]{example-image-b}}
 \anspic{\includegraphics[scale=0.30, alt={Un pato de color amarillo}]{example-image-duck}}
 \anspic{\includegraphics[scale=0.15, alt={Una letra mayuscula C}]{example-image-c}}
 \anspic{\includegraphics[scale=0.15, alt={La palabra Image}]{example-image}}
 \end{keyanspic}
\item A question
 \begin{keyans}[mini-env=0.5\linewidth, columns=1]
 \item value
 \item value
 \item value
 \item*[other note] correct
 \item value
 \miniright
 \includegraphics[scale=0.15,alt={Una letra mayuscula B}]{example-image-b}
 \end{keyans}
\item Question with image on left side: \anskey[item-star]{Mucak}
\end{enumext}

Some text here
\section{printkeyans}
Some text here

\printkeyans{mytest}

\section{printkeyans*}
Some text here

\printkeyans*{mytest}

\section{foreachkeyans}
Some text here

\foreachkeyans[sep={\par}]{mytest}

Some text here
\end{document}

1 The enumext package in action
1. First type of questions

A) value ∗ B) 𝑥 = 5 correct
C) value D) value

2. Second type of questions
I. 2𝛼 + 2𝛿 = 90∘

II. 𝛼 = 𝛿
III. ∠𝐸𝐷𝐹 = 45∘

A) I only
B) II only
C) I and II only

∗ D) I and III only
E) I, II, and III

* 3. Third type of questions
(1) 2𝛼 + 2𝛿 = 90∘

(2) ∠𝐸𝐷𝐹 = 45∘

A) value
B) value

∗ C) some note 𝑦 value

D) value
E) value

4. Question with image and label above:

∗ A) La letra A

A
B)

B
C)

D)

C
E)

Image

5. A question

A) value
B) value
C) value

∗ D) other note correct
E) value

B

6. Question with image on left side:
∗ Mucak

Some text here

2 printkeyans
Some text here
1. B) 𝑥 = 5 ※
2. D) ※
3. C) some note 𝑦 ※

4. A) La letra A ※
5. D) other note ※

* 6. Mucak ※

3 printkeyans*
Some text here
1. B) 𝑥 = 5 ※ 2. D) ※
3. C) some note 𝑦 ※ 4. A) La letra A ※
5. D) other note ※ * 6. Mucak ※

4 foreachkeyans
Some text here

B) 𝑥 = 5
D)
C) some note 𝑦
A) La letra A
D) other note
Mucak
Some text here

1

 𝑥 = 5

$x=5$

 2 𝛼 + 2 𝛿 = 90 ∘

$2\alpha +2\delta =90^{\circ }$

 𝛼 = 𝛿

$\alpha =\delta $

 ∠ 𝐸 𝐷 𝐹 = 45 ∘

$\angle EDF=45^{\circ }$

$2\alpha +2\delta =90^{\circ }$

$\angle EDF=45^{\circ }$

 𝑦

y

$x=5$

y

$x=5$

y

$x=5$

y

		The enumext package in action

		printkeyans

		printkeyans*

		foreachkeyans

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-06-luamml-mathml.html], target: 'enumext-06-mathml.html' }
\DocumentMetadata
 {
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=3cm,right=3cm]{geometry}
\usepackage{unicode-math,graphicx,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for enumext package},
 }
\newlength{\descitemwd}
\NewDocumentCommand \labelbx { s +m }
 {%
 \SuspendTagging{\parbox}%
 \IfBooleanTF{#1}%
 {\strut\smash{\parbox[t]{\labelwidth}{\raggedright{#2}}}}%
 {\strut\smash{\parbox[t]{\labelwidth}{\raggedleft{#2}}}}%
 \ResumeTagging{\parbox}
 }
\begin{document}

\section{Fake \texttt{itemize} environment}

\noindent\begin{minipage}[t]{0.45\linewidth}
\begin{enumext}[nosep, label=\textbullet]
 \item First level item
 \begin{enumext}[nosep,label=\normalfont\bfseries\textendash]
 \item Second level item
 \begin{enumext}[nosep,label=\textasteriskcentered]
 \item Third level item
 \begin{enumext}[nosep,label=\textperiodcentered]
 \item Fourth level item
 \end{enumext}
 \end{enumext}
 \end{enumext}
 \item First level item
\end{enumext}
\end{minipage}\hfill
\begin{minipage}[t]{0.45\linewidth}
\begin{enumext}[nosep, label=\ast]
 \item First level item
 \begin{enumext}[nosep,label=\diamond]
 \item Second level item
 \begin{enumext}[nosep,label=\circ]
 \item Third level item
 \begin{enumext}[nosep,label=\star]
 \item Fourth level item
 \end{enumext}
 \end{enumext}
 \end{enumext}
 \item First level item
\end{enumext}
\end{minipage}

\section{Fake \texttt{description} environment}

\settowidth{\descitemwd}{\textbf{Something long}}
\begin{enumext}[label={},labelwidth=\descitemwd,font=\bfseries,noitemsep,topsep=3pt]
 \item[SomeThing] A short one-line description.
 \item[] This is an entry \emph{without} a label.
 \item[Something] A short \emph{one-line} description text.
 \item[Something long] A much \emph{longer} description text may take
 more than one line or more than one paragraph.

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua.
\end{enumext}

\begin{enumext*}[label={},labelwidth=\descitemwd,font=\bfseries,noitemsep,topsep=3pt]
 \item[SomeThing] A short one-line description.
 \item[] This is an entry \emph{without} a label.
 \item[Something] A short \emph{one-line} description text.
 \item[Something long] A much \emph{longer} description text may take
 more than one line or more than one paragraph.

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua.
\end{enumext*}

\begin{enumext}[label={},labelwidth=\descitemwd,list-indent=0pt,font=\bfseries,noitemsep,topsep=3pt]
 \item[SomeThing] A short one-line description.
 \item[] This is an entry \emph{without} a label.
 \item[Something] A short \emph{one-line} description text.
 \item[Something long] A much \emph{longer} description text may take
 more than one line or more than one paragraph.

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua.
\end{enumext}

\begin{enumext*}[label={},labelwidth=\descitemwd,list-indent=0pt,font=\bfseries,noitemsep,topsep=3pt]
 \item[SomeThing] A short one-line description.
 \item[] This is an entry \emph{without} a label.
 \item[Something] A short \emph{one-line} description text.
 \item[Something long] A much \emph{longer} description text may take
 more than one line or more than one paragraph.

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua.
\end{enumext*}

\section{Fake \texttt{description} environment in margin}

\begin{enumext}[align=right, label={},labelsep=4pt,labelwidth=\descitemwd,list-offset={-\descitemwd-4pt}, font=\bfseries,noitemsep,topsep=3pt]
 \item[SomeThing] A short one-line description.
 \item This is an entry \textit{without} a label.
 \item[Something] A short one-line description.
 \item[Something long] A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
 Curabitur dictum gravida mauris.
\end{enumext}

\begin{enumext*}[align=right, label={},labelsep=4pt,labelwidth=\descitemwd,list-offset={-\descitemwd-4pt}, font=\bfseries,noitemsep,topsep=3pt]
 \item[SomeThing] A short one-line description.
 \item This is an entry \textit{without} a label.
 \item[Something] A short one-line description.
 \item[Something long] A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
 Curabitur dictum gravida mauris.
\end{enumext*}

\section{Fake \texttt{description} with multi-line labels}

\begin{enumext}[label={},labelsep=4pt,labelwidth=\descitemwd,list-offset=-\dimeval{\descitemwd+4pt}, wrap-label*={\labelbx{#1}}, font=\bfseries,noitemsep,topsep=3pt]
 \item[SomeThing] A short one-line description.
 \item This is an entry \textit{without} a label.
 \item[Something] A short one-line description.
 \item[Something \\ long] A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
 Curabitur dictum gravida mauris.

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
 Curabitur dictum gravida mauris.

 \item[SoMeThInG \\ LoNg] A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
 Curabitur dictum gravida mauris.

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
 Curabitur dictum gravida mauris.
\end{enumext}
\end{document}

1 Fake itemize environment
• First level item

– Second level item
∗ Third level item

· Fourth level item
• First level item

∗ First level item
⋄ Second level item

∘ Third level item
⋆ Fourth level item

∗ First level item

2 Fake description environment
SomeThing A short one-line description.

This is an entry without a label.
Something A short one-line description text.
Something long A much longer description text may take more than one line or more than one

paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

SomeThing A short one-line description.
This is an entry without a label.

Something A short one-line description text.
Something long A much longer description text may take more than one line or more than one

paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

SomeThing A short one-line description.
This is an entry without a label.

Something A short one-line description text.
Something long A much longer description text may take more than one line or more than one
paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua.
SomeThing A short one-line description.

This is an entry without a label.
Something A short one-line description text.
Something long A much longer description text may take more than one line or more than one

paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

3 Fake description environment in margin
SomeThing A short one-line description.

This is an entry without a label.
Something A short one-line description.

Something long A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

SomeThing A short one-line description.
This is an entry without a label.

Something A short one-line description.
Something long A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,

vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

4 Fake description with multi-line labels

SomeThing
A short one-line description.

1

This is an entry without a label.

Something
A short one-line description.

Something
long

A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida mauris.

SoMeThInG
LoNg

A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida mauris.

2

		Fake itemize environment

		Fake description environment

		Fake description environment in margin

		Fake description with multi-line labels

 ∗

 ⋄

 ∘

 ⋆

$\ast $

$\ast $

$\diamond $

$\diamond $

$\circ $

$\circ $

$\star $

$\star $

$\ast $

% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer, draft: true }
% arara: lualatex: { branch: developer }
% arara: clean: { extensions: [aux, log, out] }
% arara: move: { files: [enumext-07-luamml-mathml.html], target: 'enumext-07-mathml.html' }
\DocumentMetadata
 {
 lang=en-US,
 pdfversion=2.0,
 pdfstandard=ua-2,
 tagging=on,
 }
\documentclass{article}
\usepackage[top=2cm,bottom=2cm,left=1cm,right=1cm]{geometry}
\usepackage{unicode-math,hyperref,enumext}
\hypersetup
 {
 colorlinks = true,
 pdftitle = {Test tagged PDF for enumext package},
 }
\resetenumext{section}
\setenumext{resume,label=(\arabic*.),widest=99}
\begin{document}
\section{Started with \texttt{resume} key set by \texttt{\textbackslash setenumext}}
\begin{enumext}[columns=2]
 \item Salida 1
 \item Salida 2
 \item Salida 3
\end{enumext}

\begin{enumext}[label=\arabic*.,start=80]%
 \item Salida 80
 \item Salida 81
\end{enumext}

\begin{enumext}
 \item Salida (82)
\end{enumext}

\section{Reset by \texttt{\textbackslash resetenumext}}

\begin{enumext}
 \item Salida 1
 \item Salida 2
\end{enumext}

\section*{Unnumbered, reset by \texttt{reset} key}

\begin{enumext}[reset]
 \item Salida 1
 \item Salida 2
\end{enumext}

\section{Using \texttt{series} and \texttt{resume} keys in inner levels}

\begin{enumext}[columns=2]
 \item first level
 \begin{enumext}[series=foo]
 \item second level
 \item second level
 \end{enumext}
 Some text on first level
 \begin{enumext}[resume=foo]
 \item second level
 \item second level
 \end{enumext}
 \item first level
 \begin{enumext*}[series=baz]
 \item second level starred
 \item second level starred
 \end{enumext*}
 Some text on first level
 \begin{enumext*}[resume=baz]
 \item second level starred
 \item second level starred
 \end{enumext*}
 \item first level
 \item first level
\end{enumext}

\section*{Using \texttt{resume*} key}

\begin{enumext}[resume*]
 \item Salida 5 (two-columns)
 \item Salida 6 (two-columns)
\end{enumext}
\end{document}

1 Started with resume key set by \setenumext

(1.) Salida 1

(2.) Salida 2

(3.) Salida 3

80.Salida 80

81.Salida 81

(82.) Salida (82)

2 Reset by \resetenumext
(1.) Salida 1

(2.) Salida 2

Unnumbered, reset by reset key
(1.) Salida 1

(2.) Salida 2

3 Using series and resume keys in inner levels

(1.) first level

(a) second level
(b) second level

Some text on first level

(c) second level
(d) second level

(2.) first level

1. second level starred
2. second level starred

Some text on first level

3. second level starred
4. second level starred

(3.) first level

(4.) first level

Using resume* key

(5.) Salida 5 (two-columns) (6.) Salida 6 (two-columns)

1

		Started with resume key set by \setenumext

		Reset by \resetenumext

		Using series and resume keys in inner levels

https://github.com/latex3/tagging-project
https://dev.verapdf-rest.duallab.com
https://ngpdf.com

enumext v2.1 §.9 The way of non-enumerated lists

SomeThing A short one-line description.
This is an entry without a label.
Something A short one-line description text.
Something long A much longer description text may take more than one line or more than one paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.

BOMB The small space at the beginning of the “unlabeled entry” corresponds to \labelsep and can be removed using
\hspace{-\labelsep} at the beginning of the line.

TagWhen tagged PDF is active the default description style is NOT available due to the redefinition of \makelabel for
the align key which uses \makebox in this case, meaning that \item[〈content〉] will not extend beyond \labelwidth
which causes overlaps,

Description indented by label
Here we set label={} and we will give a convenient value to labelsep and labelwidth, for example we
can take as reference our longest label and pass it as value using:

\newlength{\descitemwd}
\settowidth{\descitemwd}{\textbf{Something long}}

and then use labelsep=4pt,labelwidth=\descitemwd,font=\bfseries.

SomeThing A short one-line description.
This is an entry without a label.

Something A short one-line description.
Something long A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut

purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

The environment can be translated so that the 〈labels〉 are on the left margin calculating the value passed to the
list-offset key, in this case it will be equal to the sum of the values set by the labelwidth and labelsep
keys finally resulting as list-offset={-\descitemwd - 4pt}.

SomeThing A short one-line description.
This is an entry without a label.

Something A short one-line description.
Something long A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum

ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

If we add align=right it will look like this:

SomeThing A short one-line description.
This is an entry without a label.

Something A short one-line description.
Something long A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum

ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

BOMB At this point we have used list-offset={-\descitemwd - 4pt} instead of list-offset={-\labelwidth - \labelsep},
this is because the parameters \labelwidth and \labelsep take the default values, as if we had not set label.

Description with multi-line labels
The label key does not accept multiline material, this is where the wrap-label and wrap-label* keys comes
into play. Unlike the enumitem package, the align key only supports three options, so what we will do is
create a command in the style \parleft of enumitem that allows us to place multiline labels using \parbox.

\NewDocumentCommand \labelbx { s +m }
{%

\SuspendTagging{\parbox}%
\IfBooleanTF{#1}
{\strut\smash{\parbox[t]{\labelwidth}{\raggedright{#2}}}}%
{\strut\smash{\parbox[t]{\labelwidth}{\raggedleft{#2}}}}%

\ResumeTagging{\parbox}%
}

Now we just need to set wrap-label*={\labelbx{#1}}.

SomeThing A short one-line description.
This is an entry without a label.

Something A short one-line description.
Something

long
A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing
vitae, felis. Curabitur dictum gravida mauris.

25 / 167©2024–2026 by Pablo González L

enumext v2.1 §.10 References

SoMeThInG
LoNg

A much longer description. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

Final notes
The original implementation (if you can call it that) of the ideas that led to the creation of enumext were some
macros using the enumerate[5] package for personal use created in early 2003, the code was quite questionable,
but functional for these simple requirements.

With the great answers given by Christian Hupfer in Create a fake label ref using list and the answer given by
David Carlisle in Change the use of label ref by data save in an array (list) I managed to create a more solid code
than the original version, now using the l3prop[11] and l3seq[11] modules together with the hyperref[8]
and enumitem[6] packages, which did the job, but with some limitations.
As time went by I took these limitations as a personal challenge which I called “reinventing the wheel”, since there
were packages and classes that did more or less what I was looking for, but did not fit my simple requirements.
This “reinventing the wheel” finally ended up becoming enumext.

Why list environments?

The answer is simple, first I love the beauty of its syntax and many of what I had already written used the
enumerate environment or lists created using the enumitem package. In my mind I thought: how complicated
could it be to write a package that looked like enumitem? It seemed simple enough, of course I didn’t have
in mind the mess I was getting into working with list environments, minipage and adding support for the
multicol and hyperref packages.
Of course, seeing the final result of the experiment “reinventing the wheel” I am quite satisfied.

Why not random questions and other utilities

The “random” type questions I love and hate them at the same time, although they simplify a lot the work
when creating a multiple choice test, but you lose the beauty of typessetting a document with LATEX, that is to
say the output does not always look as nice as it should, even if they are only alternatives these must follow a
certain order when presented either numerical or presentation, that said handling that using nested lists is quite
complicated so I do not classify to be implemented.

Why has it taken so long?

One of the setbacks, beyond my laziness, was including compatibility with tagged PDF. To be honest, it’s
something I never considered at any point, but I firmly believe that being able to create accessible documents
provides a great opportunity in the world of mathematics education. From my perspective as a high school
teacher, beyond theorems and deep mathematics, the use of exercise lists is one of the most common things.
Being able to open the way to work in parallel with those who have different abilities is really important and I
regret not having looked into this in the past. I hope that enumext serves this purpose and inspires more users
and authors to follow this path.

10 References
[1] Hirschhorn, Philip. “Using the exam document class”. Available from ctan, https://www.ctan.org/

pkg/exam, 2023.

[2] Niederberger, Clemens. “xsim – eXercise Sheets IMproved”. Available from ctan, https://www.ctan.
org/pkg/xsim, 2023.

[3] Mittelbach, Frank. “An environment for multicolumn output”. Available from ctan, https://www.
ctan.org/pkg/multicol, 2025.

[4] González, Pablo. “scontents - Stores LATEX contents in memory or files”. Available from ctan, https:
//www.ctan.org/pkg/scontents, 2025.

[5] The LATEX Project. “enumerate – Enumerate with redefinable labels”. Available from ctan, https://www.
ctan.org/pkg/enumerate, 2025.

[6] Bezos, Javier. “Customizing lists with the enumitem package”. Available from ctan, https://www.ctan.
org/pkg/enumitem, 2025.

[7] Berry, Karl. “LATEX 2𝜀: An Unofficial Reference Manual”. Available from ctan, https://ctan.org/pkg/
latex2e-help-texinfo, 2025.

[8] The LATEX Project. “Extensive support for hypertext in LATEX”. Available from ctan, https://www.ctan.
org/pkg/hyperref, 2025.

[9] Burnol, Jean-François. “The footnotehyper package”. Available from ctan, https://www.ctan.org/
pkg/footnotehyper, 2025.

26 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/364763/7832
https://tex.stackexchange.com/a/363963/7832
https://www.ctan.org/pkg/exam
https://www.ctan.org/pkg/exam
https://www.ctan.org/pkg/xsim
https://www.ctan.org/pkg/xsim
https://www.ctan.org/pkg/multicol
https://www.ctan.org/pkg/multicol
https://www.ctan.org/pkg/scontents
https://www.ctan.org/pkg/scontents
https://www.ctan.org/pkg/enumerate
https://www.ctan.org/pkg/enumerate
https://www.ctan.org/pkg/enumitem
https://www.ctan.org/pkg/enumitem
https://ctan.org/pkg/latex2e-help-texinfo
https://ctan.org/pkg/latex2e-help-texinfo
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/footnotehyper
https://www.ctan.org/pkg/footnotehyper

enumext v2.1 §.11 Change history

[10] The LATEX Project. “The expl3 package”. Available from ctan, https://www.ctan.org/pkg/l3kernel,
2025.

[11] The LATEX Project. “The LATEX3 Interfaces”. Available from ctan, https://www.ctan.org/pkg/
l3kernel, 2025.

[12] The LATEX Project. “The LATEX 2𝜀 sources”. Available from ctan, https://ctan.org/tex-archive/
macros/latex/base, 2025.

[13] The LATEX Project. “LATEX News, Issue 41, June 2025”. Available from ctan, https://ctan.org/
tex-archive/macros/latex/base, 2025.

[14] The LATEX Project. “LATEX for authors current version”. Available from ctan, https://ctan.org/pkg/
latex-base, 2025.

[15] Gundlach, Patrick. “The lua-visual-debug package”. Available from ctan, https://www.ctan.org/
pkg/lua-visual-debug, 2023.

[16] Lemvig, Mogens. “The shortlst package”. Available from ctan, https://www.ctan.org/pkg/
shortlst, 1998.

[17] Niederberger, Clemens. “tasks – Horizontally columned lists”. Available from ctan, https://www.
ctan.org/pkg/tasks, 2022.

[18] Fischer, Ulrike. “tagpdf – LATEX kernel code for PDF tagging”. Available from ctan, https://www.ctan.
org/pkg/tagpdf, 2025.

[19] The LATEX Project. “latex-lab – LATEX laboratory”. Available from ctan, https://www.ctan.org/pkg/
latex-lab, 2025.

[20] Mittelbach, Frank. “LATEX’s socket management”. Available from ctan, https://ctan.org/
tex-archive/macros/latex/base, 2025.

11 Change history
v2.1 (ctan), 2026-01-15 – Fixed bad interaction between \setenumext and the ref key.
v2.0 (ctan), 2025-12-02 – Update requirement to multicol release 2025-10-21.

– Adjustments in the documentation.
v1.9 (ctan), 2025-11-01 – Update requirement to LATEX release 2025-11-01.

– Move \setcounter to \begin{list}{〈arg one〉}{〈arg two〉\setcounter}.
– Update code for tagged PDF.

v1.8 (ctan), 2025-10-04 – Replacing \scantokens (primitive) with \tl_retokenize:n.
– Cleanup warnings and details returned by expltools.

v1.7 (ctan), 2025-07-10 – Fixed \setenumext{enumext*}{resume}.
– Fixed bad interaction between \setenumext and the resume key.
– The behavior of the key resume* has been updated and documented.

v1.6 (ctan), 2025-07-04 – Syntax simplification for \setenumextmeta.
– Environments can be started with the key resume without value.
– Add \resetenumext, reset and reset* keys.
– The resume, resume* and series keys can now be set per level.
– Fixed bad interaction between \printkeyans and the resume, resume* keys.

v1.5 (ctan), 2025-06-11 – Replacing \regex_match: (deprecated) with \regex_if_match:.
– Add keys beginpenalty, midpenalty and endpenalty.

v1.4 (ctan), 2025-06-09 – Improved implementation of the start key for tagged PDF.
– Improved implementation of the ref key.
– Fixed the behavior of the save-sep key.
– Fixed the behavior of the resume* key.

v1.3 (ctan), 2025-06-01 – Removed dependency on the scontents package.
– The anskey* environment has been rewritten using the new c-type argument.

v1.2 (ctan), 2025-03-28 – Replace signature (prevent expansion for optional argument).
– Solve Inconsistent local/global assignment.

v1.1 (ctan), 2024-11-14 – Fixed implementation for font and base-fix keys.
– Added new keys for symbol marks.
– Update and improvements in the internal code.
– Adjustments in the documentation.

v1.0 (ctan), 2024-11-01 – First public release.

27 / 167©2024–2026 by Pablo González L

https://www.ctan.org/pkg/l3kernel
https://www.ctan.org/pkg/l3kernel
https://www.ctan.org/pkg/l3kernel
https://ctan.org/tex-archive/macros/latex/base
https://ctan.org/tex-archive/macros/latex/base
https://ctan.org/tex-archive/macros/latex/base
https://ctan.org/tex-archive/macros/latex/base
https://ctan.org/pkg/latex-base
https://ctan.org/pkg/latex-base
https://www.ctan.org/pkg/lua-visual-debug
https://www.ctan.org/pkg/lua-visual-debug
https://www.ctan.org/pkg/shortlst
https://www.ctan.org/pkg/shortlst
https://www.ctan.org/pkg/tasks
https://www.ctan.org/pkg/tasks
https://www.ctan.org/pkg/tagpdf
https://www.ctan.org/pkg/tagpdf
https://www.ctan.org/pkg/latex-lab
https://www.ctan.org/pkg/latex-lab
https://ctan.org/tex-archive/macros/latex/base
https://ctan.org/tex-archive/macros/latex/base

enumext v2.1 §.12 Index of Documentation

12 Index of Documentation
The italic numbers denote the pages where the corresponding entry is described.

C
Document class:

article . 2
book . 2
exam . 2
letter . 2
report . 2

\columnbreak . 4, 15
\columnsep . 11
Commands provide by enumext:

\anskey . 12–15
\anspic 12–14, 17, 18
\foreachkeyans 19
\getkeyans 14, 19
\item* 5–7, 12–14, 16, 17
\item 5–8, 10, 12, 14, 16, 17
\miniright . 12
\printkeyans 6, 13, 20
\resetenumext 11
\setenumextmeta 6
\setenumext 5–7, 12, 14, 16, 20

Counters defined by enumext:
enumXiii . 4
enumXii . 4
enumXiv . 4
enumXi . 4
enumXviii . 4
enumXvii . 4
enumXvi . 4
enumXv . 4

D
Dimension defined by enumext:

\itemwidth 4, 5, 11

E
Environments provide by enumext:

anskey* 12–16, 24
enumext* 4–17, 20, 24
enumext 4–17, 20, 24
keyans* 4–16, 24
keyanspic 4, 7, 9, 10, 12–15, 17, 24
keyans 4, 6–18, 24

Environments:
Verbatim . 16
center . 5
description 5, 24, 25
enumerate 1, 3, 5, 26
figure . 5
flushleft . 5
flushright . 5
itemize . 5, 24
list . 3, 5, 10, 26
minipage 3–5, 8–10, 12, 24, 26
multicols 3, 4, 11, 24
quotation . 5
quote . 5
shortenumerate 5
tabbing . 5
table . 5
tasks . 5

trivlist . 5
verbatim . 5
verse . 5

F
\footnote . 5

I
\itemsep . 9
\itemwidth . 4, 5, 11

K
Keys for \anskey provide by enumext:

break-col . 15
item-join . 15
item-pos* . 15
item-star . 15
item-sym* . 15

Keys for \foreachkeyans provide by enumext:
after . 20
before . 20
sep . 19
start . 19
step . 19
stop . 19
wrapper . 20

Keys for anskey* provide by enumext:
break-col . 15
force-eol . 16
item-join . 15
item-pos* . 15
item-star . 15
item-sym* . 15
overwrite . 16
write-env . 15

Keys for environments provide by enumext:
above* . 9
above . 9
after . 10
align 7, 14, 24, 25
base-fix . 9
before* . 10
before . 10
beginpenalty 8
below* . 9
below . 9
check-ans 13, 14
columns-sep 4, 11, 24
columns 4, 9, 11, 24
endpenalty . 8
first . 10
font . 7, 13, 14
item-pos* . 5, 6
item-sym* . 5, 6
itemindent 9, 10
itemsep . 9
label-pos . 18
label-sep . 18
labelsep 3–7, 9–11, 24, 25
labelwidth 3–7, 9–11, 13, 14, 24, 25
label 7, 8, 10, 16, 17, 24, 25

28 / 167©2024–2026 by Pablo González L

enumext v2.1 §.12 Index of Documentation

layout-sep . 18
layout-sty 17, 18
layout-top . 18
list-indent 3, 9, 10
list-offset 3, 9, 25
listparindent 10
mark-ans* 13, 14, 16, 18
mark-ans 13, 14
mark-pos* 14, 16, 18
mark-pos . 13
mark-ref . 13
mark-sep* 14, 16, 18
mark-sep 13, 14
midpenalty . 8
mini-env 4, 9, 12, 24
mini-right* 7, 12
mini-right 7, 12, 24
mini-sep . 4, 12
mode-box . 7
no-store 12–15, 24
noitemsep . 9
nosep . 9, 24
overwrite . 15
parsep . 8–10, 18
partopsep . 8
ref . 4, 8, 24
reset* 6, 7, 10, 11
reset 6, 7, 10, 11, 24
resume* 6, 7, 10–12, 24
resume 6, 7, 10–12, 24
rightmargin 10
save-ans 4, 6, 10–20, 24
save-key 10, 12, 13, 20
save-ref 4, 7, 13–15, 19, 24
save-sep 13, 16, 18, 24
series 6, 7, 10–12, 24
show-ans 13, 14, 16, 18, 24
show-length . 8
show-pos 13, 14, 16, 18, 19
start* . 10, 11
start . 10, 11
topsep . 8, 9, 18
widest . 7
wrap-ans* 14, 16, 18
wrap-ans 13, 14
wrap-label* 7, 8, 25

wrap-label 7, 8, 13, 14, 24, 25
wrap-opt 13, 14, 16, 18
write-env . 16

L
\label . 4
Labels provide by enumext:

\Alph* . 7, 8, 16
\Roman* . 7, 8
\alph* . 7, 8
\arabic* . 7, 8
\roman* . 7, 8

\labelsep . 3, 7
\labelwidth . 3, 7
\linewidth . 12
\listparindent . 10

P
Packages:

enumerate . 26
enumext 1–5, 7, 13, 17, 24, 26
enumitem 3, 4, 25, 26
fancyvrb . 16
footnotehyper 5
geometry . 24
graphicx . 24
hyperref 4, 5, 13–15, 24, 26
l3keys . 7
l3prop . 26
l3seq . 26
luamml . 24
multicol 1, 2, 4, 24, 26, 27
scontents . 27
shortlst . 5
tasks . 5, 6
unicode-math 24
xsim . 2

\parsep . 8
\partopsep . 8

R
\raggedcolumns . 4
\ref . 4
\rightmargin . 10

T
\topsep . 8

29 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

13 Implementation
The most recent publicly released version of enumext is available at ctan: https://www.ctan.org/pkg/
enumext. While general feedback via email is welcomed, specific bugs or feature requests should be reported
through the issue tracker: Github https://github.com/pablgonz/enumext/issues.

BOMB The documentation presented here is far from professional, it contains a lot of obvious information that to the eye of a
TEXpert are superfluous, but, after so many years developing this project is the only way to remember what does what.

13.1 General conventions
Variables containing i, ii, iii and iv are associated by level with the enumext environment, variables
containing v are associated with the keyans environment, variables containing vi are associated with the
keyanspic environment, variables containing vii are associated with the enumext* environment and
variables containing viii are associated with the keyans* environment.

To simplify writing and documentation some variables and functions that are common to the different levels of
the environments are described using a capital “X”.

The temporary function __enumext_tmp:n is used in different parts of the package code for variable creation
or execution of other functions that are grouped into this one.

All variables and functions defined in this package are private and are NOT intended to work or be used by
another package or module.

13.2 Initial set up
Start the DocStrip guards.

1 ⟨∗package⟩

Identify the internal prefix (LATEX3 DocStrip convention) for l3doc class.
2 ⟨@@=enumext⟩

13.3 Declaration of the package
First we will make sure we have a minimum (super updated) version of LATEX to work correctly.

3 \NeedsTeXFormat{LaTeX2e}[2025-11-01]

Now declare the enumext package.
4 \ProvidesExplPackage {enumext} {2026-01-15} {2.1} {Enumerate exercise sheets}

Finally check if the multicol package are loaded, if not we load it.
5 \hook_gput_code:nnn {begindocument} {enumext}
6 {
7 \IfPackageLoadedTF { multicol }
8 {
9 \msg_info:nnn { enumext } { package-load } { multicol }

10 }
11 {
12 \msg_info:nnn { enumext } { package-not-load } { multicol }
13 \RequirePackage{multicol}[2025-10-21]
14 }
15 }

13.4 Definition of variables
Variables that do not appear in this section are created by means of \keys_define:nn or some function
described below.

\l__enumext_level_int
\l__enumext_level_h_int

\l__enumext_anskey_level_int
\l__enumext_keyans_level_int

\l__enumext_keyans_level_h_int

\l__enumext_keyans_pic_level_int

Integer variables will control the nesting levels of the environments, anskey* environment and \anskey
command.

16 \int_new:N \l__enumext_level_int
17 \int_new:N \l__enumext_level_h_int
18 \int_new:N \l__enumext_anskey_level_int
19 \int_new:N \l__enumext_keyans_level_int
20 \int_new:N \l__enumext_keyans_level_h_int
21 \int_new:N \l__enumext_keyans_pic_level_int

(End of definition for \l__enumext_level_int and others.)

30 / 167©2024–2026 by Pablo González L

https://www.ctan.org/pkg/enumext
https://www.ctan.org/pkg/enumext
https://github.com/pablgonz/enumext/issues

enumext v2.1 §.13 Implementation

\l__enumext_starred_bool
\g__enumext_starred_bool

\l__enumext_starred_first_bool

\l__enumext_standar_bool
\g__enumext_standar_bool

\l__enumext_standar_first_bool

\l__enumext_keyans_env_bool
\g__enumext_start_line_tl
\g__enumext_envir_name_tl
\l__enumext_envir_name_tl

Internal variables used by functions __enumext_is_not_nested:, __enumext_is_on_first_level:
and __enumext_keyans_name_and_start: (§13.5.1).

22 \bool_new:N \l__enumext_starred_bool
23 \bool_new:N \g__enumext_starred_bool
24 \bool_new:N \l__enumext_starred_first_bool
25 \bool_new:N \l__enumext_standar_bool
26 \bool_new:N \g__enumext_standar_bool
27 \bool_new:N \l__enumext_standar_first_bool
28 \bool_new:N \l__enumext_keyans_env_bool
29 \tl_new:N \g__enumext_start_line_tl
30 \tl_new:N \g__enumext_envir_name_tl
31 \tl_new:N \l__enumext_envir_name_tl

(End of definition for \l__enumext_starred_bool and others.)

\l__enumext_counter_i_tl
\l__enumext_counter_ii_tl

\l__enumext_counter_iii_tl
\l__enumext_counter_iv_tl
\l__enumext_counter_v_tl
\l__enumext_counter_vi_tl

\l__enumext_counter_vii_tl
\l__enumext_counter_viii_tl

Variables to store the “name of the counters” enumXi, enumXii, enumXiii and enumXiv for enumext en-
vironment, enumXv for keyans environment and enumXvi for the keyanspic environment. The counters
enumXvii and enumXviii are used by enumext* and keyans* environments.
The initial values of these variables are set by the function __enumext_define_counter:Nn (§13.11) and
then modified by the function __enumext_label_style:Nnn used by label key (§13.14).

32 \cs_set_protected:Npn __enumext_tmp:n #1
33 {
34 \tl_new:c { l__enumext_counter_#1_tl }
35 }
36 \clist_map_inline:nn { i, ii, iii, iv, v, vi, vii, viii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_counter_i_tl and others.)

\l__enumext_ref_key_arg_tl
\l__enumext_ref_the_count_tl

\l__enumext_renew_counter_X_tl

\l__enumext_the_counter_X_tl

Internal variables used by ref key (§13.14).
37 \tl_new:N \l__enumext_ref_key_arg_tl
38 \tl_new:N \l__enumext_ref_the_count_tl
39 \cs_set_protected:Npn __enumext_tmp:n #1
40 {
41 \tl_new:c { l__enumext_renew_counter_#1_tl }
42 \tl_new:c { l__enumext_the_counter_#1_tl }
43 \tl_set:ce { l__enumext_the_counter_#1_tl } { \exp_not:c { theenumX#1 } }
44 }
45 \clist_map_inline:nn { i, ii, iii, iv, v, vi, vii, viii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_ref_key_arg_tl and others.)

\l__enumext_series_name_tl
\l__enumext_resume_count_bool

\l__enumext_resume_count_X_bool

\l__enumext_resume_series_X_bool

\l__enumext_resume_star_key_X_bool

\g__enumext_resume_last_keys_X_tl

Internal variables used by resume, resume* and series keys (§13.26).
46 \tl_new:N \l__enumext_series_name_tl
47 \bool_new:N \l__enumext_resume_count_bool
48 \cs_set_protected:Npn __enumext_tmp:n #1
49 {
50 \bool_new:c { l__enumext_resume_count_#1_bool }
51 \bool_new:c { l__enumext_resume_series_#1_bool }
52 \bool_new:c { l__enumext_resume_star_key_#1_bool }
53 \tl_new:c { g__enumext_resume_last_keys_#1_tl }
54 }
55 \clist_map_inline:nn { i, ii, iii, iv, vii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_series_name_tl and others.)

\l__enumext_current_widest_dim

\g__enumext_counter_styles_tl

\g__enumext_widest_label_tl
\l__enumext_label_width_by_box

The variable \l__enumext_current_widest_dim stores the current label width, the variable \g__-
enumext_counter_styles_tl stores the default 〈label style〉 and the variable \g__enumext_widest_-
label_tl the label width. These variables are used by widest (§13.15) and label (§13.13) keys.

56 \dim_new:N \l__enumext_current_widest_dim
57 \tl_new:N \g__enumext_counter_styles_tl
58 \tl_new:N \g__enumext_widest_label_tl
59 \box_new:N \l__enumext_label_width_by_box

(End of definition for \l__enumext_current_widest_dim and others.)

31 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

\l__enumext_leftmargin_tmp_X_bool

\l__enumext_leftmargin_tmp_X_dim

\l__enumext_leftmargin_X_dim
\l__enumext_itemindent_X_dim

The boolean variable \l__enumext_leftmargin_tmp_X_bool and the dimensional variable \l__enumext_-
leftmargin_tmp_X_dim are used by the list-indent key (§13.19). The variables \l__enumext_-
leftmargin_X_dim and \l__enumext_itemindent_X_dim are used and set by the function __enumext_-
calc_hspace:NNNNNNNNNNNN (§13.41.1).

60 \cs_set_protected:Npn __enumext_tmp:n #1
61 {
62 \bool_new:c { l__enumext_leftmargin_tmp_#1_bool }
63 \dim_new:c { l__enumext_leftmargin_tmp_#1_dim }
64 \dim_new:c { l__enumext_leftmargin_#1_dim }
65 \dim_new:c { l__enumext_itemindent_#1_dim }
66 }
67 \clist_map_inline:nn { i, ii, iii, iv, v, vi, vii, viii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_leftmargin_tmp_X_bool and others.)

\l__enumext_multicols_above_X_skip

\l__enumext_multicols_below_X_skip

\g__enumext_multicols_right_X_skip

\l__enumext_align_label_pos_X_str

Internal variables used by columns key (§13.23) and align key (§13.13).
68 \cs_set_protected:Npn __enumext_tmp:n #1
69 {
70 \skip_new:c { l__enumext_multicols_above_#1_skip }
71 \skip_new:c { l__enumext_multicols_below_#1_skip }
72 \skip_new:c { g__enumext_multicols_right_#1_skip }
73 \str_new:c { l__enumext_align_label_pos_#1_str }
74 }
75 \clist_map_inline:nn { i, ii, iii, iv, v } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_multicols_above_X_skip and others.)

\g__enumext_minipage_stat_int

\l__enumext_minipage_temp_skip

\l__enumext_minipage_left_skip

\l__enumext_minipage_right_skip

\l__enumext_minipage_after_skip

\g__enumext_minipage_right_skip

\g__enumext_minipage_after_skip

\l__enumext_minipage_left_X_dim

\l__enumext_minipage_active_X_bool

Internal variables used by \miniright command (§13.24.4) and the keys mini-right, mini-right*, mini-
env and mini-sep (§13.22, §13.24).

76 \int_new:N \g__enumext_minipage_stat_int
77 \skip_new:N \l__enumext_minipage_temp_skip
78 \skip_new:N \l__enumext_minipage_left_skip
79 \skip_new:N \l__enumext_minipage_right_skip
80 \skip_new:N \l__enumext_minipage_after_skip
81 \skip_new:N \g__enumext_minipage_right_skip
82 \skip_new:N \g__enumext_minipage_after_skip
83 \cs_set_protected:Npn __enumext_tmp:n #1
84 {
85 \dim_new:c { l__enumext_minipage_left_#1_dim }
86 \bool_new:c { l__enumext_minipage_active_#1_bool }
87 }
88 \clist_map_inline:nn { i, ii, iii, iv, v, vii, viii } { __enumext_tmp:n {#1} }

(End of definition for \g__enumext_minipage_stat_int and others.)

\l__enumext_wrap_label_X_bool

\l__enumext_wrap_label_opt_X_bool

\l__enumext_start_X_int
\l__enumext_fake_item_indent_X_tl

\l__enumext_label_fill_left_X_tl

\l__enumext_label_fill_right_X_tl

\l__enumext_vspace_a_star_X_bool

\l__enumext_vspace_b_star_X_bool

The bool vars \l__enumext_wrap_label_X_bool and \l__enumext_wrap_label_opt_X_bool are used
by wrap-label and wrap-label* keys (§13.13), the integer \l__enumext_start_X_int are used by
the start and start* keys (§13.15), the token list \l__enumext_fake_item_indent_X_tl is used by
itemindent key (§13.19.1), the variables \l__enumext_label_fill_left_X_tl and \l__enumext_-
label_fill_left_X_tl are used by the align key (§13.13). The boolean vars \l__enumext_vspace_-
a_star_X_bool, \l__enumext_vspace_b_star_X_bool are used by above, above*, below and below*
keys (§13.21).

89 \cs_set_protected:Npn __enumext_tmp:n #1
90 {
91 \bool_new:c { l__enumext_wrap_label_#1_bool }
92 \bool_new:c { l__enumext_wrap_label_opt_#1_bool }
93 \int_new:c { l__enumext_start_#1_int }
94 \tl_new:c { l__enumext_fake_item_indent_#1_tl }
95 \tl_new:c { l__enumext_label_fill_left_#1_tl }
96 \tl_new:c { l__enumext_label_fill_right_#1_tl }
97 \bool_new:c { l__enumext_vspace_a_star_#1_bool }
98 \bool_new:c { l__enumext_vspace_b_star_#1_bool }
99 }

100 \clist_map_inline:nn { i, ii, iii, iv, v, vii, viii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_wrap_label_X_bool and others.)

32 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

\l__enumext_store_active_bool

\l__enumext_store_name_tl
\g__enumext_store_name_tl
\l__enumext_store_current_label_tl

\l__enumext_store_current_opt_arg_tl

The variable \l__enumext_store_active_bool setting by save-ans key (§13.29.1) activates all the mech-
anism related to \anskey, anskey*, keyans, keyans* and keyanspic environments.
The variable \l__enumext_store_name_tl saves the {〈store name〉} set by the save-ans key of the sequence
and prop list in which we will store, the variable \g__enumext_store_name_tl it’s just a global copy of
{〈store name〉} used by different functions.
The variables \l__enumext_store_current_label_tl and \l__enumext_store_current_opt_arg_-
tl save the current label and optional argument of \item* (§13.40) and \anspic* (§13.45.2) for the keyans,
keyans* and keyanspic environments.

101 \bool_new:N \l__enumext_store_active_bool
102 \tl_new:N \l__enumext_store_name_tl
103 \tl_new:N \g__enumext_store_name_tl
104 \tl_new:N \l__enumext_store_current_label_tl
105 \tl_new:N \l__enumext_store_current_opt_arg_tl

(End of definition for \l__enumext_store_active_bool and others.)

\l__enumext_store_anskey_arg_tl

\l__enumext_store_anskey_env_tl

\l__enumext_write_anskey_env_bool

\l__enumext_write_anskey_env_file_name_tl

\l__enumext_write_anskey_env_file_iow

The variable \l__enumext_store_anskey_arg_tl save the argument of \anskey (§13.33) and the variables
\l__enumext_store_anskey_env_tl save the 〈body〉 of the environment anskey* (§13.34).
The variables \l__enumext_write_anskey_env_bool, \l__enumext_write_anskey_env_file_name_-
tl and \l__enumext_write_anskey_env_file_iow they are used by the write-env and overwrite keys
in the anskey* environment implementation.

106 \tl_new:N \l__enumext_store_anskey_arg_tl
107 \tl_new:N \l__enumext_store_anskey_env_tl
108 \bool_new:N \l__enumext_write_anskey_env_bool
109 \tl_new:N \l__enumext_write_anskey_env_file_name_tl
110 \iow_new:N \l__enumext_write_anskey_env_file_iow

(End of definition for \l__enumext_store_anskey_arg_tl and others.)

\c__enumext_anskey_env_hidden_space_str The \c__enumext_anskey_env_hidden_space_str is a constant string to used to hide the 〈forced space〉
added by TEX when recording content in a macro. This string contains the reserved phrase ‘%^^Aenumextheol%’
which is added to the end of the argument stored in sequence and prop list when the key force-eol is false.

111 \str_const:Ne \c__enumext_anskey_env_hidden_space_str
112 { \c_percent_str \c_circumflex_str \c_circumflex_str A enumextheol \c_percent_str }

(End of definition for \c__enumext_anskey_env_hidden_space_str.)

\l__enumext_setkey_tmpa_tl
\l__enumext_setkey_tmpb_tl
\l__enumext_setkey_tmpa_int
\l__enumext_setkey_tmpa_seq
\l__enumext_setkey_tmpb_seq

Internal variables used by the command \setenumext (§13.51).
113 \tl_new:N \l__enumext_setkey_tmpa_tl
114 \tl_new:N \l__enumext_setkey_tmpb_tl
115 \int_new:N \l__enumext_setkey_tmpa_int
116 \seq_new:N \l__enumext_setkey_tmpa_seq
117 \seq_new:N \l__enumext_setkey_tmpb_seq

(End of definition for \l__enumext_setkey_tmpa_tl and others.)

\l__enumext_meta_path_str
\l__enumext_foreach_print_seq

\l__enumext_foreach_name_prop_tl

\l__enumext_foreach_default_keys_tl

Internal variables used by the \setenumextmeta command (§13.52) and \foreachkeyans command (§13.53).
118 \str_new:N \l__enumext_meta_path_str
119 \seq_new:N \l__enumext_foreach_print_seq
120 \tl_new:N \l__enumext_foreach_name_prop_tl
121 \tl_new:N \l__enumext_foreach_default_keys_tl

(End of definition for \l__enumext_meta_path_str and others.)

\l__enumext_print_keyans_starred_tl

\l__enumext_print_keyans_star_bool

\l__enumext_print_keyans_cmd_bool

\l__enumext_mark_position_str

\l__enumext_mark_position_v_str

\l__enumext_mark_position_viii_str

\l__enumext_mark_sep_tmpa_dim

\l__enumext_mark_sep_tmpb_dim

\l__enumext_show_pos_tmp_int
\g__enumext_item_symbol_aux_tl

\l__enumext_print_keyans_X_tl

\l__enumext_store_save_key_X_tl

\l__enumext_store_save_key_X_bool

\l__enumext_store_upper_level_X_bool

Internal variables used by command \printkeyans (§13.50), show-pos, show-ans, mark-pos, mark-sep
keys (§13.30), item-sym* key (§13.38), save-key key (§13.30.3) and “storing structure”.

122 \tl_new:N \l__enumext_print_keyans_starred_tl
123 \bool_new:N \l__enumext_print_keyans_star_bool
124 \bool_new:N \l__enumext_print_keyans_cmd_bool
125 \str_new:N \l__enumext_mark_position_str
126 \str_new:N \l__enumext_mark_position_v_str
127 \str_new:N \l__enumext_mark_position_viii_str
128 \dim_new:N \l__enumext_mark_sep_tmpa_dim
129 \dim_new:N \l__enumext_mark_sep_tmpb_dim
130 \int_new:N \l__enumext_show_pos_tmp_int
131 \tl_new:N \g__enumext_item_symbol_aux_tl
132 \cs_set_protected:Npn __enumext_tmp:n #1
133 {
134 \tl_new:c { l__enumext_print_keyans_#1_tl }

33 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

135 \tl_new:c { l__enumext_store_save_key_#1_tl }
136 \bool_new:c { l__enumext_store_save_key_#1_bool }
137 \bool_new:c { l__enumext_store_upper_level_#1_bool }
138 }
139 \clist_map_inline:nn { i, ii, iii, iv, vii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_print_keyans_starred_tl and others.)

\l__enumext_anspic_args_seq
\l__enumext_anspic_mini_width_dim

\l__enumext_anspic_above_int
\l__enumext_anspic_below_int

\l__enumext_anspic_label_above_bool

\l__enumext_anspic_mini_pos_str

\l__enumext_anspic_label_box
\l__enumext_anspic_body_box

\l__enumext_anspic_label_htdp_dim

\l__enumext_anspic_body_htdp_dim

Internal variables used by keyanspic environment and \anspic command (§13.45.1).
140 \seq_new:N \l__enumext_anspic_args_seq
141 \dim_new:N \l__enumext_anspic_mini_width_dim
142 \int_new:N \l__enumext_anspic_above_int
143 \int_new:N \l__enumext_anspic_below_int
144 \bool_new:N \l__enumext_anspic_label_above_bool
145 \str_new:N \l__enumext_anspic_mini_pos_str
146 \box_new:N \l__enumext_anspic_label_box
147 \box_new:N \l__enumext_anspic_body_box
148 \dim_new:N \l__enumext_anspic_label_htdp_dim
149 \dim_new:N \l__enumext_anspic_body_htdp_dim

(End of definition for \l__enumext_anspic_args_seq and others.)

\l__enumext_check_answers_bool

\g__enumext_check_ans_key_bool

\l__enumext_check_start_line_env_tl

\l__enumext_item_wrap_key_bool

\g__enumext_check_starred_cmd_int

\g__enumext_item_anskey_int
\g__enumext_item_number_int
\g__enumext_item_number_bool

\g__enumext_item_answer_diff_int

Internal variables used by “internal check answer” mechanism (§13.29.3) used by the check-ans, no-store,
wrap-ans* keys and check for starred commands \item* in keyans and keyans* environments and
\anspic* in keyanspic environment.

150 \bool_new:N \l__enumext_check_answers_bool
151 \bool_new:N \g__enumext_check_ans_key_bool
152 \tl_new:N \l__enumext_check_start_line_env_tl
153 \bool_new:N \l__enumext_item_wrap_key_bool
154 \int_new:N \g__enumext_check_starred_cmd_int
155 \int_new:N \g__enumext_item_anskey_int
156 \int_new:N \g__enumext_item_number_int
157 \bool_new:N \l__enumext_item_number_bool
158 \int_new:N \g__enumext_item_answer_diff_int

(End of definition for \l__enumext_check_answers_bool and others.)

\l__enumext_hyperref_bool
\l__enumext_footnotes_key_bool

The boolean variable \l__enumext_hyperref_bool will determine if the hyperref package is present or
load in memory (§13.7). The boolean variable \l__enumext_footnotes_key_bool determine if hyperref
is load with key hyperfootnotes=true.

159 \bool_new:N \l__enumext_hyperref_bool
160 \bool_new:N \l__enumext_footnotes_key_bool

(End of definition for \l__enumext_hyperref_bool and \l__enumext_footnotes_key_bool.)

\l__enumext_newlabel_arg_one_tl

\l__enumext_newlabel_arg_two_tl

\l__enumext_write_aux_file_tl

\l__enumext_label_copy_X_tl

Internal variables used by save-ref key (§13.30). The variables \l__enumext_label_copy_X_tl corre-
spond to temporary copies of the 〈labels〉 defined by level on which operations will be performed.
The variables \l__enumext_newlabel_arg_one_tl and \l__enumext_newlabel_arg_two_tl will be
used to form the arguments passed to the function __enumext_newlabel:nn (§13.7) and the variable
\l__enumext_write_aux_file_tl will be in charge of executing the writing code in the .aux file.

161 \tl_new:N \l__enumext_newlabel_arg_one_tl
162 \tl_new:N \l__enumext_newlabel_arg_two_tl
163 \tl_new:N \l__enumext_write_aux_file_tl
164 \cs_set_protected:Npn __enumext_tmp:n #1
165 {
166 \tl_new:c { l__enumext_label_copy_#1_tl }
167 }
168 \clist_map_inline:nn { i, ii, iii, iv, v, vi, vii, viii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_newlabel_arg_one_tl and others.)

\g__enumext_footnote_standar_int

\g__enumext_footnote_starred_int

\g__enumext_footnote_standar_arg_seq

\g__enumext_footnote_starred_arg_seq

\g__enumext_footnote_standar_int_seq

\g__enumext_footnote_starred_int_seq

Internal variables used for redefinition of \footnote (§13.8).
169 \int_new:N \g__enumext_footnote_standar_int
170 \int_new:N \g__enumext_footnote_starred_int
171 \seq_new:N \g__enumext_footnote_standar_arg_seq
172 \seq_new:N \g__enumext_footnote_starred_arg_seq
173 \seq_new:N \g__enumext_footnote_standar_int_seq
174 \seq_new:N \g__enumext_footnote_starred_int_seq

(End of definition for \g__enumext_footnote_standar_int and others.)

34 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

\l__enumext_item_starred_X_bool

l__enumext_item_column_pos_X_int

\g__enumext_item_count_all_X_int

\l__enumext_joined_item_X_int

\l__enumext_joined_item_aux_X_int

\l__enumext_tmpa_X_int
\l__enumext_tmpa_X_dim

\l__enumext_item_text_X_box
\l__enumext_joined_width_X_dim

\l__enumext_item_width_X_dim
\g__enumext_item_symbol_aux_X_tl

\l__enumext_align_label_X_str

\g__enumext_minipage_active_X_bool

\l__enumext_miniright_code_X_box

\g__enumext_minipage_center_X_bool

\g__enumext_minipage_right_X_dim

\g__enumext_minipage_right_X_skip

Internal variables used by enumext* and keyans* environments.
175 \cs_set_protected:Npn __enumext_tmp:n #1
176 {
177 \bool_new:c { l__enumext_item_starred_#1_bool }
178 \int_new:c { l__enumext_item_column_pos_#1_int }
179 \int_new:c { g__enumext_item_count_all_#1_int }
180 \int_new:c { l__enumext_joined_item_#1_int }
181 \int_new:c { l__enumext_joined_item_aux_#1_int }
182 \int_new:c { l__enumext_tmpa_#1_int }
183 \dim_new:c { l__enumext_tmpa_#1_dim }
184 \box_new:c { l__enumext_item_text_#1_box }
185 \dim_new:c { l__enumext_joined_width_#1_dim }
186 \dim_new:c { l__enumext_item_width_#1_dim }
187 \tl_new:c { g__enumext_item_symbol_aux_#1_tl }
188 \str_new:c { l__enumext_align_label_#1_str }
189 \bool_new:c { g__enumext_minipage_active_#1_bool }
190 \box_new:c { l__enumext_miniright_code_#1_box }
191 \bool_new:c { g__enumext_minipage_center_#1_bool }
192 \dim_new:c { g__enumext_minipage_right_#1_dim }
193 \skip_new:c { g__enumext_minipage_right_#1_skip }
194 }
195 \clist_map_inline:nn { vii, viii } { __enumext_tmp:n {#1} }

(End of definition for \l__enumext_item_starred_X_bool and others.)

\c__enumext_all_envs_clist An internal clist-var variable to run with __enumext_tmp:n.
196 \clist_const:Nn \c__enumext_all_envs_clist
197 {
198 {level-1}{i}, {level-2}{ii}, {level-3}{iii}, {level-4}{iv},
199 {keyans}{v}, {enumext*}{vii}, {keyans*}{viii}
200 }

(End of definition for \c__enumext_all_envs_clist.)

13.5 Some utility functions
\keys_precompile:neN

\seq_use:NV
Non-standard kernel variants used by the \printkeyans command (§13.50) and \foreachkeyans command
(§13.53).

201 \cs_generate_variant:Nn \keys_precompile:nnN { neN }
202 \cs_generate_variant:Nn \seq_use:Nn { NV }

(End of definition for \keys_precompile:neN and \seq_use:NV.)

__enumext_at_begin_document:n A internal “hook” function used for copying plain list and minipage environments definition and hyperref
detection.

203 \cs_new_protected:Npn __enumext_at_begin_document:n #1
204 {
205 \hook_gput_code:nnn {begindocument} {enumext} { #1 }
206 }

(End of definition for __enumext_at_begin_document:n.)

__enumext_after_env:nn
__enumext_before_env:nn

A internal “hook” functions for execute code mini-right and mini-right* keys outside the enumext* and
keyans* environments and print check-ans outside the enumext and enumext* environments.

207 \cs_new_protected:Npn __enumext_after_env:nn #1 #2
208 {
209 \hook_gput_code:nnn {env/#1/after} {enumext} {#2}
210 }
211 \cs_new_protected:Npn __enumext_before_env:nn #1 #2
212 {
213 \hook_gput_code:nnn {env/#1/before} {enumext} {#2}
214 }

(End of definition for __enumext_after_env:nn and __enumext_before_env:nn.)

__enumext_level: Function for check current level in enumext.
215 \cs_new:Nn __enumext_level:
216 {
217 \int_to_roman:n { \l__enumext_level_int }
218 }

35 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

(End of definition for __enumext_level:.)

__enumext_if_is_int:nT
__enumext_if_is_int:nF

__enumext_if_is_int:nTF

A conditional function to determine whether the variable we are passing is an integer used by start and
widest keys. This function is taken directly from the answer given by Henri Menke in How to test if an expl3
function argument is an integer expression?.

219 \prg_new_protected_conditional:Npnn __enumext_if_is_int:n #1 { T, F, TF }
220 {
221 \regex_if_match:nnTF { ^[\+\-]?[\d]+$ } {#1} % $
222 { \prg_return_true: }
223 { \prg_return_false: }
224 }

(End of definition for __enumext_if_is_int:nT , __enumext_if_is_int:nF , and __enumext_if_is_int:nTF.)

__enumext_show_length:nnn Internal function used by show-length key to show “all lengths” calculated and used in enumext, enumext*,
keyans and keyans* environments.

225 \cs_new:Npn __enumext_show_length:nnn #1 #2 #3
226 {
227 *~#2
228 \prg_replicate:nn { 14 - \str_count:n {#2} } {~}
229 =~\use:c { #1_use:c } { l__enumext_#2_#3_#1 } \\
230 }

(End of definition for __enumext_show_length:nnn.)

__enumext_unskip_unkern: The function __enumext_unskip_unkern: will remove the last 〈skip〉 or 〈kern〉 at execution time using
the values 11 and 12 of \lastnodetype to apply \unskip or \unkern depending on the case.

231 \cs_new_protected:Nn __enumext_unskip_unkern:
232 {
233 \int_case:nnT { \lastnodetype }
234 {
235 { 11 }{ \unskip }
236 { 12 }{ \unkern }
237 }
238 }

(End of definition for __enumext_unskip_unkern:.)

13.5.1 Utilities for environments and levels

__enumext_is_not_nested:
__enumext_is_on_first_level:

The function __enumext_is_not_nested: sets the variables \g__enumext_standar_bool and \g__-
enumext_starred_bool to “true” only if the environments enumext and enumext* are NOT nested in each
other and saves the environment name in \l__enumext_envir_name_tl.

239 \cs_new_protected:Nn __enumext_is_not_nested:
240 {
241 \str_case:en { \@currenvir }
242 {
243 {enumext}
244 {
245 \tl_set:Nn \l__enumext_envir_name_tl { enumext }
246 \bool_lazy_and:nnT
247 { \bool_not_p:n { \g__enumext_standar_bool } }
248 { \int_compare_p:nNn { \l__enumext_level_h_int } = { 0 } }
249 {
250 \bool_gset_true:N \g__enumext_standar_bool
251 }
252 }
253 {enumext*}
254 {
255 \tl_set:Nn \l__enumext_envir_name_tl { enumext* }
256 \bool_lazy_and:nnT
257 { \bool_not_p:n { \g__enumext_starred_bool } }
258 { \int_compare_p:nNn { \l__enumext_level_int } = { 0 } }
259 {
260 \bool_gset_true:N \g__enumext_starred_bool
261 }
262 }
263 }
264 }

36 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/427559
https://tex.stackexchange.com/a/427559

enumext v2.1 §.13 Implementation

The function __enumext_is_on_first_level: will sets the variables \l__enumext_standar_first_-
bool (§13.29.1), \l__enumext_starred_first_bool (§13.29.1) to “true” only if the environment is not
nested and we are in the “first level” of it . We will also save the start line number of each environment in the
variable \g__enumext_start_line_tl and the name of each environment in the variable \g__enumext_-
envir_name_tl to use in messages related to the check-ans key and .log file.

265 \cs_new_protected:Nn __enumext_is_on_first_level:
266 {
267 \bool_lazy_all:nT
268 {
269 { \bool_if_p:N \g__enumext_standar_bool }
270 { \int_compare_p:nNn { \l__enumext_level_int } = { 1 } }
271 { \int_compare_p:nNn { \l__enumext_level_h_int } = { 0 } }
272 }
273 {
274 \bool_set_true:N \l__enumext_standar_first_bool
275 \tl_gset:Nn \g__enumext_envir_name_tl { enumext }
276 \tl_gset:Ne \g__enumext_start_line_tl
277 {
278 on~line~\exp_not:V \inputlineno
279 }
280 }
281 \bool_lazy_all:nT
282 {
283 { \bool_if_p:N \g__enumext_starred_bool }
284 { \int_compare_p:nNn { \l__enumext_level_h_int } = { 1 } }
285 { \int_compare_p:nNn { \l__enumext_level_int } = { 0 } }
286 }
287 {
288 \bool_set_true:N \l__enumext_starred_first_bool
289 \tl_gset:Nn \g__enumext_envir_name_tl { enumext* }
290 \tl_gset:Ne \g__enumext_start_line_tl
291 {
292 on~line~\exp_not:V \inputlineno
293 }
294 }
295 }

(End of definition for __enumext_is_not_nested: and __enumext_is_on_first_level:.)

__enumext_keyans_name_and_start: The function __enumext_keyans_name_and_start: will save the start line number and name of the
environments keyans, keyans* and keyanspic in the variables \l__enumext_check_start_line_env_-
tl and \l__enumext_envir_name_tl to use in the __enumext_check_starred_cmd:n function.

296 \cs_new_protected:Nn __enumext_keyans_name_and_start:
297 {
298 \str_case:en { \@currenvir }
299 {
300 {keyans}
301 {
302 \tl_set:Nn \l__enumext_envir_name_tl { keyans }
303 \tl_set:Ne \l__enumext_check_start_line_env_tl
304 {
305 in~'keyans'~start~on~line~\exp_not:V \inputlineno
306 }
307 }
308 {keyans*}
309 {
310 \tl_set:Nn \l__enumext_envir_name_tl { keyans* }
311 \tl_set:Ne \l__enumext_check_start_line_env_tl
312 {
313 in~'keyans*'~start~on~line~\exp_not:V \inputlineno
314 }
315 }
316 {keyanspic}
317 {
318 \tl_set:Nn \l__enumext_envir_name_tl { keyanspic }
319 \tl_set:Ne \l__enumext_check_start_line_env_tl
320 {
321 in~'keyanspic'~start~on~line~\exp_not:V \inputlineno
322 }
323 }

37 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

324 }
325 }

(End of definition for __enumext_keyans_name_and_start:.)

13.5.2 Utilities for log and terminal

__enumext_reset_global_vars:

__enumext_reset_global_int:
__enumext_reset_global_bool:

__enumext_reset_global_tl:

The function __enumext_reset_global_vars: will be passed to the function __enumext_execute_-
after_env: and will return the global variables to their default values after being used.

326 \cs_new_protected:Nn __enumext_reset_global_vars:
327 {
328 __enumext_reset_global_int:
329 __enumext_reset_global_bool:
330 __enumext_reset_global_tl:
331 }
332 \cs_new_protected:Nn __enumext_reset_global_int:
333 {
334 \int_gzero:N \g__enumext_item_number_int
335 \int_gzero:N \g__enumext_item_anskey_int
336 \int_gzero:N \g__enumext_item_answer_diff_int
337 }
338 \cs_new_protected:Nn __enumext_reset_global_bool:
339 {
340 \bool_gset_false:N \g__enumext_check_ans_key_bool
341 \bool_gset_false:N \g__enumext_standar_bool
342 \bool_gset_false:N \g__enumext_starred_bool
343 }
344 \cs_new_protected:Nn __enumext_reset_global_tl:
345 {
346 \tl_gclear:N \g__enumext_store_name_tl
347 \tl_gclear:N \g__enumext_start_line_tl
348 \tl_gclear:N \g__enumext_envir_name_tl
349 }

(End of definition for __enumext_reset_global_vars: and others.)

__enumext_log_global_vars:
__enumext_log_answer_vars:

The function __enumext_log_global_vars: will be passed to the function __enumext_execute_-
after_env: and write to the .log file the number of elements saved in the prop list and sequence created by
the save-ans key along with the value of the integer variable created for the resume key.

350 \cs_new_protected:Nn __enumext_log_global_vars:
351 {
352 \msg_log:nneeee { enumext } { prop-seq-int-hook }
353 { \g__enumext_store_name_tl }
354 { \prop_count:c { g__enumext_ \g__enumext_store_name_tl _prop } }
355 { \seq_count:c { g__enumext_ \g__enumext_store_name_tl _seq } }
356 { \int_use:c { g__enumext_resume_ \g__enumext_store_name_tl _int } }
357 }

The function __enumext_log_answer_vars: will be passed to the function __enumext_execute_-
after_env: and write to the .log file the number of items and answers along with the difference between
them.

358 \cs_new_protected:Nn __enumext_log_answer_vars:
359 {
360 \msg_log:nneee { enumext } { item-answer-hook }
361 { \int_use:N \g__enumext_item_number_int }
362 { \int_use:N \g__enumext_item_anskey_int }
363 { \int_eval:n { \g__enumext_item_number_int - \g__enumext_item_anskey_int} }
364 }

(End of definition for __enumext_log_global_vars: and __enumext_log_answer_vars:.)

13.6 Copying list and minipage environments
The list environment provided by LATEX has the following plain form:

\list{〈arg one〉}{〈arg two〉}
\item[〈opt〉]

\endlist

And minipage environment provided by LATEX has the following (simplified) plain form:

\minipage[〈pos〉][〈height〉][〈inner-pos〉]{〈width〉}
〈internal implement〉

\endminipage

38 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

As a precaution we copy them using __enumext_at_begin_document:n in case any package redefines the
list environment or a related command.
TagFor compatibility with tagged PDF we should use \NewCommandCopy and not \cs_new_eq:NN for \item. When tagged
PDF is active \item is redefined using ltcmd (see latex-lab-block[19]).

__enumext_start_list:nn
__enumext_stop_list:
__enumext_item_std:w
__enumext_minipage:w

__enumext_endminipage:

The functions __enumext_start_list:nn and __enumext_stop_list: correspond to copies of \list
and \endlist from plain definition of list environment, the function __enumext_item_std:w is a copy
of the \item command.

365 __enumext_at_begin_document:n
366 {
367 \cs_new_eq:NN __enumext_start_list:nn \list
368 \cs_new_eq:NN __enumext_stop_list: \endlist
369 \NewCommandCopy __enumext_item_std:w \item
370 }

The functions __enumext_minipage:w and __enumext_endminipage: correspond to copies of \minipage
and \endminipage from plain definition of minipage environment.

371 __enumext_at_begin_document:n
372 {
373 \cs_new_eq:NN __enumext_minipage:w \minipage
374 \cs_new_eq:NN __enumext_endminipage: \endminipage
375 }

(End of definition for __enumext_start_list:nn and others.)

13.7 Compatibility with hyperref and footnotehyper
__enumext_after_hyperref:
__enumext_hypertarget:nn

__enumext_phantomsection:

First we define the necessary rules using “hooks” to determine if the hyperref package is loaded.
376 \hook_gput_code:nnn { begindocument } { enumext } { __enumext_after_hyperref: }
377 \hook_gset_rule:nnnn { begindocument } { enumext } { after } { hyperref }

The function __enumext_after_hyperref: sets the state of the boolean variable \l__enumext_-
hyperref_bool to “true” if the package is loaded. At this point we will use the public macro \IfHyperBoolean
to determine if the hyperfootnotes=true key is present, if so, we set the state of the boolean variable
__enumext_footnotes_key_bool to “true”.

378 \cs_new_protected:Nn __enumext_after_hyperref:
379 {
380 \IfPackageLoadedT { hyperref }
381 {
382 \msg_info:nnn { enumext } { package-load } { hyperref }
383 \bool_set_true:N \l__enumext_hyperref_bool
384 \IfHyperBoolean{hyperfootnotes}
385 {
386 \bool_set_true:N \l__enumext_footnotes_key_bool
387 }
388 { }
389 }

If the state of the variable \l__enumext_footnotes_key_bool is true we will check if the package
footnotehyper is loaded, in case it is not present, we will set the value of \l__enumext_footnotes_-
key_bool to false and we will redefine \footnote.

390 \bool_if:NT \l__enumext_footnotes_key_bool
391 {
392 \IfPackageLoadedTF { footnotehyper }
393 {
394 \msg_info:nnn { enumext } { package-load } { footnotehyper }
395 }
396 {
397 \bool_set_false:N \l__enumext_footnotes_key_bool
398 }
399 }

The functions __enumext_hypertarget:nn and __enumext_phantomsection: correspond to the inter-
nal copies of \hypertarget and \phantomsection. If the boolean variable \l__enumext_hyperref_bool
is false the functions __enumext_hypertarget:nn and __enumext_phantomsection: will be disabled.

400 \bool_if:NTF \l__enumext_hyperref_bool
401 {
402 \cs_new_eq:NN __enumext_hypertarget:nn \hypertarget
403 \cs_new_eq:NN __enumext_phantomsection: \phantomsection
404 }
405 {
406 \cs_new_eq:NN __enumext_hypertarget:nn \use_none:nn

39 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

407 \cs_new_eq:NN __enumext_phantomsection: \prg_do_nothing:
408 }
409 }

(End of definition for __enumext_after_hyperref: , __enumext_hypertarget:nn , and __enumext_phantomsection:.)

__enumext_newlabel:nn The function __enumext_newlabel:nn write the information to the .aux file when using the save-ref
key. The arguments taken by the function are:
#1 : \l__enumext_newlabel_arg_one_tl
#2 : \l__enumext_newlabel_arg_two_tl

BOMB The trick here is to manage the number of arguments passed to \newlabel{#1}{#2} according to the presence of the
hyperref package.

410 \cs_new_protected:Npn __enumext_newlabel:nn #1 #2
411 {
412 \protected@write \@auxout { }
413 {
414 \token_to_str:N \newlabel {#1}
415 {
416 {#2}
417 \bool_if:NT \l__enumext_hyperref_bool
418 { { \thepage } {#2} {#1} }
419 { }
420 }
421 }
422 __enumext_hypertarget:nn {#1} { }
423 __enumext_phantomsection:
424 }

(End of definition for __enumext_newlabel:nn.)

13.8 Internal redefining \footnote command
To keep the correct numbering of \footnote and to make it work correctly in the enumext* and keyans*
environments and mini-env key it is necessary to redefine the \footnote command. This implementation
is adapted from the answer given by Clea F. Rees (@cfr) in footnotes in boxes compatible with hyperref.

__enumext_footnotetext:nn
__enumext_renew_footnote:
__enumext_print_footnote:

__enumext_renew_footnote_mini:

__enumext_print_footnote_mini:

Redefinition of the \footnote command using \footnotetext and \footnotemark for the mini-env key
in the enumext and keyans environments.

425 \cs_new_protected:Nn __enumext_footnotetext:nn
426 {
427 \footnotetext[#1]{#2}
428 }
429 \cs_new_protected:Nn __enumext_renew_footnote:
430 {
431 \RenewDocumentCommand \footnote { o +m }
432 {
433 \tl_if_novalue:nTF {##1}
434 {
435 \stepcounter{footnote}
436 \int_gset_eq:Nc \g__enumext_footnote_standar_int { c@footnote }
437 }
438 {
439 \int_gset:Nn \g__enumext_footnote_standar_int { ##1 }
440 }
441 \footnotemark [\g__enumext_footnote_standar_int]
442 \seq_gput_right:Nn \g__enumext_footnote_standar_arg_seq { ##2 }
443 \seq_gput_right:NV
444 \g__enumext_footnote_standar_int_seq \g__enumext_footnote_standar_int
445 }
446 }
447 \cs_new_protected:Nn __enumext_print_footnote:
448 {
449 \seq_if_empty:NF \g__enumext_footnote_standar_int_seq
450 {
451 \seq_map_pairwise_function:NNN
452 \g__enumext_footnote_standar_int_seq
453 \g__enumext_footnote_standar_arg_seq
454 __enumext_footnotetext:nn
455 }
456 \seq_gclear:N \g__enumext_footnote_standar_arg_seq
457 \seq_gclear:N \g__enumext_footnote_standar_int_seq
458 }

40 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/700092

enumext v2.1 §.13 Implementation

The enumext* and keyans* environments are implemented using minipage so we must also redefine
\footnote to keep these numbering as if it were part of the document.

459 \cs_new_protected:Nn __enumext_renew_footnote_mini:
460 {
461 \RenewDocumentCommand \footnote { o +m }
462 {
463 \tl_if_novalue:nTF {##1}
464 {
465 \stepcounter{footnote}
466 \int_gset_eq:Nc \g__enumext_footnote_starred_int { c@footnote }
467 }
468 {
469 \int_gset:Nn \g__enumext_footnote_starred_int { ##1 }
470 }
471 \footnotemark [\g__enumext_footnote_starred_int]
472 \seq_gput_right:Nn \g__enumext_footnote_starred_arg_seq { ##2 }
473 \seq_gput_right:NV
474 \g__enumext_footnote_starred_int_seq \g__enumext_footnote_starred_int
475 }
476 }
477 \cs_new_protected:Nn __enumext_print_footnote_mini:
478 {
479 \seq_if_empty:NF \g__enumext_footnote_starred_int_seq
480 {
481 \seq_map_pairwise_function:NNN
482 \g__enumext_footnote_starred_int_seq
483 \g__enumext_footnote_starred_arg_seq
484 __enumext_footnotetext:nn
485 }
486 \seq_gclear:N \g__enumext_footnote_starred_arg_seq
487 \seq_gclear:N \g__enumext_footnote_starred_int_seq
488 }

(End of definition for __enumext_footnotetext:nn and others.)

__enumext_renew_footnote_standar:

__enumext_print_footnote_standar:

__enumext_renew_footnote_starred:

__enumext_print_footnote_starred:

We encapsulate the redefinition of \footnote to pass it to internal __enumext_mini_page environment
used by the mini-env key in the enumext and keyans environments. We will run the redefinition when
tagged PDF is active or when the footnotehyper package is not loaded.

489 \cs_new_protected:Nn __enumext_renew_footnote_standar:
490 {
491 \bool_if:NT \g__enumext_standar_bool
492 {
493 \IfDocumentMetadataTF
494 {
495 __enumext_renew_footnote:
496 }
497 {
498 \bool_if:NF \l__enumext_footnotes_key_bool
499 {
500 __enumext_renew_footnote:
501 }
502 }
503 }
504 }
505 \cs_new_protected:Nn __enumext_print_footnote_standar:
506 {
507 \bool_if:NT \g__enumext_standar_bool
508 {
509 \IfDocumentMetadataTF
510 {
511 __enumext_print_footnote:
512 }
513 {
514 \bool_if:NF \l__enumext_footnotes_key_bool
515 {
516 __enumext_print_footnote:
517 }
518 }
519 }
520 }

41 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

We encapsulate the redefinition of \footnote to pass it to the enumext* and keyans* environments. We
will run the redefinition when tagged PDF is active or when the footnotehyper package is not loaded.

521 \cs_new_protected:Nn __enumext_renew_footnote_starred:
522 {
523 \IfDocumentMetadataTF
524 {
525 __enumext_renew_footnote_mini:
526 }
527 {
528 \bool_if:NF \l__enumext_footnotes_key_bool
529 {
530 __enumext_renew_footnote_mini:
531 }
532 }
533 }
534 \cs_new_protected:Nn __enumext_print_footnote_starred:
535 {
536 \IfDocumentMetadataTF
537 {
538 __enumext_print_footnote_mini:
539 }
540 {
541 \bool_if:NF \l__enumext_footnotes_key_bool
542 {
543 __enumext_print_footnote_mini:
544 }
545 }
546 }

In enumext* and keyans* environments we need to use “hooks” to print \footnote with support for tagged
PDF.

547 __enumext_after_env:nn { enumext* }
548 {
549 __enumext_print_footnote_starred:
550 }
551 __enumext_after_env:nn { keyans* }
552 {
553 __enumext_print_footnote_starred:
554 }

(End of definition for __enumext_renew_footnote_standar: and others.)

13.9 The internal minipage environment
__enumext_internal_mini_page:

__enumext_mini_env*
The function __enumext_internal_mini_page: creates a internal __enumext_mini_page environment
(custom version of minipage) setting the \if@minipage switch to “false” to allow spaces at the “above” of the
environment, plus we will add \skip_vertical:N \c_zero_skip to maintain alignment on “top” in the first
part and \skip_vertical:N \c_zero_skip in the second part to allow spaces “below”. This environment
will be used internally by the mini-env key, it is NOT documented in the user interface and is for internal use
only. Within this environment we redefine \footnote to make them look the same as if they were elsewhere
in the document. This implementation is adapted from the answer given by Max Chernoff (@MaxChernoff)
in Customize minipage to support spaces below it.

BOMB This function is passed to the function __enumext_safe_exec: in the enumext environment definition (§13.42) and
__enumext_safe_exec_vii: in the enumext* environment definition (§13.47).

555 \cs_new_protected:Nn __enumext_internal_mini_page:
556 {
557 \int_compare:nNnT { \l__enumext_level_int } = { 0 }
558 {
559 \DeclareDocumentEnvironment{__enumext_mini_page}{ m }
560 {
561 __enumext_renew_footnote_standar:
562 __enumext_minipage:w [t] { ##1 }
563 \legacy_if_gset_false:n { @minipage }
564 \skip_vertical:N \c_zero_skip
565 }
566 {
567 \skip_vertical:N \c_zero_skip
568 __enumext_endminipage:
569 __enumext_print_footnote_standar:
570 }
571 }

42 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/720966/7832

enumext v2.1 §.13 Implementation

572 }

(End of definition for __enumext_internal_mini_page: and __enumext_mini_env*.)

13.10 Definition of public dimension
The package enumext only provides a single public dimension \itemwidth and is intended for user convenience
only and is not for internal use as such. This dimension is set in all environments and is only used by the
wrap-ans key at its default value.

573 \dim_zero_new:N \itemwidth

13.11 Definition of counters
__enumext_define_counter:Nn

enumXi
enumXii
enumXiii
enumXiv
enumXv

enumXvi
enumXvii

enumXviii

To create the necessary “counters” we must first make sure that they are not already defined by the user or a
package such as enumitem, otherwise a error will be returned and the package loading will be aborted. The
arguments taken by the function are:
#1 : A token list \l__enumext_counter_X_tl for “store” the counter’s name.
#2 : The counter’s name.

574 \cs_new_protected:Npn __enumext_define_counter:Nn #1 #2
575 {
576 \cs_if_exist:cTF { c@ #2 }
577 { \msg_fatal:nnn { enumext } { counters }{ #2 } }
578 {
579 \tl_set:Nn #1 { #2 }
580 \newcounter { #2 }
581 }
582 }

The counters created here are enumXi, enumXii, enumXiii and enumXiv for enumext environment, enumXv
for keyans environment, enumXvi for keyanspic environment, enumXvii for enumext* and enumXviii
for the keyans* environments.

583 __enumext_define_counter:Nn \l__enumext_counter_i_tl { enumXi }
584 __enumext_define_counter:Nn \l__enumext_counter_ii_tl { enumXii }
585 __enumext_define_counter:Nn \l__enumext_counter_iii_tl { enumXiii }
586 __enumext_define_counter:Nn \l__enumext_counter_iv_tl { enumXiv }
587 __enumext_define_counter:Nn \l__enumext_counter_v_tl { enumXv }
588 __enumext_define_counter:Nn \l__enumext_counter_vi_tl { enumXvi }
589 __enumext_define_counter:Nn \l__enumext_counter_vii_tl { enumXvii }
590 __enumext_define_counter:Nn \l__enumext_counter_viii_tl { enumXviii }

(End of definition for __enumext_define_counter:Nn and others.)

\c@__enumext_resume_i_int
\c@__enumext_resume_ii_int
\c@__enumext_resume_iii_int
\c@__enumext_resume_iv_int
\c@__enumext_resume_vii_int

In version 1.6 the command \resetenumext (§13.27) was added which internally uses \counterwithin* so
for its correct operation, we will create “real counters” instead of the “integer variables” for the keys resume
and resume*.

591 \cs_set_protected:Npn __enumext_tmp:n #1
592 {
593 \cs_if_exist:cTF { c@ __enumext_resume_#1_int }
594 { \msg_fatal:nne { enumext } { counters }{ __enumext_resume_#1_int } }
595 {
596 \newcounter { __enumext_resume_#1_int }
597 }
598 }
599 \clist_map_inline:nn {i,ii,iii,iv,vii} { __enumext_tmp:n {#1} }

(End of definition for \c@__enumext_resume_i_int and others.)

13.12 Definition of labels
This part of the code is inspired by the enumitem package. The idea is to be able to access the counters using
\arabic*, \Alph*, \alph*, \Roman* and \roman* to use them in the label key.

BOMB Direct support for this is provided since LATEX release 2025-06-01[13], but we will keep the original implementation so as
not to hinder the internal “label and ref” system.

__enumext_register_default_label_wd:Nn These 〈counters〉 will be used as default 〈labels〉 if the label key is not used for the different levels of
the enumext, enumext*, keyans and keyans* environments, so it is necessary to get a default value for
labelwidth from these 〈labels〉 at the same time.

600 \cs_new_protected:Npn __enumext_register_default_label_wd:Nn #1 #2
601 {
602 \tl_const:cn { c__enumext_widest_ \cs_to_str:N #1 _tl } {#2}
603 \tl_gput_right:Nn \g__enumext_counter_styles_tl {#1}

43 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

604 }
605 __enumext_register_default_label_wd:Nn \arabic { 0 }
606 __enumext_register_default_label_wd:Nn \Alph { M }
607 __enumext_register_default_label_wd:Nn \alph { m }
608 __enumext_register_default_label_wd:Nn \Roman { VIII }
609 __enumext_register_default_label_wd:Nn \roman { viii }

(End of definition for __enumext_register_default_label_wd:Nn.)

__enumext_label_width_by_box:Nn

__enumext_label_width_by_box:cv

The function __enumext_label_width_by_box:Nn set the default \labelwidth using a box width if no
labelwidth key is passed.

610 \cs_new_protected:Npn __enumext_label_width_by_box:Nn #1 #2
611 {
612 \hbox_set:Nn \l__enumext_label_width_by_box {#2}
613 \dim_set:Nn #1 { \box_wd:N \l__enumext_label_width_by_box }
614 }
615 \cs_generate_variant:Nn __enumext_label_width_by_box:Nn { cv }

(End of definition for __enumext_label_width_by_box:Nn.)

__enumext_label_style:Nnn
__enumext_label_style:cvn

The function __enumext_label_style:Nnn is used by the label key to creates the variables containing
the 〈label style〉 and will allow to use \arabic*, \Alph*, \alph*, \Roman* and \roman* as arguments.
It loops through the defined counter styles in \g__enumext_counter_styles_tl (\arabic, \alph, \Alph,
\roman and \Roman) for example, looking for \roman* and replacing that by \roman{〈counter〉}, and doing
the same for the \g__enumext_widest_label_tl to keep both in sync.

616 \cs_new_protected:Npn __enumext_label_style:Nnn #1 #2 #3
617 {
618 \tl_clear_new:N #1
619 \tl_put_right:Ne #1 { \tl_trim_spaces:n {#3} }
620 \tl_gset_eq:NN \g__enumext_widest_label_tl #1
621 \tl_map_inline:Nn \g__enumext_counter_styles_tl
622 {
623 \tl_replace_all:Nne #1 { ##1* } { \exp_not:N ##1 {#2} }
624 \tl_greplace_all:Nne \g__enumext_widest_label_tl { ##1* }
625 { \tl_use:c { c__enumext_widest_ \cs_to_str:N ##1 _tl } }
626 }
627 __enumext_label_width_by_box:Nn \l__enumext_current_widest_dim
628 { \tl_use:N \g__enumext_widest_label_tl }
629 \tl_set_eq:cN { the #2 } #1
630 }
631 \cs_generate_variant:Nn __enumext_label_style:Nnn { cvn }

(End of definition for __enumext_label_style:Nnn.)

13.13 Setting keys associated with label
When tagged PDF is active \makelabel is redefined using \makebox to work correctly (§13.37). From the
user side it is convenient to have a key that allows using this redefinition with \makebox without having
\IfDocumentMetadataTF active.

mode-box We define the key mode-box only for the “first level” of enumext and enumext* environments.
632 \cs_set_protected:Npn __enumext_tmp:n #1
633 {
634 \keys_define:nn { enumext / #1 }
635 {
636 mode-box .bool_set:N = \l__enumext_mode_box_bool,
637 mode-box .initial:n = false,
638 mode-box .value_forbidden:n = true,
639 }
640 }
641 \clist_map_inline:nn { level-1, enumext* } { __enumext_tmp:n {#1} }

(End of definition for mode-box.)

font
labelsep

labelwidth
wrap-label
wrap-label*

Definition of keys font, labelsep, labelwidth, wrap-label and wrap-label* keys for enumext and
keyans environments.

642 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
643 {
644 \keys_define:nn { enumext / #1 }
645 {
646 font .tl_set:c = { l__enumext_label_font_style_#2_tl },

44 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

647 font .value_required:n = true,
648 labelsep .dim_set:c = { l__enumext_labelsep_#2_dim },
649 labelsep .initial:n = {0.3333em},
650 labelsep .value_required:n = true,
651 labelwidth .dim_set:c = { l__enumext_labelwidth_#2_dim },
652 labelwidth .value_required:n = true,
653 wrap-label .cs_set_protected:cp = { __enumext_wrapper_label_#2:n } ##1,
654 wrap-label .initial:n = {##1},
655 wrap-label .value_required:n = true,
656 wrap-label* .code:n = {
657 \bool_set_true:c { l__enumext_wrap_label_opt_#2_bool }
658 \keys_set:nn { enumext / #1 } { wrap-label = {##1} }
659 },
660 wrap-label* .value_required:n = true,
661 }
662 }
663 \clist_map_inline:Nn \c__enumext_all_envs_clist { __enumext_tmp:nn #1 }

(End of definition for font and others.)

align The align key is implemented differently for “starred” and “non starred” environments. For compatibility
with tagged PDF we must set \l__enumext_align_label_pos_X_str.

664 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
665 {
666 \keys_define:nn { enumext / #1 }
667 {
668 align .choice:,
669 align / left .code:n =
670 {
671 \tl_clear:c { l__enumext_label_fill_left_#2_tl }
672 \tl_set:cn { l__enumext_label_fill_right_#2_tl } { \hfill }
673 \str_set:cn { l__enumext_align_label_pos_#2_str } { l }
674 },
675 align / right .code:n =
676 {
677 \tl_set:cn { l__enumext_label_fill_left_#2_tl } { \hfill }
678 \tl_clear:c { l__enumext_label_fill_right_#2_tl }
679 \str_set:cn { l__enumext_align_label_pos_#2_str } { r }
680 },
681 align / center .code:n =
682 {
683 \tl_set:cn { l__enumext_label_fill_left_#2_tl } { \hfill }
684 \tl_set:cn { l__enumext_label_fill_right_#2_tl } { \hfill }
685 \str_set:cn { l__enumext_align_label_pos_#2_str } { c }
686 },
687 align / unknown .code:n =
688 \msg_error:nneee { enumext } { unknown-choice }
689 { align } { left,~right,~ center } { \exp_not:n {##1} },
690 align .initial:n = left,
691 align .value_required:n = true,
692 }
693 }
694 \clist_map_inline:nn
695 {
696 {level-1}{i}, {level-2}{ii}, {level-3}{iii}, {level-4}{iv}, {keyans}{v}
697 }
698 { __enumext_tmp:nn #1 }

699 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
700 {
701 \keys_define:nn { enumext / #1 }
702 {
703 align .choice:,
704 align / left .code:n = \str_set:cn { l__enumext_align_label_#2_str } { l },
705 align / right .code:n = \str_set:cn { l__enumext_align_label_#2_str } { r },
706 align / center .code:n = \str_set:cn { l__enumext_align_label_#2_str } { c },
707 align / unknown .code:n =
708 \msg_error:nneee { enumext } { unknown-choice }
709 { align } { left,~right,~ center } { \exp_not:n {##1} },
710 align .initial:n = left,
711 align .value_required:n = true,

45 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

712 }
713 }
714 \clist_map_inline:nn { {enumext*}{vii}, {keyans*}{viii} } { __enumext_tmp:nn #1 }

(End of definition for align.)

13.14 Setting label and ref keys
The implementation of the keys label and ref are part of the core of the package enumext, here the default
values for 〈label〉, the value of the variables \l__enumext_label_X_tl, the default values for \labelwidth
and the “label and ref” system.

13.14.1 Define and set label and ref keys for enumext environment

label
ref

\l__enumext_label_i_tl
\l__enumext_label_ii_tl

\l__enumext_label_iii_tl
\l__enumext_label_iv_tl

Here we set the default 〈labels〉 of the four levels of enumext environment, along with the default values for
labelwidth, widest and ref keys.

715 \cs_set_protected:Npn __enumext_tmp:nnn #1 #2 #3
716 {
717 \keys_define:nn { enumext / #1 }
718 {
719 label .code:n = {
720 __enumext_label_style:cvn { l__enumext_label_#2_tl }
721 { l__enumext_counter_#2_tl } {##1}
722 \dim_set_eq:cN { l__enumext_labelwidth_#2_dim }
723 \l__enumext_current_widest_dim
724 },
725 label .initial:n = #3,
726 label .value_required:n = true,
727 ref .code:n = __enumext_standar_ref:nn {#2} {##1},
728 ref .value_required:n = true,
729 }
730 }
731 __enumext_tmp:nnn { level-1 } { i } { \arabic*.}
732 __enumext_tmp:nnn { level-2 } { ii } { (\alph*) }
733 __enumext_tmp:nnn { level-3 } { iii } { \roman*. }
734 __enumext_tmp:nnn { level-4 } { iv } { \Alph*. }

(End of definition for label and others.)

__enumext_standar_ref:nn
__enumext_standar_ref:

The __enumext_standard_ref:nn function will first pass the key argument ref to the variable \l__-
enumext_ref_key_arg_tl and analyze its state, if it is not empty it will set a copy of of the current counter style
save in \l__enumext_the_counter_X_tl to \l__enumext_ref_the_count_tl and then set the variable
\l__enumext_renew_counter_X_tl which will modify \theenumX.

735 \cs_new_protected:Npn __enumext_standar_ref:nn #1 #2
736 {
737 \tl_set:Nn \l__enumext_ref_key_arg_tl {#2}
738 \tl_if_empty:NTF \l__enumext_ref_key_arg_tl
739 {
740 \msg_error:nnn { enumext } { key-ref-empty } { enumext }
741 }
742 {
743 \tl_set_eq:Nc \l__enumext_ref_the_count_tl { l__enumext_the_counter_#1_tl }
744 \tl_set:ce { l__enumext_renew_counter_#1_tl }
745 {
746 \exp_not:N \renewcommand { \exp_not:V \l__enumext_ref_the_count_tl }
747 { \exp_not:V \l__enumext_ref_key_arg_tl }
748 }
749 }
750 }

Finally the function __enumext_standar_ref: will execute the modification for the reference system in
the second argument of the environment definition enumext.

751 \cs_new_protected:Nn __enumext_standar_ref:
752 {
753 \tl_if_empty:cF { l__enumext_renew_counter_ __enumext_level: _tl }
754 {
755 \tl_use:c { l__enumext_renew_counter_ __enumext_level: _tl }
756 }
757 }

(End of definition for __enumext_standar_ref:nn and __enumext_standar_ref:.)

46 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

13.14.2 Define and set label and ref keys for enumext* and keyans* environments

label
ref

\l__enumext_label_vii_tl
\l__enumext_label_viii_tl

Here we set the default 〈labels〉 for enumext* and keyans* environments, along with the default value for
labelwidth key and ref key.

758 \cs_set_protected:Npn __enumext_tmp:nnn #1 #2 #3
759 {
760 \keys_define:nn { enumext / #1 }
761 {
762 label .code:n = {
763 __enumext_label_style:cvn { l__enumext_label_#2_tl }
764 { l__enumext_counter_#2_tl } {##1}
765 \dim_set_eq:cN { l__enumext_labelwidth_#2_dim }
766 \l__enumext_current_widest_dim
767 },
768 label .initial:n = #3,
769 label .value_required:n = true,
770 ref .code:n = __enumext_starred_ref:n {##1},
771 ref .value_required:n = true,
772 }
773 }
774 __enumext_tmp:nnn { enumext* } { vii } { \arabic*.}
775 __enumext_tmp:nnn { keyans* } { viii } { \Alph*) }

(End of definition for label and others.)

__enumext_starred_ref:n
__enumext_starred_ref:

The implementation of __enumext_starred_ref:n is the same as that used for the environment enumext.
776 \cs_new_protected:Npn __enumext_starred_ref:n #1
777 {
778 \tl_set:Nn \l__enumext_ref_key_arg_tl {#1}
779 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
780 {
781 \tl_if_empty:NTF \l__enumext_ref_key_arg_tl
782 {
783 \msg_error:nnn { enumext } { key-ref-empty } { enumext* }
784 }
785 {
786 \tl_set_eq:NN \l__enumext_ref_the_count_tl \l__enumext_the_counter_vii_tl
787 \tl_set:Ne \l__enumext_renew_counter_vii_tl
788 {
789 \exp_not:N \renewcommand { \exp_not:V \l__enumext_ref_the_count_tl } { \exp_not:V \l__enumext_ref_key_arg_tl }
790 }
791 }
792 }
793 \int_compare:nNnT { \l__enumext_keyans_level_h_int } = { 1 }
794 {
795 \tl_if_empty:NTF \l__enumext_ref_key_arg_tl
796 {
797 \msg_error:nnn { enumext } { key-ref-empty } { keyans* }
798 }
799 {
800 \tl_set_eq:NN \l__enumext_ref_the_count_tl \l__enumext_the_counter_viii_tl
801 \tl_set:Ne \l__enumext_renew_counter_viii_tl
802 {
803 \exp_not:N \renewcommand { \exp_not:V \l__enumext_ref_the_count_tl } { \exp_not:V \l__enumext_ref_key_arg_tl }
804 }
805 }
806 }
807 }

Finally the function __enumext_starred_ref: will execute the modification for the reference system in
the second argument of the enumext* and keyans* environment definition.

808 \cs_new_protected:Nn __enumext_starred_ref:
809 {
810 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
811 {
812 \tl_if_empty:NF \l__enumext_renew_counter_vii_tl
813 {
814 \tl_use:N \l__enumext_renew_counter_vii_tl
815 }
816 }
817 \int_compare:nNnT { \l__enumext_keyans_level_h_int } = { 1 }
818 {

47 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

819 \tl_if_empty:NF \l__enumext_renew_counter_viii_tl
820 {
821 \tl_use:N \l__enumext_renew_counter_viii_tl
822 }
823 }
824 }

(End of definition for __enumext_starred_ref:n and __enumext_starred_ref:.)

13.14.3 Define and set label and ref keys for keyans and keyanspic environments

label
ref

\l__enumext_label_v_tl
\l__enumext_label_vi_tl

Here we set the default 〈label〉 for keyans and keyanspic environment, along with the default value for
labelwidth if it has not been established and ref key. The keyanspic environment use the same 〈label〉 as
the keyans environment.

825 \keys_define:nn { enumext / keyans }
826 {
827 label .code:n = {
828 __enumext_label_style:cvn { l__enumext_label_v_tl }
829 { l__enumext_counter_v_tl } {#1}
830 __enumext_label_style:cvn { l__enumext_label_vi_tl }
831 { l__enumext_counter_vi_tl } {#1}
832 \dim_set_eq:NN
833 \l__enumext_labelwidth_v_dim \l__enumext_current_widest_dim
834 },
835 label .initial:n = \Alph*),
836 label .value_required:n = true,
837 ref .code:n = __enumext_keyans_ref:n {#1},
838 ref .value_required:n = true,
839 }

(End of definition for label and others.)

__enumext_keyans_ref:n
__enumext_keyans_ref:

The implementation of __enumext_keyans_ref:n is the same as that used for the environment enumext.
840 \cs_new_protected:Npn __enumext_keyans_ref:n #1
841 {
842 \tl_set:Nn \l__enumext_ref_key_arg_tl {#1}
843 \tl_if_empty:NTF \l__enumext_ref_key_arg_tl
844 {
845 \msg_error:nnn { enumext } { key-ref-empty } { keyans }
846 }
847 {
848 \tl_set_eq:NN \l__enumext_ref_the_count_tl \l__enumext_the_counter_v_tl
849 \tl_put_right:Ne \l__enumext_renew_counter_v_tl
850 {
851 \exp_not:N \renewcommand { \exp_not:V \l__enumext_ref_the_count_tl } { \exp_not:V \l__enumext_ref_key_arg_tl }
852 }
853 }
854 }

Finally the function __enumext_keyans_ref: will execute the modification for the reference system in the
second argument of the keyans* environment definition.

855 \cs_new_protected:Nn __enumext_keyans_ref:
856 {
857 \tl_if_empty:NF \l__enumext_renew_counter_v_tl
858 {
859 \tl_use:N \l__enumext_renew_counter_v_tl
860 }
861 }

(End of definition for __enumext_keyans_ref:n and __enumext_keyans_ref:.)

13.15 Setting start, start* and widest keys
__enumext_start_from:NNn
__enumext_start_from:ccn
__enumext_start_from:cce

The function __enumext_start_from:NNn used by start and start* keys take three arguments:
#1 : \l__enumext_label_X_tl
#2 : \l__enumext_start_X_int
#3 : ⟨integer or string⟩
The first argument of this function are the “counter style” set by label key, the second argument is returned by
the function, the third argument can be an 〈integer〉 or 〈string〉 of the form \Alph, \alph, \Roman or \roman.
This effectively allows start*=A or start=1 to be used.

48 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

BOMB In version 1.6 it is allowed to pass the resume key without value by means of the command \setenumext, for the correct
operation of this we must set the boolean variable \l__enumext_resume_count_bool set by the resume key without
value to “false” (§13.26). This is necessary to be able to “reset” the start value by means of the start or start* keys.

862 \cs_new_protected:Npn __enumext_start_from:NNn #1 #2 #3
863 {
864 \bool_set_false:N \l__enumext_resume_count_bool
865 __enumext_if_is_int:nTF { #3 }
866 {
867 \int_set:Nn #2 {#3}
868 }
869 {
870 \regex_if_match:nVT { \c{Alph} | \c{alph} } #1
871 { \int_set:Nn #2 { \int_from_alph:n {#3} } }
872 \regex_if_match:nVT { \c{Roman} | \c{roman} } #1
873 { \int_set:Nn #2 { \int_from_roman:n {#3} } }
874 }
875 }
876 \cs_generate_variant:Nn __enumext_start_from:NNn { ccn, cce }

(End of definition for __enumext_start_from:NNn.)

__enumext_widest_from:nNNn
__enumext_widest_from:nccn

The function __enumext_widest_from:nNNn used by the widest key take four arguments:
#1 : The counter associated with the environment level
#2 : \l__enumext_label_X_tl
#3 : \l__enumext_labelwidth_X_dim
#4 : ⟨integer or string⟩
The second and third arguments of this function are the values set by label and labelwidth keys, the four
argument can be an 〈integer〉 or 〈string〉 of the form \Alph, \alph, \Roman or \roman. The value of the four
argument is set temporarily for the identified counter in this point (level), then the value is expanded into a
“box” and the “width” of the “box” is returned.

877 \cs_new_protected:Npn __enumext_widest_from:nNNn #1 #2 #3 #4
878 {
879 __enumext_if_is_int:nTF {#4}
880 {
881 \setcounter{enumX#1} { #4 }
882 }
883 {
884 \regex_if_match:nVT { \c{Alph} | \c{alph} } #2
885 { \setcounter{enumX#1} { \int_from_alph:n {#4} } }
886 \regex_if_match:nVT { \c{Alph} | \c{alph} } #2
887 { \setcounter{enumX#1} { \int_from_roman:n {#4} } }
888 }
889 __enumext_label_width_by_box:cv
890 { l__enumext_labelwidth_#1_dim } { l__enumext_label_#1_tl }
891 }
892 \cs_generate_variant:Nn __enumext_widest_from:nNNn { nccn }

(End of definition for __enumext_widest_from:nNNn.)

start
start*
widest

Now define and set start*, start and widest keys for enumext, enumext*, keyans and keyans* environ-
ments.

893 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
894 {
895 \keys_define:nn { enumext / #1 }
896 {
897 start* .code:n = {
898 __enumext_start_from:ccn
899 { l__enumext_label_#2_tl }
900 { l__enumext_start_#2_int } {##1}
901 },
902 start* .value_required:n = true,
903 start .code:n = {
904 __enumext_start_from:cce
905 { l__enumext_label_#2_tl }
906 { l__enumext_start_#2_int } { \int_eval:n {##1} }
907 },
908 start .initial:n = 1,
909 start .value_required:n = true,
910 widest .code:n = {

49 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

911 __enumext_widest_from:nccn {#2}
912 { l__enumext_label_#2_tl }
913 { l__enumext_labelwidth_#2_dim } {##1}
914 },
915 widest .value_required:n = true,
916 }
917 }
918 \clist_map_inline:Nn \c__enumext_all_envs_clist { __enumext_tmp:nn #1 }

(End of definition for start , start* , and widest.)

13.16 Setting keys for penaltys
beginpenalty
midpenalty
endpenalty

The three parameters \@beginparpenalty, \@itempenalty and \@endparpenalty work together to en-
sure that list environments look good, avoiding unsightly page breaks that can break the flow of the list, so
it’s a good idea to have a 〈keys〉 to access these.

919 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
920 {
921 \keys_define:nn { enumext / #1 }
922 {
923 beginpenalty .int_set:c = { l__enumext_beginparpenalty_#2_int },
924 beginpenalty .initial:n = -51,
925 beginpenalty .value_required:n = true,
926 midpenalty .int_set:c = { l__enumext_itempenalty_#2_int },
927 midpenalty .initial:n = -51,
928 midpenalty .value_required:n = true,
929 endpenalty .int_set:c = { l__enumext_endparpenalty_#2_int },
930 endpenalty .initial:n = -51,
931 endpenalty .value_required:n = true,
932 }
933 }
934 \clist_map_inline:Nn \c__enumext_all_envs_clist { __enumext_tmp:nn #1 }

(End of definition for beginpenalty , midpenalty , and endpenalty.)

13.17 Setting keys for vertical spaces
topsep

partopsep
parsep

noitemsep
nosep

Define and set topsep, partopsep, parsep, itemsep, noitemsep and nosep keys for enumext, enumext*,
keyans and keyans* environments.

935 \cs_set_protected:Npn __enumext_tmp:nnnnnn #1 #2 #3 #4 #5 #6
936 {
937 \keys_define:nn { enumext / #1 }
938 {
939 topsep .skip_set:c = { l__enumext_topsep_#2_skip },
940 topsep .initial:n = {#3},
941 topsep .value_required:n = true,
942 partopsep .skip_set:c = { l__enumext_partopsep_#2_skip },
943 partopsep .initial:n = {#4},
944 partopsep .value_required:n = true,
945 parsep .skip_set:c = { l__enumext_parsep_#2_skip },
946 parsep .initial:n = {#5},
947 parsep .value_required:n = true,
948 itemsep .skip_set:c = { l__enumext_itemsep_#2_skip },
949 itemsep .initial:n = {#6},
950 itemsep .value_required:n = true,
951 noitemsep .meta:n = { itemsep = 0pt, parsep = 0pt },
952 noitemsep .value_forbidden:n = true,
953 nosep .meta:n = {
954 itemsep = 0pt, parsep= 0pt,
955 topsep = 0pt, partopsep = 0pt,
956 },
957 nosep .value_forbidden:n = true,
958 }
959 }

Now we set the values based on standard article class in 10pt.
960 __enumext_tmp:nnnnnn { level-1 } { i } { 8.0pt plus 2.0pt minus 4.0pt }
961 { 2.0pt plus 1.0pt minus 1.0pt } { 4.0pt plus 2.0pt minus 1.0pt }
962 { 4.0pt plus 2.0pt minus 1.0pt }
963 __enumext_tmp:nnnnnn { level-2 } { ii } { 4.0pt plus 2.0pt minus 1.0pt }
964 { 2.0pt plus 1.0pt minus 1.0pt } { 2.0pt plus 1.0pt minus 1.0pt }
965 { 2.0pt plus 1.0pt minus 1.0pt }

50 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

966 __enumext_tmp:nnnnnn { level-3 } { iii } { 2.0pt plus 1.0pt minus 1.0pt }
967 { 1.0pt minus 1.0pt }{ 0pt }{ 2.0pt plus 1.0pt minus 1.0pt }
968 __enumext_tmp:nnnnnn { level-4 } { iv } { 2.0pt plus 1.0pt minus 1.0pt }
969 { 1.0pt minus 1.0pt }{ 0pt }{ 2.0pt plus 1.0pt minus 1.0pt }
970 __enumext_tmp:nnnnnn { keyans } { v }{ 4.0pt plus 2.0pt minus 1.0pt }
971 { 2.0pt plus 1.0pt minus 1.0pt }{ 2.0pt plus 1.0pt minus 1.0pt }
972 { 2.0pt plus 1.0pt minus 1.0pt }
973 __enumext_tmp:nnnnnn { enumext* } { vii } { 8.0pt plus 2.0pt minus 4.0pt }
974 { 2.0pt plus 1.0pt minus 1.0pt } { 4.0pt plus 2.0pt minus 1.0pt }
975 { 4.0pt plus 2.0pt minus 1.0pt }
976 __enumext_tmp:nnnnnn { keyans* } { viii } { 4.0pt plus 2.0pt minus 1.0pt }
977 { 2.0pt plus 1.0pt minus 1.0pt } { 2.0pt plus 1.0pt minus 1.0pt }
978 { 2.0pt plus 1.0pt minus 1.0pt }

(End of definition for topsep and others.)

13.18 Setting base-fix key
When nesting starting right after \item (without material between them) there is a problem with the align-
ment of the baseline between the two environments. One way to get around this problem is to place
\mode_leave_vertical: apply \vspace{-\baselineskip} and set \topsep=0pt for the “first level” of
the nested enumext environment.

base-fix
__enumext_nested_base_line_fix:

We define the key base-fix only for the “first level” of enumext environment.
979 \keys_define:nn { enumext / level-1 }
980 {
981 base-fix .bool_set:N = \l__enumext_base_line_fix_bool,
982 base-fix .initial:n = false,
983 base-fix .value_forbidden:n = true,
984 }

The function __enumext_nested_base_line_fix: passed to the __enumext_parse_keys:n function
in the definition of the enumext environment (§13.42) will be responsible for applying the baseline correction
and adjusting the 〈keys〉 for the enumext environment and the \printkeyans with starred argument ‘*’
(§13.50).
We will first implement the function code from the user side of the base-fix key, that is, only the user knows
when it is necessary to apply it within the document in which case the variable \l__enumext_print_-
keyans_star_bool set by the \printkeyans command is false and the variable \l__enumext_base_-
line_fix_bool is true.
We set the values of the keys topsep, above and above* for the “first level” of enumext environment equal
to 0pt and finally set the variable \l__enumext_base_line_fix_bool to false.

985 \cs_new_protected:Nn __enumext_nested_base_line_fix:
986 {
987 \bool_lazy_all:nT
988 {
989 { \bool_if_p:N \l__enumext_starred_first_bool }
990 { \bool_if_p:N \l__enumext_base_line_fix_bool }
991 { \bool_not_p:n { \l__enumext_print_keyans_star_bool } }
992 }
993 {
994 \mode_leave_vertical:
995 \vspace { -\dim_eval:n { \baselineskip + \parsep } }
996 \keys_set:nn { enumext / level-1 }
997 {
998 topsep = 0pt, above = 0pt, above* = 0pt,
999 }

1000 }

When we are running the \printkeyans command with the starred argument ‘*’ the variable \l__-
enumext_print_keyans_star_bool is true and we can run a simplified version of \vspace using
\skip_vertical:n.
1001 \bool_lazy_and:nnT
1002 { \bool_if_p:N \l__enumext_starred_first_bool }
1003 { \bool_if_p:N \l__enumext_print_keyans_star_bool }
1004 {
1005 \mode_leave_vertical:
1006 \skip_vertical:n { -\baselineskip }
1007 \skip_vertical:N \c_zero_skip
1008 \keys_set:nn { enumext / level-1 }
1009 {
1010 topsep = 0pt, above = 0pt, above* = 0pt,

51 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1011 }
1012 }
1013 \bool_set_false:N \l__enumext_base_line_fix_bool
1014 }

(End of definition for base-fix and __enumext_nested_base_line_fix:.)

13.19 Setting keys for horizontal spaces
itemindent
rightmargin

listparindent
list-offset
list-indent

Define and set itemindent, rightmargin, listparindent, list-offset and list-indent keys for
enumext, enumext*, keyans and keyans* environments.
1015 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1016 {
1017 \keys_define:nn { enumext / #1 }
1018 {
1019 itemindent .dim_set:c = { l__enumext_fake_item_indent_#2_dim },
1020 itemindent .value_required:n = true,
1021 rightmargin .dim_set:c = { l__enumext_rightmargin_#2_dim },
1022 rightmargin .value_required:n = true,
1023 listparindent .dim_set:c = { l__enumext_listparindent_#2_dim },
1024 listparindent .value_required:n = true,
1025 list-offset .dim_set:c = { l__enumext_listoffset_#2_dim },
1026 list-offset .value_required:n = true,
1027 list-indent .code:n =
1028 \bool_set_true:c { l__enumext_leftmargin_tmp_#2_bool }
1029 \dim_set:cn { l__enumext_leftmargin_tmp_#2_dim } {##1},
1030 list-indent .value_required:n = true,
1031 }
1032 }
1033 \clist_map_inline:nn
1034 {
1035 {level-1}{i}, {level-2}{ii}, {level-3}{iii}, {level-4}{iv}, {keyans}{v}
1036 }
1037 { __enumext_tmp:nn #1 }

(End of definition for itemindent and others.)
For enumext* and keyans* environments the situation is a bit different, the list-indent key behaves like
the list-offset key.
1038 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1039 {
1040 \keys_define:nn { enumext / #1 }
1041 {
1042 itemindent .dim_set:c = { l__enumext_fake_item_indent_#2_dim },
1043 itemindent .value_required:n = true,
1044 rightmargin .dim_set:c = { l__enumext_rightmargin_#2_dim },
1045 rightmargin .value_required:n = true,
1046 listparindent .dim_set:c = { l__enumext_listparindent_#2_dim },
1047 listparindent .value_required:n = true,
1048 list-offset .dim_set:c = { l__enumext_listoffset_#2_dim },
1049 list-offset .value_required:n = true,
1050 list-indent .meta:n = { list-offset = ##1 },
1051 list-indent .value_required:n = true,
1052 }
1053 }
1054 \clist_map_inline:nn
1055 {
1056 {enumext*}{vii}, {keyans*}{viii}
1057 }
1058 { __enumext_tmp:nn #1 }

13.19.1 Functions for setting the fake itemindent

__enumext_fake_item_indent:
__enumext_keyans_fake_item_indent:

__enumext_fake_item_indent_vii:

__enumext_fake_item_indent_viii:

The itemindent key does not set the value of \itemindent, it only sets the value of the horizontal space
applied using \skip_horizontal:N. We will store this value in the variable and only apply it when it is greater
than 0pt. Here I will need to place \mode_leave_vertical: and the plain TEX macro \ignorespaces to
avoid unwanted extra space when using the itemindent key.
1059 \cs_set_protected:Nn __enumext_fake_item_indent:
1060 {
1061 \dim_compare:nNnT
1062 { \dim_use:c { l__enumext_fake_item_indent_ __enumext_level: _dim } }
1063 >
1064 { \c_zero_dim }

52 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1065 {
1066 \tl_set:ce { l__enumext_fake_item_indent_ __enumext_level: _tl }
1067 {
1068 \exp_not:N \mode_leave_vertical:
1069 \exp_not:n { \skip_horizontal:n }
1070 { \dim_use:c { l__enumext_fake_item_indent_ __enumext_level: _dim } }
1071 \exp_not:N \ignorespaces
1072 }
1073 }
1074 }
1075 \cs_set_protected:Nn __enumext_keyans_fake_item_indent:
1076 {
1077 \dim_compare:nNnT
1078 { \l__enumext_fake_item_indent_v_dim } > { \c_zero_dim }
1079 {
1080 \tl_set:Ne \l__enumext_fake_item_indent_v_tl
1081 {
1082 \exp_not:N \mode_leave_vertical:
1083 \exp_not:N \skip_horizontal:N \l__enumext_fake_item_indent_v_dim
1084 \exp_not:N \ignorespaces
1085 }
1086 }
1087 }
1088 \cs_set_protected:Nn __enumext_fake_item_indent_vii:
1089 {
1090 \dim_compare:nNnT
1091 { \l__enumext_fake_item_indent_vii_dim } > { \c_zero_dim }
1092 {
1093 \tl_set:Ne \l__enumext_fake_item_indent_vii_tl
1094 {
1095 \exp_not:N \skip_horizontal:N \l__enumext_fake_item_indent_vii_dim
1096 \exp_not:N \ignorespaces
1097 }
1098 }
1099 }
1100 \cs_set_protected:Nn __enumext_fake_item_indent_viii:
1101 {
1102 \dim_compare:nNnT
1103 { \l__enumext_fake_item_indent_viii_dim } > { \c_zero_dim }
1104 {
1105 \tl_set:Ne \l__enumext_fake_item_indent_viii_tl
1106 {
1107 \exp_not:N \skip_horizontal:N \l__enumext_fake_item_indent_viii_dim
1108 \exp_not:N \ignorespaces
1109 }
1110 }
1111 }

(End of definition for __enumext_fake_item_indent: and others.)

13.20 Setting show-length key
show-length Define and set show-length key for enumext, enumext*, keyans and keyans* environments. The function

sets the boolean variable \l__enumext_show_length_X_bool used in the definition of all environments to
“true” and calls the function __enumext_show_length:nnn which prints all the values of the “vertical” and
“horizontal” parameters calculated and used.
1112 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1113 {
1114 \keys_define:nn { enumext / #1 }
1115 {
1116 show-length .bool_set:c = { l__enumext_show_length_#2_bool },
1117 show-length .initial:n = false,
1118 }
1119 }
1120 \clist_map_inline:Nn \c__enumext_all_envs_clist { __enumext_tmp:nn #1 }

(End of definition for show-length.)

13.21 Setting before, after and first keys
before

before*
after
first

Define and set before, before*, after and first keys for enumext, enumext*, keyans and keyans*
environments.

53 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1121 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1122 {
1123 \keys_define:nn { enumext / #1 }
1124 {
1125 before .tl_set:c = { l__enumext_before_no_starred_key_#2_tl },
1126 before .value_required:n = true,
1127 before* .tl_set:c = { l__enumext_before_starred_key_#2_tl },
1128 before* .value_required:n = true,
1129 after .tl_set:c = { l__enumext_after_stop_list_#2_tl },
1130 after .value_required:n = true,
1131 first .tl_set:c = { l__enumext_after_list_args_#2_tl },
1132 first .value_required:n = true,
1133 }
1134 }
1135 \clist_map_inline:Nn \c__enumext_all_envs_clist { __enumext_tmp:nn #1 }

(End of definition for before and others.)

13.21.1 Functions for before, after and first keys in enumext

__enumext_before_args_exec:
__enumext_before_keys_exec:
__enumext_after_stop_list:
__enumext_after_args_exec:

The function __enumext_before_args_exec: executes the {〈code〉} set by the before* key “before” the
enumext environment is started. The {〈code〉} is executed “without” knowing any definition of the {〈arg
two〉} of the list: {〈code〉}\list{〈arg one〉}{〈arg two〉}.
1136 \cs_new_protected:Nn __enumext_before_args_exec:
1137 {
1138 \tl_use:c { l__enumext_before_starred_key_ __enumext_level: _tl }
1139 }

The function __enumext_before_keys_exec: executes the {〈code〉} set by the before key “before” the
enumext environment is started in second argument of the list. The {〈code〉} is executed “knowing” all
definition and values provides by 〈keys〉: \list{〈arg one〉}{〈arg two〉{〈code〉}}
1140 \cs_new_protected:Nn __enumext_before_keys_exec:
1141 {
1142 \tl_use:c { l__enumext_before_no_starred_key_ __enumext_level: _tl }
1143 }

The function __enumext_after_stop_list: executes the {〈code〉} set by the after key “after” the
enumext environment has finished: \endlist{〈code〉}.
1144 \cs_new_protected:Nn __enumext_after_stop_list:
1145 {
1146 \tl_use:c { l__enumext_after_stop_list_ __enumext_level: _tl }
1147 }

The function __enumext_after_args_exec: executes the {〈code〉} set by the first key after the end of
the second argument of the list defining the enumext environment, just before the first occurrence of \item:
\list{〈arg one〉}{〈arg two〉}{〈code〉}\item.
1148 \cs_new_protected:Nn __enumext_after_args_exec:
1149 {
1150 \tl_use:c { l__enumext_after_list_args_ __enumext_level: _tl }
1151 }

(End of definition for __enumext_before_args_exec: and others.)

13.21.2 Functions for before, after and first keys in keyans

__enumext_before_args_exec_v:

__enumext_before_keys_exec_v:

__enumext_after_stop_list_v:

__enumext_after_args_exec_v:

Same implementation as the one used in the enumext environment.
1152 \cs_new_protected:Nn __enumext_before_args_exec_v:
1153 {
1154 \tl_use:N \l__enumext_before_starred_key_v_tl
1155 }
1156 \cs_new_protected:Nn __enumext_before_keys_exec_v:
1157 {
1158 \tl_use:N \l__enumext_before_no_starred_key_v_tl
1159 }
1160 \cs_new_protected:Nn __enumext_after_stop_list_v:
1161 {
1162 \tl_use:N \l__enumext_after_stop_list_v_tl
1163 }
1164 \cs_new_protected:Nn __enumext_after_args_exec_v:
1165 {
1166 \tl_use:N \l__enumext_after_list_args_v_tl
1167 }

(End of definition for __enumext_before_args_exec_v: and others.)

54 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

13.21.3 Functions for before, after and first keys in enumext* and keyans*

__enumext_before_args_exec_vii:

__enumext_before_keys_exec_vii

__enumext_after_stop_list_vii:

__enumext_after_args_exec_vii:

Same implementation as the one used in the enumext environment.
1168 \cs_new_protected:Nn __enumext_before_args_exec_vii:
1169 {
1170 \tl_use:N \l__enumext_before_starred_key_vii_tl
1171 }
1172 \cs_new_protected:Nn __enumext_before_args_exec_viii:
1173 {
1174 \tl_use:N \l__enumext_before_starred_key_viii_tl
1175 }
1176 \cs_new_protected:Nn __enumext_before_keys_exec_vii:
1177 {
1178 \tl_use:N \l__enumext_before_no_starred_key_vii_tl
1179 }
1180 \cs_new_protected:Nn __enumext_before_keys_exec_viii:
1181 {
1182 \tl_use:N \l__enumext_before_no_starred_key_viii_tl
1183 }
1184 \cs_new_protected:Nn __enumext_after_stop_list_vii:
1185 {
1186 \tl_use:N \l__enumext_after_stop_list_vii_tl
1187 }
1188 \cs_new_protected:Nn __enumext_after_stop_list_viii:
1189 {
1190 \tl_use:N \l__enumext_after_stop_list_viii_tl
1191 }
1192 \cs_new_protected:Nn __enumext_after_args_exec_vii:
1193 {
1194 \tl_use:N \l__enumext_after_list_args_vii_tl
1195 }
1196 \cs_new_protected:Nn __enumext_after_args_exec_viii:
1197 {
1198 \tl_use:N \l__enumext_after_list_args_viii_tl
1199 }

(End of definition for __enumext_before_args_exec_vii: and others.)

13.22 Setting keys for multicols and minipage

mini-env
mini-sep

columns-sep
columns

The default value of the columns-sep key is handled by the state of the boolean variable \l__enumext_-
columns_sep_X_bool which is handled in the internal definition of the enumext and keyans environments.
Define and set mini-env, mini-sep, columns-sep and columns keys for enumext, enumext*, keyans and
keyans* environments.
1200 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1201 {
1202 \keys_define:nn { enumext / #1 }
1203 {
1204 mini-env .dim_set:c = { l__enumext_minipage_right_#2_dim },
1205 mini-env .value_required:n = true,
1206 mini-sep .dim_set:c = { l__enumext_minipage_hsep_#2_dim },
1207 mini-sep .initial:n = 0.3333em,
1208 mini-sep .value_required:n = true,
1209 columns-sep .dim_set:c = { l__enumext_columns_sep_#2_dim },
1210 columns-sep .value_required:n = true,
1211 columns .int_set:c = { l__enumext_columns_#2_int },
1212 columns .initial:n = 1,
1213 columns .value_required:n = true,
1214 }
1215 }
1216 \clist_map_inline:Nn \c__enumext_all_envs_clist { __enumext_tmp:nn #1 }

For enumext* and keyans* environments the situation is a bit different, the command \miniright is
not available, so we will add the keys mini-right and mini-right* to implement support for minipage
environment.
1217 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1218 {
1219 \keys_define:nn { enumext / #1 }
1220 {
1221 mini-right .tl_gset:c = { g__enumext_miniright_code_#2_tl },
1222 mini-right .value_required:n = true,
1223 mini-right* .code:n = {

55 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1224 \bool_gset_true:c { g__enumext_minipage_center_#2_bool }
1225 \keys_set:nn { enumext / #1 } { mini-right = {##1} }
1226 },
1227 mini-right* .value_required:n = true,
1228 }
1229 }
1230 \clist_map_inline:nn { {enumext*}{vii}, {keyans*}{viii} } { __enumext_tmp:nn #1 }

(End of definition for mini-env and others.)

13.23 Adjustment of vertical spaces for multicols
When nesting a “list environment” inside the multicols environment, the values of the “vertical spaces” are
lost, basically the multicols environment takes control over them. Graphically, this can be seen in figure 7.

\multicolsep [±\topskip]

\multicolsep [±\prevdepth?]

topsep

topsep

labelwidth labelsep

column one
nested list or items

column two
nested list or items

Figure 7: Representation of the vertical space in multicols for a nested level.

To keep the desired spaces above and below in the “list environment” (\topsep + [\partopsep]) it is
necessary to “adjust” the spaces added by the multicols environment. The most appropriate option in this
case is to use a “context sensitive” vertical space with \addvspace.

BOMB I should make it clear that the implementation here is a “bit questionable”. At first glance doing \multicolsep=\topsep
seemed right, but the results were not always as expected. An almost imperceptible detail is that in some cases the
\itemsep values of are “stretched”, possibly due to the use of \raggedcolumns and this affects the lower space when
closing the environment, which is “smaller” than expected. My attempts to find the correct values using \showoutput
and \showboxdepth absolutely failed.

13.23.1 Adjustment of vertical spaces for multicols in enumext

__enumext_multi_set_vskip: The function __enumext_multi_set_vskip: will take care of determining the “adjusted spaces” that we
will apply “above” and “below” the multicols environment in enumext.
We will set the default values taking into account that TEX is in 〈horizontal mode〉, then we will make the
settings for the 〈vertical mode〉 in which \partopsep comes into play.
Set the values of \l__enumext_multicols_above_X_skip and \l__enumext_multicols_below_X_-
skip equal to the value of \topsep in the current level.
1231 \cs_new_protected:Nn __enumext_multi_set_vskip:
1232 {
1233 \skip_set:cn { l__enumext_multicols_above_ __enumext_level: _skip }
1234 {
1235 \skip_use:c { l__enumext_topsep_ __enumext_level: _skip }
1236 }
1237 \skip_set:cn { l__enumext_multicols_below_ __enumext_level: _skip }
1238 {
1239 \skip_use:c { l__enumext_topsep_ __enumext_level: _skip }
1240 }
1241 __enumext_add_pre_parsep:
1242 }

(End of definition for __enumext_multi_set_vskip:.)

__enumext_add_pre_parsep: The function __enumext_add_pre_parsep: “adjusted” the value of \l__enumext_multicols_above_-
X_skip detecting the value of \parsep from the previous level. This is necessary since \parsep from the
previous level affects the vertical spaces.
1243 \cs_new_protected:Nn __enumext_add_pre_parsep:
1244 {
1245 \int_case:nn { \l__enumext_level_int }
1246 {
1247 { 2 }{
1248 \skip_if_eq:nnF { \l__enumext_parsep_i_skip } { \c_zero_skip }
1249 {
1250 \skip_add:Nn \l__enumext_multicols_above_ii_skip
1251 {
1252 \l__enumext_parsep_i_skip
1253 }
1254 }
1255 }
1256 { 3 }{

56 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1257 \skip_if_eq:nnF { \l__enumext_parsep_ii_skip } { \c_zero_skip }
1258 {
1259 \skip_add:Nn \l__enumext_multicols_above_iii_skip
1260 {
1261 \l__enumext_parsep_ii_skip
1262 }
1263 }
1264 }
1265 { 4 }{
1266 \skip_if_eq:nnF { \l__enumext_parsep_iii_skip } { \c_zero_skip }
1267 {
1268 \skip_add:Nn \l__enumext_multicols_above_iv_skip
1269 {
1270 \l__enumext_parsep_iii_skip
1271 }
1272 }
1273 }
1274 }
1275 }

(End of definition for __enumext_add_pre_parsep:.)

__enumext_multi_addvspace: The function __enumext_multi_addvspace: will apply the spaces set using \addvspace “above” the
multicols environment in enumext, taking into account whether TEX is in 〈horizontal mode〉 or 〈vertical
mode〉.
1276 \cs_new_protected:Nn __enumext_multi_addvspace:
1277 {
1278 __enumext_multi_set_vskip:
1279 \mode_if_vertical:T
1280 {
1281 \skip_add:cn { l__enumext_multicols_above_ __enumext_level: _skip }
1282 {
1283 \skip_use:c { l__enumext_partopsep_ __enumext_level: _skip }
1284 }
1285 \skip_add:cn { l__enumext_multicols_below_ __enumext_level: _skip }
1286 {
1287 \skip_use:c { l__enumext_partopsep_ __enumext_level: _skip }
1288 }
1289 }
1290 \par\nopagebreak
1291 \addvspace{ \skip_use:c { l__enumext_multicols_above_ __enumext_level: _skip } }
1292 }

(End of definition for __enumext_multi_addvspace:.)

13.23.2 Adjustment of vertical spaces for multicols in keyans

__enumext_keyans_multi_set_vskip:

__enumext_keyans_multi_addvspace:

The function __enumext_keyans_multi_set_vskip: will take care of determining the “adjusted spaces”
that we will apply “above” and “below” the multicols environment in keyans. The implementation of this
function is the same as the one used in enumext.
1293 \cs_new_protected:Nn __enumext_keyans_multi_set_vskip:
1294 {
1295 \skip_set:Nn \l__enumext_multicols_above_v_skip
1296 {
1297 \l__enumext_topsep_v_skip
1298 }
1299 \skip_set:Nn \l__enumext_multicols_below_v_skip
1300 {
1301 \l__enumext_topsep_v_skip
1302 }
1303 }
1304 \cs_new_protected:Nn __enumext_keyans_multi_addvspace:
1305 {
1306 __enumext_keyans_multi_set_vskip:
1307 \mode_if_vertical:T
1308 {
1309 \skip_add:Nn \l__enumext_multicols_above_v_skip
1310 {
1311 \skip_use:N \l__enumext_partopsep_v_skip
1312 }
1313 \skip_add:Nn \l__enumext_multicols_below_v_skip
1314 {

57 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1315 \skip_use:N \l__enumext_partopsep_v_skip
1316 }
1317 }
1318 \par\nopagebreak
1319 \addvspace{ \l__enumext_multicols_above_v_skip }
1320 }

(End of definition for __enumext_keyans_multi_set_vskip: and __enumext_keyans_multi_addvspace:.)

13.24 Adjustment of vertical spaces for minipage
When nesting a “list environment” within the minipage environment, the values of the “vertical spaces” are
lost. Graphically it can be seen like in the figure 8.

space above left space above right

space below minipage's

topsep

topsep

labelwidth labelsep

minipage left [t]
nested list

minipage right [t]
drawing or tabular

Figure 8: Representation of the minipage spacing adjustment for a nested level.

Since we want to keep the “left” and “right” environments “aligned on top”, preserving the \baselineskip
and keep the desired “spaces” (\topsep + [\partopsep]) it is necessary to “adjust” the “vertical spaces” for
minipage environments.
Here there are several complications that we must circumvent, the minipage environment eliminates the
“top” spaces, the multicols environment can be nested in the minipage environment, the “top” and “bottom”
spaces are affected when topsep=0pt and to this is added the \partopsep parameter that comes into
action according to whether TEX is in 〈horizontal mode〉 or 〈vertical mode〉. Depending on these cases, small
adjustments must be made using \vspace and \addvspace to obtain the “desired vertical spacing”.

BOMB Again I must make clear that the implementation here is a “bit questionable”, but hunting the spaces (glue) produced by
the minipage environment is quite complicated, even more if multicols it is nested. The setting of the values was more
“trial and error” (approx to \strutbox), using the help of the lua-visual-debug[15] package, again my attempts to
find the correct values using \showoutput and \showboxdepth absolutely failed.

13.24.1 Adjustment of vertical spaces for minipage in enumext

__enumext_minipage_set_skip:

__enumext_minipage_add_space:

The function __enumext_minipage_set_skip: will take care of determining the “adjust” spaces that we
will apply “above” and “below” the __enumext_mini_page environment in enumext.
First we will set the value of \l__enumext_minipage_right_skip equal to \topsep, then we will see if
TEX is in 〈vertical mode〉 and we will add \partopsep, followed by that we set the value of \l__enumext_-
minipage_after_skip.
1321 \cs_new_protected:Nn __enumext_minipage_set_skip:
1322 {
1323 \skip_set:Nn \l__enumext_minipage_right_skip
1324 {
1325 \skip_use:c { l__enumext_topsep_ __enumext_level: _skip }
1326 }
1327 \mode_if_vertical:T
1328 {
1329 \skip_add:Nn \l__enumext_minipage_right_skip
1330 {
1331 \skip_use:c { l__enumext_partopsep_ __enumext_level: _skip }
1332 }
1333 }
1334 \skip_set_eq:NN \l__enumext_minipage_after_skip \l__enumext_minipage_right_skip

We will adjust the values \l__enumext_multicols_above_X_skip and \l__enumext_multicols_-
below_X_skip and call the function __enumext_pre_itemsep_skip:.
1335 \skip_set_eq:cN
1336 { l__enumext_multicols_above_ __enumext_level: _skip } \l__enumext_minipage_right_skip
1337 \skip_set_eq:cN
1338 { l__enumext_multicols_below_ __enumext_level: _skip } \l__enumext_minipage_right_skip
1339 __enumext_pre_itemsep_skip:

If the environment multicols is active, we set \topskip=0pt and then we make \multicolsep have the
same value as \l__enumext_multicols_above_X_skip.
1340 \int_compare:nNnT
1341 { \int_use:c { l__enumext_columns_ __enumext_level: _int } } > { 1 }
1342 {
1343 \skip_zero:N \topskip
1344 \skip_set_eq:Nc \multicolsep { l__enumext_multicols_above_ __enumext_level: _skip }

58 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1345 }
1346 }

The function __enumext_minipage_add_space: will apply the spaces on the “left side” using \addvspace
“above” the __enumext_mini_page environment, taking into account whether TEX is in 〈horizontal mode〉
or 〈vertical mode〉. Here we use the plain TEX macro \nointerlineskip to prevent baseline “glue” being
added between the next pair of boxes in a vertical list. For the latter we will make some adjustments since the
\partopsep parameter comes into play and this affects the vertical spacing.
1347 \cs_new_protected:Nn __enumext_minipage_add_space:
1348 {
1349 __enumext_minipage_set_skip:
1350 __enumext_unskip_unkern:
1351 \mode_if_vertical:TF
1352 {
1353 \nopagebreak\nointerlineskip
1354 }
1355 {
1356 \par\nopagebreak\nointerlineskip
1357 \skip_zero:c { l__enumext_partopsep_ __enumext_level: _skip }
1358 }
1359 \int_compare:nNnTF
1360 { \int_use:c { l__enumext_columns_ __enumext_level: _int } } > { 1 }
1361 {
1362 \addvspace{ 0.445\box_ht:N \strutbox }
1363 }
1364 {
1365 \addvspace{ 0.250\box_ht:N \strutbox }
1366 }
1367 }

(End of definition for __enumext_minipage_set_skip: and __enumext_minipage_add_space:.)

__enumext_pre_itemsep_skip: The function __enumext_pre_itemsep_skip: will adjust the spaces below the environment minipage
and the environment multicols if it is nested in it, taking into account the value of \itemsep from the
previous level.
1368 \cs_new_protected:Nn __enumext_pre_itemsep_skip:
1369 {
1370 \int_case:nn { \l__enumext_level_int }
1371 {
1372 { 2 }{
1373 \skip_if_eq:nnTF
1374 { \l__enumext_itemsep_i_skip } { \l__enumext_minipage_after_skip }
1375 {
1376 \skip_set:Nn \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1377 \skip_set:Nn \l__enumext_multicols_below_ii_skip { 0.350\box_ht:N \strutbox }
1378 }
1379 {
1380 \dim_compare:nNnT
1381 { \l__enumext_itemsep_i_skip } < { \l__enumext_minipage_after_skip }
1382 {
1383 \skip_sub:Nn
1384 \l__enumext_minipage_after_skip { \l__enumext_itemsep_i_skip }
1385 \skip_sub:Nn
1386 \l__enumext_multicols_below_ii_skip { \l__enumext_itemsep_i_skip }
1387 \skip_add:Nn
1388 \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1389 \skip_add:Nn
1390 \l__enumext_multicols_below_ii_skip { 0.350\box_ht:N \strutbox }
1391 }
1392 \dim_compare:nNnT
1393 { \l__enumext_itemsep_i_skip } > { \l__enumext_minipage_after_skip }
1394 {
1395 \skip_set:Nn \l__enumext_minipage_temp_skip
1396 {
1397 \l__enumext_itemsep_i_skip - \l__enumext_minipage_after_skip
1398 }
1399 \skip_sub:Nn
1400 \l__enumext_minipage_after_skip { \l__enumext_itemsep_i_skip }
1401 \skip_sub:Nn
1402 \l__enumext_multicols_below_ii_skip { \l__enumext_itemsep_i_skip }
1403 \skip_add:Nn

59 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1404 \l__enumext_minipage_after_skip
1405 { 0.150\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1406 \skip_add:Nn
1407 \l__enumext_multicols_below_ii_skip
1408 { 0.350\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1409 }
1410 }
1411 }
1412 { 3 }{
1413 \skip_if_eq:nnTF
1414 { \l__enumext_itemsep_ii_skip } { \c_zero_skip }
1415 {
1416 \skip_set:Nn \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1417 \skip_set:Nn \l__enumext_multicols_below_iii_skip { 0.350\box_ht:N \strutbox }
1418 }
1419 {
1420 \dim_compare:nNnT
1421 { \l__enumext_itemsep_ii_skip } < { \l__enumext_minipage_after_skip }
1422 {
1423 \skip_sub:Nn
1424 \l__enumext_minipage_after_skip { \l__enumext_itemsep_ii_skip }
1425 \skip_sub:Nn
1426 \l__enumext_multicols_below_iii_skip { \l__enumext_itemsep_ii_skip }
1427 \skip_add:Nn
1428 \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1429 \skip_add:Nn
1430 \l__enumext_multicols_below_iii_skip { 0.350\box_ht:N \strutbox }
1431 }
1432 \dim_compare:nNnT
1433 { \l__enumext_itemsep_ii_skip } > { \l__enumext_minipage_after_skip }
1434 {
1435 \skip_set:Nn \l__enumext_minipage_temp_skip
1436 {
1437 \l__enumext_itemsep_ii_skip - \l__enumext_minipage_after_skip
1438 }
1439 \skip_sub:Nn
1440 \l__enumext_minipage_after_skip { \l__enumext_itemsep_ii_skip }
1441 \skip_sub:Nn
1442 \l__enumext_multicols_below_iii_skip { \l__enumext_itemsep_ii_skip }
1443 \skip_add:Nn
1444 \l__enumext_minipage_after_skip
1445 { 0.150\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1446 \skip_add:Nn
1447 \l__enumext_multicols_below_iii_skip
1448 { 0.350\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1449 }
1450 }
1451 }
1452 { 4 }{
1453 \skip_if_eq:nnTF { \l__enumext_itemsep_iii_skip } { \c_zero_skip }
1454 {
1455 \skip_set:Nn \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1456 \skip_set:Nn \l__enumext_multicols_below_iv_skip { 0.350\box_ht:N \strutbox }
1457 }
1458 {
1459 \dim_compare:nNnT
1460 { \l__enumext_itemsep_iii_skip } < { \l__enumext_minipage_after_skip }
1461 {
1462 \skip_sub:Nn
1463 \l__enumext_minipage_after_skip { \l__enumext_itemsep_iii_skip }
1464 \skip_sub:Nn
1465 \l__enumext_multicols_below_iv_skip { \l__enumext_itemsep_iii_skip }
1466 \skip_add:Nn
1467 \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1468 \skip_add:Nn
1469 \l__enumext_multicols_below_iv_skip { 0.350\box_ht:N \strutbox }
1470 }
1471 \dim_compare:nNnT
1472 { \l__enumext_itemsep_iii_skip } > { \l__enumext_minipage_after_skip }
1473 {
1474 \skip_set:Nn \l__enumext_minipage_temp_skip

60 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1475 {
1476 \l__enumext_itemsep_iii_skip - \l__enumext_minipage_after_skip
1477 }
1478 \skip_sub:Nn
1479 \l__enumext_minipage_after_skip { \l__enumext_itemsep_iii_skip }
1480 \skip_sub:Nn
1481 \l__enumext_multicols_below_iv_skip { \l__enumext_itemsep_iii_skip }
1482 \skip_add:Nn
1483 \l__enumext_minipage_after_skip
1484 { 0.150\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1485 \skip_add:Nn
1486 \l__enumext_multicols_below_iv_skip
1487 { 0.350\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1488 }
1489 }
1490 }
1491 }
1492 }

(End of definition for __enumext_pre_itemsep_skip:.)

13.24.2 Adjustment of vertical spaces for minipage in keyans

__enumext_keyans_minipage_set_skip:

__enumext_keyans_minipage_add_space:

__enumext_keyans_pre_itemsep_skip:

The function __enumext_keyans_mini_set_vskip: will take care of determining the “adjusted” spaces
that we will apply “above” and “below” the __enumext_mini_page environment in keyans. The implemen-
tation of this function is the same as the one used in enumext.
1493 \cs_new_protected:Nn __enumext_keyans_minipage_set_skip:
1494 {
1495 \skip_zero:N \l__enumext_minipage_after_skip
1496 \skip_zero:N \l__enumext_minipage_left_skip
1497 \skip_zero:N \l__enumext_minipage_right_skip
1498 \skip_set:Nn \l__enumext_minipage_right_skip
1499 {
1500 \l__enumext_topsep_v_skip
1501 }
1502 \mode_if_vertical:T
1503 {
1504 \skip_add:Nn \l__enumext_minipage_right_skip
1505 {
1506 \l__enumext_partopsep_v_skip
1507 }
1508 }
1509 \skip_set_eq:NN \l__enumext_minipage_after_skip \l__enumext_minipage_right_skip
1510 \skip_set_eq:NN \l__enumext_multicols_above_v_skip \l__enumext_minipage_right_skip
1511 \skip_set_eq:NN \l__enumext_multicols_below_v_skip \l__enumext_minipage_right_skip
1512 __enumext_keyans_pre_itemsep_skip:
1513 \int_compare:nNnT { \l__enumext_columns_v_int } > { 1 }
1514 {
1515 \skip_zero:N \topskip
1516 \skip_set_eq:NN \multicolsep \l__enumext_minipage_right_skip
1517 }
1518 }
1519 \cs_new_protected:Nn __enumext_keyans_minipage_add_space:
1520 {
1521 __enumext_keyans_minipage_set_skip:
1522 __enumext_unskip_unkern:
1523 \mode_if_vertical:TF
1524 {
1525 \nopagebreak\nointerlineskip
1526 }
1527 {
1528 \par\nopagebreak\nointerlineskip
1529 \skip_zero:N \l__enumext_partopsep_v_skip
1530 }
1531 \int_compare:nNnTF { \l__enumext_columns_v_int } > { 1 }
1532 {
1533 \addvspace{ 0.445\box_ht:N \strutbox }
1534 }
1535 {
1536 \addvspace{ 0.250\box_ht:N \strutbox }
1537 }
1538 }

61 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1539 \cs_new_protected:Nn __enumext_keyans_pre_itemsep_skip:
1540 {
1541 \skip_if_eq:nnTF
1542 { \l__enumext_itemsep_i_skip } { \l__enumext_minipage_after_skip }
1543 {
1544 \skip_set:Nn \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1545 \skip_set:Nn \l__enumext_multicols_below_v_skip { 0.350\box_ht:N \strutbox }
1546 }
1547 {
1548 \dim_compare:nNnT
1549 { \l__enumext_itemsep_i_skip } < { \l__enumext_minipage_after_skip }
1550 {
1551 \skip_sub:Nn \l__enumext_minipage_after_skip { \l__enumext_itemsep_i_skip }
1552 \skip_sub:Nn \l__enumext_multicols_below_v_skip { \l__enumext_itemsep_i_skip }
1553 \skip_add:Nn \l__enumext_minipage_after_skip { 0.150\box_ht:N \strutbox }
1554 \skip_add:Nn \l__enumext_multicols_below_v_skip { 0.350\box_ht:N \strutbox }
1555 }
1556 \dim_compare:nNnT
1557 { \l__enumext_itemsep_i_skip } > { \l__enumext_minipage_after_skip }
1558 {
1559 \skip_set:Nn \l__enumext_minipage_temp_skip
1560 {
1561 \l__enumext_itemsep_i_skip - \l__enumext_minipage_after_skip
1562 }
1563 \skip_sub:Nn \l__enumext_minipage_after_skip { \l__enumext_itemsep_i_skip }
1564 \skip_sub:Nn \l__enumext_multicols_below_v_skip { \l__enumext_itemsep_i_skip }
1565 \skip_add:Nn \l__enumext_minipage_after_skip
1566 { 0.150\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1567 \skip_add:Nn \l__enumext_multicols_below_v_skip
1568 { 0.350\box_ht:N \strutbox + \l__enumext_minipage_temp_skip }
1569 }
1570 }
1571 }

(End of definition for __enumext_keyans_minipage_set_skip: , __enumext_keyans_minipage_add_space: , and __enu-
mext_keyans_pre_itemsep_skip:.)

13.24.3 Adjustment of vertical spaces for minipage in enumext* and keyans*

__enumext_mini_set_vskip_vii:

__enumext_mini_set_vskip_viii:

The functions __enumext_mini_set_vskip_vii: and __enumext_mini_set_vskip_viii: will take
care of determining the “adjusted” spaces that we will apply “above” and “below” the __enumext_mini_page
environment in enumext* and keyans*.
1572 \cs_new_protected:Nn __enumext_mini_set_vskip_vii:
1573 {
1574 \skip_zero_new:N \l__enumext_minipage_left_skip
1575 \skip_gzero_new:N \g__enumext_minipage_right_skip
1576 \skip_gzero_new:N \g__enumext_minipage_after_skip
1577 \skip_if_eq:nnTF { \l__enumext_topsep_vii_skip } { \c_zero_skip }
1578 {
1579 \skip_set:Nn \l__enumext_minipage_left_skip { 0.5\box_dp:N \strutbox }
1580 \skip_gset:Nn \g__enumext_minipage_right_skip { 0.325\box_dp:N \strutbox }
1581 }
1582 {
1583 \skip_set:Nn \l__enumext_minipage_left_skip { 0.5875\box_dp:N \strutbox }
1584 \skip_gset:Nn \g__enumext_minipage_right_skip
1585 {
1586 \l__enumext_topsep_vii_skip
1587 }
1588 \skip_gset:Nn \g__enumext_minipage_after_skip
1589 {
1590 0.325\box_dp:N \strutbox + \l__enumext_topsep_vii_skip
1591 }
1592 }
1593 }
1594 \cs_new_protected:Nn __enumext_mini_set_vskip_viii:
1595 {
1596 \skip_zero_new:N \l__enumext_minipage_after_skip
1597 \skip_zero_new:N \l__enumext_minipage_left_skip
1598 \skip_zero_new:N \l__enumext_minipage_right_skip
1599 \skip_if_eq:nnTF { \l__enumext_topsep_viii_skip } { \c_zero_skip }
1600 {
1601 \skip_set:Nn \l__enumext_minipage_left_skip

62 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1602 {
1603 0.5\box_dp:N \strutbox
1604 }
1605 \skip_set:Nn \l__enumext_minipage_right_skip
1606 {
1607 \l__enumext_partopsep_viii_skip
1608 }
1609 \skip_set:Nn \l__enumext_minipage_after_skip
1610 {
1611 1.6\box_dp:N \strutbox
1612 }
1613 }
1614 {
1615 \skip_set:Nn \l__enumext_minipage_left_skip
1616 {
1617 0.5875\box_dp:N \strutbox
1618 }
1619 \skip_set:Nn \l__enumext_minipage_right_skip
1620 {
1621 \l__enumext_topsep_viii_skip
1622 }
1623 \skip_set:Nn \l__enumext_minipage_after_skip
1624 {
1625 0.325\box_dp:N \strutbox + \l__enumext_topsep_viii_skip
1626 }
1627 }
1628 }

(End of definition for __enumext_mini_set_vskip_vii: and __enumext_mini_set_vskip_viii:.)

__enumext_mini_addvspace_vii:

__enumext_mini_addvspace_viii:

The functions __enumext_mini_addvspace_vii: and __enumext_mini_addvspace_viii: will apply
the vertical space “only above” the __enumext_mini_page environment on the left side when the mini-right
key is active in the enumext* and keyans* environments.
Here we will NOT take into account whether TEX is in 〈horizontal mode〉 or 〈vertical mode〉, since \partopsep
is equal to 0pt in both environments.
1629 \cs_new_protected:Nn __enumext_mini_addvspace_vii:
1630 {
1631 __enumext_mini_set_vskip_vii:
1632 \par\nopagebreak
1633 \addvspace { \l__enumext_minipage_left_skip }
1634 }
1635 \cs_new_protected:Nn __enumext_mini_addvspace_viii:
1636 {
1637 __enumext_mini_set_vskip_viii:
1638 \par\nopagebreak
1639 \addvspace { \l__enumext_minipage_left_skip }
1640 }

(End of definition for __enumext_mini_addvspace_vii: and __enumext_mini_addvspace_viii:.)

13.24.4 The command \miniright

The command \miniright will close the __enumext_mini_page environment on the “left side”, open the
__enumext_mini_page environment on the “right side” adding the adjusted vertical space. By default we will
add \centering when starting the “right side” environment. The starred argument ‘*’ inhibits the use of
\centering command i.e. the usual LATEX justification is maintained in the __enumext_mini_page on the
“right side”.

\miniright First we will perform some checks to prevent the command from being executed outside the enumext environ-
ment or somewhere inappropriate then we will call the internal functions to execute it in the enumext and
keyans environments.
1641 \NewDocumentCommand \miniright { s }
1642 {
1643 \int_compare:nNnT { \l__enumext_keyans_pic_level_int } = { 1 }
1644 {
1645 \msg_error:nnn { enumext } { wrong-miniright-place }
1646 }
1647 % outside
1648 \bool_lazy_and:nnT
1649 { \int_compare_p:nNn { \l__enumext_level_int } = { 0 } }
1650 { \int_compare_p:nNn { \l__enumext_level_h_int } = { 0 } }

63 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1651 {
1652 \msg_error:nnn { enumext } { wrong-miniright-place }
1653 }
1654 % starred env
1655 \bool_lazy_and:nnT
1656 { \bool_if_p:N \g__enumext_starred_bool }
1657 { \bool_not_p:n { \l__enumext_standar_bool } }
1658 {
1659 \msg_error:nnn { enumext } { wrong-miniright-starred }
1660 }
1661 % exec
1662 \int_compare:nNnTF { \l__enumext_keyans_level_int } = { 1 }
1663 {
1664 __enumext_keyans_mini_right_cmd:n {#1}
1665 }
1666 { __enumext_mini_right_cmd:n {#1} }
1667 }

(End of definition for \miniright. This function is documented on page 12.)

__enumext_mini_right_cmd:n The function __enumext_mini_right_cmd:n takes as argument the starred ‘*’ of the \miniright com-
mand in the enumext environment. We check if the mini-env key is active via the variable \l__enumext_-
minipage_right_X_dim, if so we close the multicols environment with the __enumext_mini_page
environment on the “left side”, then we open the __enumext_mini_page environment on the “right side”,
apply our adjusted “vertical spaces”, followed by adding the \centering command when the starred argument
‘*’ is not present and set zero \g__enumext_minipage_stat_int, otherwise we return an error.
1668 \cs_new_protected:Npn __enumext_mini_right_cmd:n #1
1669 {
1670 \dim_compare:nNnTF
1671 { \dim_use:c { l__enumext_minipage_right_ __enumext_level: _dim } } > { \c_zero_dim }
1672 {
1673 __enumext_multicols_stop:
1674 \int_compare:nNnT
1675 { \int_use:c { l__enumext_columns_ __enumext_level: _int } } = { 1 }
1676 {
1677 \par\addvspace{ \l__enumext_minipage_after_skip }
1678 }
1679 \end__enumext_mini_page
1680 \hfill
1681 __enumext_mini_page{ \dim_use:c { l__enumext_minipage_right_ __enumext_level: _dim } }
1682 \par\nointerlineskip
1683 \addvspace { \l__enumext_minipage_right_skip }
1684 \bool_if:nF {#1}
1685 {
1686 \centering
1687 }
1688 \int_gzero:N \g__enumext_minipage_stat_int
1689 }
1690 { \msg_error:nnn { enumext } { wrong-miniright-use } }
1691 % paranoia
1692 \RenewDocumentCommand \miniright { s }
1693 {
1694 \msg_error:nn { enumext } { many-miniright-used }
1695 }
1696 }

(End of definition for __enumext_mini_right_cmd:n.)

__enumext_keyans_mini_right_cmd:n The function __enumext_keyans_mini_right_cmd:n takes as argument the starred ‘*’ of the \miniright
command in the keyans environment. The implementation of this function is the same as that of the
__enumext_mini_right_cmd:n function of the enumext environment.
1697 \cs_new_protected:Npn __enumext_keyans_mini_right_cmd:n #1
1698 {
1699 \dim_compare:nNnTF { \l__enumext_minipage_right_v_dim } > { \c_zero_dim }
1700 {
1701 __enumext_keyans_multicols_stop:
1702 \int_compare:nNnT { \l__enumext_columns_v_int } = { 1 }
1703 {
1704 \par\addvspace{ \l__enumext_minipage_after_skip }
1705 }
1706 \end__enumext_mini_page

64 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1707 \hfill
1708 __enumext_mini_page{ \l__enumext_minipage_right_v_dim }
1709 \par\nointerlineskip
1710 \addvspace { \l__enumext_minipage_right_skip }
1711 \bool_if:nF {#1}
1712 {
1713 \centering
1714 }
1715 \int_gzero:N \g__enumext_minipage_stat_int
1716 }
1717 { \msg_error:nnn { enumext } { wrong-miniright-use } }
1718 % paranoia
1719 \RenewDocumentCommand \miniright { s }
1720 {
1721 \msg_error:nn { enumext } { many-miniright-used }
1722 }
1723 }

(End of definition for __enumext_keyans_mini_right_cmd:n.)

13.25 Setting above and below keys
While having controlled the vertical spaces within the enumext and keyans environments when using the
columns or mini-env keys, sometimes the “vertical spaces above” or “vertical spaces below” the environments
are not as expected and it is necessary to be able to apply a “fine correction” to these. As I have not been able
to correct these glitches, the best option is to leave a couple of 〈keys〉 dedicated to this purpose, in this case it is
best to use \vspace or \vspace* when convenient.

above
above*
below
below*

Define above, above*, below and below* keys for enumext and keyans environments.
1724 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1725 {
1726 \keys_define:nn { enumext / #1 }
1727 {
1728 above .skip_set:c = { l__enumext_vspace_above_#2_skip },
1729 above .value_required:n = true,
1730 above* .code:n = \bool_set_true:c { l__enumext_vspace_a_star_#2_bool }
1731 \keys_set:nn { enumext / #1 } { above = {##1} },
1732 above* .value_required:n = true,
1733 below .skip_set:c = { l__enumext_vspace_below_#2_skip },
1734 below .value_required:n = true,
1735 below* .code:n = \bool_set_true:c { l__enumext_vspace_b_star_#2_bool }
1736 \keys_set:nn { enumext / #1 } { below = {##1} },
1737 below* .value_required:n = true,
1738 }
1739 }
1740 \clist_map_inline:Nn \c__enumext_all_envs_clist { __enumext_tmp:nn #1 }

(End of definition for above and others.)

13.25.1 Functions for above and below keys in enumext

__enumext_vspace_above: The function __enumext_vspace_above: apply the vertical space above the enumext environment set by
the above* and above keys.
1741 \cs_new_protected:Nn __enumext_vspace_above:
1742 {
1743 \skip_if_eq:nnF
1744 { \skip_use:c { l__enumext_vspace_above_ __enumext_level: _skip } } { \c_zero_skip }
1745 {
1746 \bool_if:cTF { l__enumext_vspace_a_star_ __enumext_level: _bool }
1747 {
1748 \vspace*{ \skip_use:c { l__enumext_vspace_above_ __enumext_level: _skip } }
1749 }
1750 {
1751 \vspace { \skip_use:c { l__enumext_vspace_above_ __enumext_level: _skip } }
1752 }
1753 }
1754 }

(End of definition for __enumext_vspace_above:.)

65 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

__enumext_vspace_below: The function __enumext_vspace_below: apply the vertical space below the enumext environment set by
the below* and below keys.
1755 \cs_new_protected:Nn __enumext_vspace_below:
1756 {
1757 \skip_if_eq:nnF
1758 { \skip_use:c { l__enumext_vspace_below_ __enumext_level: _skip } } { \c_zero_skip }
1759 {
1760 \bool_if:cTF { l__enumext_vspace_b_star_ __enumext_level: _bool }
1761 {
1762 \vspace*{ \skip_use:c { l__enumext_vspace_below_ __enumext_level: _skip } }
1763 }
1764 {
1765 \vspace { \skip_use:c { l__enumext_vspace_below_ __enumext_level: _skip } }
1766 }
1767 }
1768 }

(End of definition for __enumext_vspace_below:.)

13.25.2 Functions for above and below keys in keyans

__enumext_vspace_above_v: The function __enumext_vspace_above_v: apply the vertical space above the keyans environment set by
the above and above* keys.
1769 \cs_new_protected:Nn __enumext_vspace_above_v:
1770 {
1771 \skip_if_eq:nnF { \l__enumext_vspace_above_v_skip } { \c_zero_skip }
1772 {
1773 \bool_if:NTF \l__enumext_vspace_a_star_v_bool
1774 {
1775 \vspace*{ \l__enumext_vspace_above_v_skip }
1776 }
1777 { \vspace { \l__enumext_vspace_above_v_skip } }
1778 }
1779 }

(End of definition for __enumext_vspace_above_v:.)

__enumext_vspace_below_v: The function __enumext_vspace_below_v: apply the vertical space below the keyans environment set by
the below* and below keys.
1780 \cs_new_protected:Nn __enumext_vspace_below_v:
1781 {
1782 \skip_if_eq:nnF { \l__enumext_vspace_below_v_skip } { \c_zero_skip }
1783 {
1784 \bool_if:NTF \l__enumext_vspace_b_star_v_bool
1785 {
1786 \vspace*{ \l__enumext_vspace_below_v_skip }
1787 }
1788 { \vspace { \l__enumext_vspace_below_v_skip } }
1789 }
1790 }

(End of definition for __enumext_vspace_below_v:.)

13.25.3 Functions for above and below keys in enumext* keyans*

__enumext_vspace_above_vii:
__enumext_vspace_above_viii:

The functions __enumext_vspace_above_vii: and __enumext_vspace_above_viii: apply the verti-
cal space above the enumext* and keyans* environments set by the above and above* keys.
1791 \cs_new_protected:Nn __enumext_vspace_above_vii:
1792 {
1793 \skip_if_eq:nnF { \l__enumext_vspace_above_vii_skip } { \c_zero_skip }
1794 {
1795 \bool_if:NTF \l__enumext_vspace_a_star_vii_bool
1796 {
1797 \vspace*{ \l__enumext_vspace_above_vii_skip }
1798 }
1799 { \vspace { \l__enumext_vspace_above_vii_skip } }
1800 }
1801 }
1802 \cs_new_protected:Nn __enumext_vspace_above_viii:
1803 {
1804 \skip_if_eq:nnF { \l__enumext_vspace_above_viii_skip } { \c_zero_skip }
1805 {

66 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1806 \bool_if:NTF \l__enumext_vspace_a_star_viii_bool
1807 {
1808 \vspace*{ \l__enumext_vspace_above_viii_skip }
1809 }
1810 { \vspace { \l__enumext_vspace_above_viii_skip } }
1811 }
1812 }

(End of definition for __enumext_vspace_above_vii: and __enumext_vspace_above_viii:.)

__enumext_vspace_below_vii:
__enumext_vspace_below_viii:

The functions __enumext_vspace_below_vii: and __enumext_vspace_below_viii: apply the verti-
cal space below the enumext* and keyans* environments set by the below* and below keys.
1813 \cs_new_protected:Nn __enumext_vspace_below_vii:
1814 {
1815 \skip_if_eq:nnF { \l__enumext_vspace_below_vii_skip } { \c_zero_skip }
1816 {
1817 \bool_if:NTF \l__enumext_vspace_b_star_vii_bool
1818 {
1819 \vspace*{ \l__enumext_vspace_below_vii_skip }
1820 }
1821 { \vspace { \l__enumext_vspace_below_vii_skip } }
1822 }
1823 }
1824 \cs_new_protected:Nn __enumext_vspace_below_viii:
1825 {
1826 \skip_if_eq:nnF { \l__enumext_vspace_below_viii_skip } { \c_zero_skip }
1827 {
1828 \bool_if:NTF \l__enumext_vspace_b_star_viii_bool
1829 {
1830 \vspace*{ \l__enumext_vspace_below_viii_skip }
1831 }
1832 { \vspace { \l__enumext_vspace_below_viii_skip } }
1833 }
1834 }

(End of definition for __enumext_vspace_below_vii: and __enumext_vspace_below_viii:.)

13.26 Setting series, resume and resume* keys
The series key is responsible for the whole process of the resume and resume* keys. The idea behind this is
to be able to absorb the 〈keys〉 passed to the optional argument of the environments enumext and enumext*,
but, discarding some specific 〈keys〉.

series
resume

resume*

We define the keys series, resume and resume* for the “all levels” of enumext and enumext*. Here we
do not need to make sure that \printkeyans is not running otherwise the start value of the environments
would be increased when using resume or resume* keys.
In version 1.6 it is allowed to pass the key resume without value by means of the command \setenumext,
for the correct operation of this we must set the boolean variable \l__enumext_resume_count_bool set by
the key resume without value to “true” to be later processed by the function __enumext_parse_series:n
in the definition of the environments enumext and enumext*.
1835 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
1836 {
1837 \keys_define:nn { enumext / #1 }
1838 {
1839 series .str_set:N = \l__enumext_series_name_str,
1840 series .value_required:n = true,
1841 resume .code:n = {
1842 \bool_if:NF \l__enumext_print_keyans_cmd_bool
1843 {
1844 \tl_set:Nn \l__enumext_series_name_tl {##1}
1845 \tl_if_empty:NTF \l__enumext_series_name_tl
1846 {
1847 \bool_set_true:c { l__enumext_resume_count_#2_bool }
1848 \bool_set_eq:Nc
1849 \l__enumext_resume_count_bool
1850 { l__enumext_resume_count_#2_bool }
1851 }
1852 {
1853 __enumext_resume:n {##1}
1854 }
1855 }

67 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1856 },
1857 resume* .code:n = {
1858 \bool_if:NF \l__enumext_print_keyans_cmd_bool
1859 {
1860 \bool_set_true:c { l__enumext_resume_count_#2_bool }
1861 \bool_set_eq:Nc
1862 \l__enumext_resume_count_bool { l__enumext_resume_count_#2_bool }
1863 \bool_set_true:c { l__enumext_resume_star_key_#2_bool }
1864 __enumext_resume_star:
1865 }
1866 },
1867 resume* .value_forbidden:n = true,
1868 }
1869 }
1870 \clist_map_inline:nn
1871 {
1872 {level-1}{i}, {level-2}{ii}, {level-3}{iii}, {level-4}{iv},{enumext*}{vii},
1873 }
1874 { __enumext_tmp:nn #1 }

(End of definition for series , resume , and resume*.)

13.26.1 Internal function to save counter and integer values

__enumext_standar_save_counter:

__enumext_standar_save_counter_aux:

__enumext_starred_save_counter:

__enumext_starred_save_counter_aux:

The __enumext_standar_save_counter: and __enumext_starred_save_counter: functions will
save the last counter value to \g__enumext_series_〈series name〉_int if the series={〈series name〉} key
has been passed, to \c@__enumext_resume_X_int if it has passed the key resume without value and the key
series is not active, in \g__enumext_series_〈series name〉_X_int if the key resume={〈series name〉} has
been passed and in \g__enumext_series_〈store name〉_X_int if the key has been passed save-ans={〈store
name〉}.

BOMB The variables \l__enumext_series_name_str and \l__enumext_series_name_tl contain the same {〈series name〉}
but are executed at different moments, the integer variable with \l__enumext_series_name_str sets the value when
execute series={〈series name〉} and the integer variable with \l__enumext_series_name_tl sets the subsequent
values when use resume={〈series name〉}. This function is passed to the enumext environment definition (§13.42) and
the enumext* environment definition (§13.47).

1875 \cs_new_protected:Nn __enumext_standar_save_counter:
1876 {
1877 \bool_if:NTF \g__enumext_standar_bool
1878 {
1879 __enumext_standar_save_counter_aux:
1880 \int_compare:nNnT { \l__enumext_level_int } = { 1 }
1881 {
1882 \int_if_exist:cT { g__enumext_resume_ \l__enumext_store_name_tl _int }
1883 {
1884 \int_gset_eq:cN
1885 { g__enumext_resume_ \l__enumext_store_name_tl _int } \value{enumXi}
1886 }
1887 }
1888 }
1889 {
1890 __enumext_standar_save_counter_aux:
1891 }
1892 }
1893 \cs_new_protected:Nn __enumext_standar_save_counter_aux:
1894 {
1895 \str_if_empty:NF \l__enumext_series_name_str
1896 {
1897 \int_gset_eq:cc
1898 { g__enumext_series_ \l__enumext_series_name_str _ __enumext_level: _int }
1899 { c@enumX __enumext_level: }
1900 }
1901 \tl_if_empty:NTF \l__enumext_series_name_tl
1902 {
1903 \str_if_empty:NT \l__enumext_series_name_str
1904 {
1905 \tl_if_empty:NT \l__enumext_store_name_tl
1906 {
1907 \int_gset_eq:cc
1908 { c@ __enumext_resume_ __enumext_level: _int } { c@enumX __enumext_level: }
1909 }
1910 }

68 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1911 }
1912 {
1913 \int_if_exist:cT
1914 { g__enumext_series_ \l__enumext_series_name_tl _ __enumext_level: _int }
1915 {
1916 \int_gset_eq:cc
1917 { g__enumext_series_ \l__enumext_series_name_tl _ __enumext_level: _int }
1918 { c@enumX __enumext_level: }
1919 }
1920 }
1921 }
1922 \cs_new_protected:Nn __enumext_starred_save_counter:
1923 {
1924 \bool_if:NTF \g__enumext_starred_bool
1925 {
1926 __enumext_starred_save_counter_aux:
1927 \int_if_exist:cT { g__enumext_resume_ \l__enumext_store_name_tl _int }
1928 {
1929 \int_gset_eq:cN
1930 { g__enumext_resume_ \l__enumext_store_name_tl _int } \value{enumXvii}
1931 }
1932 }
1933 {
1934 __enumext_starred_save_counter_aux:
1935 }
1936 }
1937 \cs_new_protected:Nn __enumext_starred_save_counter_aux:
1938 {
1939 \str_if_empty:NF \l__enumext_series_name_str
1940 {
1941 \int_gset_eq:cN
1942 { g__enumext_series_ \l__enumext_series_name_str _vii_int } \value{enumXvii}
1943 }
1944 \tl_if_empty:NTF \l__enumext_series_name_tl
1945 {
1946 \str_if_empty:NT \l__enumext_series_name_str
1947 {
1948 \tl_if_empty:NT \l__enumext_store_name_tl
1949 {
1950 \int_gset_eq:cc { c@ __enumext_resume_vii_int } { c@enumXvii }
1951 }
1952 }
1953 }
1954 {
1955 \int_if_exist:cT { g__enumext_series_ \l__enumext_series_name_tl _vii_int }
1956 {
1957 \int_gset_eq:cN
1958 { g__enumext_series_ \l__enumext_series_name_tl _vii_int } \value{enumXvii}
1959 }
1960 }
1961 }

(End of definition for __enumext_standar_save_counter: and others.)

13.26.2 Internal function for resume counters

__enumext_resume_counter: The __enumext_resume_counter: function is executed by the resume* key and resume key without value,
only the “counters” for the “levels” of the environments in which it is executed will be set. If the save-ans
key is active it will set the “counter” according to the value of the integer variable created by that key.
1962 \cs_new_protected:Nn __enumext_resume_counter:
1963 {
1964 \cs_set:Npn __enumext_tmp:n ##1
1965 {
1966 \bool_if:cT { l__enumext_resume_count_ \int_to_roman:n {##1} _bool }
1967 {
1968 \exp_args:Ne \int_set:cn { l__enumext_start_ \int_to_roman:n {##1} _int }
1969 {
1970 \int_use:c { c@ __enumext_resume_ \int_to_roman:n {##1} _int } + 1
1971 }
1972 }
1973 }
1974 \int_compare:nNnT { \l__enumext_level_int } > { 0 }

69 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

1975 {
1976 \bool_lazy_and:nnTF
1977 { \bool_if_p:N \l__enumext_standar_first_bool }
1978 { \bool_if_p:N \l__enumext_store_active_bool }
1979 {
1980 \int_set:Nn \l__enumext_start_i_int
1981 {
1982 \int_use:c { g__enumext_resume_ \l__enumext_store_name_tl _int } + 1
1983 }
1984 }
1985 {
1986 \int_step_function:nN { \l__enumext_level_int } __enumext_tmp:n
1987 }
1988 }
1989 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
1990 {
1991 \bool_lazy_and:nnTF
1992 { \bool_if_p:N \l__enumext_starred_first_bool }
1993 { \bool_if_p:N \l__enumext_store_active_bool }
1994 {
1995 \int_set:Nn \l__enumext_start_vii_int
1996 {
1997 \int_use:c { g__enumext_resume_ \l__enumext_store_name_tl _int } + 1
1998 }
1999 }
2000 {
2001 \bool_if:NT \l__enumext_resume_count_vii_bool
2002 {
2003 \int_set:Nn \l__enumext_start_vii_int
2004 {
2005 \int_use:c { c@ __enumext_resume_vii_int } + 1
2006 }
2007 }
2008 }
2009 }
2010 }

(End of definition for __enumext_resume_counter:.)

13.26.3 Internal functions for series key

__enumext_filter_series:n
__enumext_filter_series_key:n

__enumext_filter_series_pair:nn

The function __enumext_filter_series:n will be in charge of filtering the 〈keys〉 we want to store where
#1 represents the optional argument passed to the environment. This implementation is adapted directly from
the code provided by Jonathan P. Spratte (@Skillmon) in chat-TeX-SX
2011 \cs_new:Npn __enumext_filter_series:n #1
2012 {
2013 \use:e
2014 {
2015 \keyval_parse:NNn
2016 __enumext_filter_series_key:n
2017 __enumext_filter_series_pair:nn {#1}
2018 }
2019 }

The function __enumext_filter_series_key:n will be responsible for filtering the 〈keys〉 that are passed
“without value” by excluding the resume, resume*, reset, reset* and base-fix keys.
2020 \cs_new:Npn __enumext_filter_series_key:n #1
2021 {
2022 \str_case:nnF {#1}
2023 {
2024 { resume } {} { resume* } {} { reset } {} { reset* } {} { base-fix } {}
2025 }
2026 { , { \exp_not:n {#1} } }
2027 }

The function __enumext_filter_series_pair:nn will be responsible for filtering the 〈keys〉 that are
passed “with value” by excluding the series, resume, start, start*, save-ans and save-key keys.
2028 \cs_new:Npn __enumext_filter_series_pair:nn #1#2
2029 {
2030 \str_case:nnF {#1}
2031 {
2032 { series } {} { resume } {} { start } {}
2033 { start* } {} { save-ans } {} { save-key } {}

70 / 167©2024–2026 by Pablo González L

https://chat.stackexchange.com/transcript/41?m=65647962#65647962

enumext v2.1 §.13 Implementation

2034 }
2035 { , { \exp_not:n {#1} } = { \exp_not:n {#2} } }
2036 }

(End of definition for __enumext_filter_series:n , __enumext_filter_series_key:n , and __enumext_filter_series_-
pair:nn.)

__enumext_save_last_keys:n
__enumext_resume_last_counter:

The function __enumext_save_last_keys:n will be in charge of saving the filtering 〈keys〉 when the
keys series={〈series name〉} or resume={〈series name〉} or resume* are NOT active and will save them
in the variable \g__enumext_resume_last_keys_X_tl for the enumext environment and in the variable
\g__enumext_resume_last_keys_vii_tl for the enumext* environment.

BOMB The boolean variable \l__enumext_resume_series_X_bool is set to “true” by the key resume={〈series name〉}, the
boolean variable \l__enumext_resume_star_key_X_bool is set to “true” by the key resume*, in this case we need to
make sure both variables are set to ““false” so that they don’t override the default filtered 〈keys〉.

2037 \cs_new_protected:Npn __enumext_save_last_keys:n #1
2038 {
2039 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2040 {
2041 \bool_if:cF { l__enumext_resume_series_ __enumext_level: _bool }
2042 {
2043 \bool_if:cF { l__enumext_resume_star_key_ __enumext_level: _bool }
2044 {
2045 \tl_gclear:c { g__enumext_resume_last_keys_ __enumext_level: _tl }
2046 \tl_gset:ce
2047 { g__enumext_resume_last_keys_ __enumext_level: _tl }
2048 { __enumext_filter_series:n {#1} }
2049 }
2050 }
2051 }
2052 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
2053 {
2054 \bool_if:NF \l__enumext_resume_series_vii_bool
2055 {
2056 \tl_gclear:N \g__enumext_resume_last_keys_vii_tl
2057 \tl_gset:Ne \g__enumext_resume_last_keys_vii_tl { __enumext_filter_series:n {#1} }
2058 }
2059 }
2060 }

The __enumext_resume_last_counter: function will be in charge of setting the “counters” when the
keys series={〈series name〉} or resume={〈series name〉} are NOT active and the resume key is being used
without value either in the optional argument of the environments or through the \setenumext command.

BOMB The boolean variable \l__enumext_resume_count_bool is set to “true” by the keys resume without value and resume*;
and set to “false” by the keys start and start* (§13.15).

2061 \cs_new_protected:Nn __enumext_resume_last_counter:
2062 {
2063 \bool_lazy_and:nnT
2064 { \bool_if_p:N \l__enumext_resume_count_bool }
2065 { \tl_if_empty_p:N \l__enumext_series_name_tl }
2066 {
2067 __enumext_resume_counter:
2068 }
2069 }

(End of definition for __enumext_save_last_keys:n and __enumext_resume_last_counter:.)

__enumext_parse_series:n The __enumext_parse_series:n function handled by the series key will be responsible for storing the
filtered 〈keys〉 from the optional arguments of the enumext and enumext* environments for the resume and
resume* keys. If the series key is NOT active it will call the __enumext_save_last_keys:n function
to store the filtered 〈keys〉 that will be used by the resume* key and then the __enumext_resume_last_-
counter: function used by the resume key without value if it is active, otherwise store the filtered 〈keys〉 in
the global variable \g__enumext_series_〈series name〉_X_tl along with the creation of the integer variable
\g__enumext_series_〈series name〉_X_int used by the resume key with value.

BOMB This function is passed to the function __enumext_parse_keys:n in the enumext environment definition (§13.42) and
to the function __enumext_parse_keys_vii:n in the enumext* environment definition (§13.47).

2070 \cs_new_protected:Npn __enumext_parse_series:n #1
2071 {
2072 \str_if_empty:NTF \l__enumext_series_name_str
2073 {

71 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2074 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2075 {
2076 __enumext_save_last_keys:n {#1}
2077 __enumext_resume_last_counter:
2078 }
2079 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
2080 {
2081 __enumext_save_last_keys:n {#1}
2082 __enumext_resume_last_counter:
2083 }
2084 }
2085 {
2086 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2087 {
2088 \tl_gclear_new:c
2089 { g__enumext_series_ \l__enumext_series_name_str _ __enumext_level: _tl }
2090 \tl_gset:ce
2091 { g__enumext_series_ \l__enumext_series_name_str _ __enumext_level: _tl }
2092 { __enumext_filter_series:n {#1} }
2093 \int_if_exist:cF
2094 { g__enumext_series_ \l__enumext_series_name_str _ __enumext_level: _int }
2095 {
2096 \int_new:c
2097 { g__enumext_series_ \l__enumext_series_name_str _ __enumext_level: _int }
2098 }
2099 }
2100 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
2101 {
2102 \tl_gclear_new:c { g__enumext_series_ \l__enumext_series_name_str _vii_tl }
2103 \tl_gset:ce
2104 { g__enumext_series_ \l__enumext_series_name_str _vii_tl }
2105 { __enumext_filter_series:n {#1} }
2106 \int_if_exist:cF { g__enumext_series_ \l__enumext_series_name_str _vii_int }
2107 {
2108 \int_new:c { g__enumext_series_ \l__enumext_series_name_str _vii_int }
2109 }
2110 }
2111 }
2112 }

(End of definition for __enumext_parse_series:n.)

13.26.4 Internal functions for resume key with value

__enumext_resume:n The function __enumext_resume:n will handle the argument {〈series name〉} passed to the resume key in
enumext and enumext* environments. First we will check if the global variable \g__enumext_series_-
〈series name〉_X_tl exists, if so we will call the function __enumext_resume_series:n and pass the 〈keys〉
stored in \g__enumext_series_〈series name〉_X_tl to the environments, otherwise we will return an error.
2113 \cs_new_protected:Npn __enumext_resume:n #1
2114 {
2115 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2116 {
2117 \tl_if_exist:cTF { g__enumext_series_ \tl_to_str:n {#1} _ __enumext_level: _tl }
2118 {
2119 __enumext_resume_series:n {#1}
2120 \exp_args:Ne \keys_set:nv { enumext / level-\int_use:N \l__enumext_level_int }
2121 { g__enumext_series_ \tl_to_str:n {#1} _ __enumext_level: _tl }
2122 }
2123 {
2124 \msg_error:nnn { enumext } { unknown-series-standar } {#1}
2125 }
2126 }
2127 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
2128 {
2129 \tl_if_exist:cTF { g__enumext_series_ \tl_to_str:n {#1} _vii_tl }
2130 {
2131 __enumext_resume_series:n {#1}
2132 \keys_set:nv { enumext / enumext* }
2133 { g__enumext_series_ \tl_to_str:n {#1} _vii_tl }
2134 }
2135 {
2136 \msg_error:nnn { enumext } { unknown-series-starred } {#1}

72 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2137 }
2138 }
2139 }

(End of definition for __enumext_resume:n.)

__enumext_resume_series:n
__enumext_resume_integer_series:

The function __enumext_resume_series:nwill set the variable \l__enumext_resume_series_X_bool
to “true” and pass the {〈argument〉} to the variable \l__enumext_series_name_tl then call the function
__enumext_resume_integer_series:.
2140 \cs_new_protected:Npn __enumext_resume_series:n #1
2141 {
2142 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2143 {
2144 \bool_set_true:c { l__enumext_resume_series_ __enumext_level: _bool }
2145 \tl_clear:N \l__enumext_series_name_tl
2146 \tl_set:Nn \l__enumext_series_name_tl {#1}
2147 __enumext_resume_integer_series:
2148 }
2149 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
2150 {
2151 \bool_set_true:N \l__enumext_resume_series_vii_bool
2152 \tl_clear:N \l__enumext_series_name_tl
2153 \tl_set:Nn \l__enumext_series_name_tl {#1}
2154 __enumext_resume_integer_series:
2155 }
2156 }

The function __enumext_resume_integer_series: will be executed when the resume={〈series name〉}
key is active, setting the start value for the “counter” of the “current level” of the environments in which it is
run according to the value of the “integer variables” created by the series key. If the save-ans key is active
it will set the start value for the “counter” according to the value of the integer variable created by that key.
2157 \cs_new_protected:Nn __enumext_resume_integer_series:
2158 {
2159 \cs_set:Npn __enumext_tmp:n ##1
2160 {
2161 \int_if_exist:cT { g__enumext_series_ \l__enumext_series_name_tl _ \int_to_roman:n {##1} _int }
2162 {
2163 \exp_args:Ne \int_set:cn { l__enumext_start_ \int_to_roman:n {##1} _int }
2164 {
2165 \int_use:c { g__enumext_series_ \l__enumext_series_name_tl _ \int_to_roman:n {##1} _int } + 1
2166 }
2167 }
2168 }
2169 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2170 {
2171 \bool_lazy_and:nnTF
2172 { \bool_if_p:N \l__enumext_standar_first_bool }
2173 { \bool_if_p:N \l__enumext_store_active_bool }
2174 {
2175 \int_set:Nn \l__enumext_start_i_int
2176 {
2177 \int_use:c { g__enumext_resume_ \l__enumext_store_name_tl _int } + 1
2178 }
2179 }
2180 {
2181 \int_step_function:nN { \l__enumext_level_int } __enumext_tmp:n
2182 }
2183 }
2184 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
2185 {
2186 \bool_lazy_and:nnTF
2187 { \bool_if_p:N \l__enumext_starred_first_bool }
2188 { \bool_if_p:N \l__enumext_store_active_bool }
2189 {
2190 \int_set:Nn \l__enumext_start_vii_int
2191 {
2192 \int_use:c { g__enumext_resume_ \l__enumext_store_name_tl _int } + 1
2193 }
2194 }
2195 {
2196 \int_set:Nn \l__enumext_start_vii_int

73 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2197 {
2198 \int_use:c { g__enumext_series_ \l__enumext_series_name_tl _vii_int } + 1
2199 }
2200 }
2201 }
2202 }

(End of definition for __enumext_resume_series:n and __enumext_resume_integer_series:.)

13.26.5 Internal function for resume* key

__enumext_resume_star: The function __enumext_resume_star: will handle the resume* key in the enumext and enumext*
environments. This function will execute the filtered 〈keys〉 in the last one and will continue with the
numbering and 〈keys〉 according to the last execution of the environment enumext or enumext* in which the
keys resume={〈series name〉} or series={〈series name〉} were NOT active.
2203 \cs_new_protected:Nn __enumext_resume_star:
2204 {
2205 \cs_set:Npn __enumext_tmp:n ##1
2206 {
2207 \tl_if_empty:cTF { g__enumext_resume_last_keys_ \int_to_roman:n {##1} _tl }
2208 {
2209 __enumext_resume_counter:
2210 }
2211 {
2212 __enumext_resume_counter:
2213 \exp_args:Ne \keys_set:nv
2214 { enumext / level-\int_use:N \l__enumext_level_int }
2215 { g__enumext_resume_last_keys_ \int_to_roman:n {##1} _tl }
2216 }
2217 }
2218 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2219 {
2220 \int_step_function:nN { \l__enumext_level_int } __enumext_tmp:n
2221 }
2222 \int_compare:nNnT { \l__enumext_level_h_int } = { 1 }
2223 {
2224 \tl_if_empty:NTF \g__enumext_resume_last_keys_vii_tl
2225 {
2226 __enumext_resume_counter:
2227 }
2228 {
2229 __enumext_resume_counter:
2230 \keys_set:nV { enumext / enumext* } \g__enumext_resume_last_keys_vii_tl
2231 }
2232 }
2233 }

(End of definition for __enumext_resume_star:.)

13.27 The \resetenumext command
Sometimes it is necessary to be able to reset the “counters” of the environments according to some value, for
example \chapter. Since we use “internal counters” for the resume and resume* keys which set the start
value, but are not accessible by the user, it is to provide a public command for this. This implementation is
an adaptation of the answers given by Clea F. Rees (@cfr) and Jonathan P. Spratte (@Skillmon) in Correct
implementation of optional argument (comma-separated) in expl3.

\resetenumext
__enumext_standard_reset:nn
__enumext_starred_reset:n

__enumext_reset_count_resume:nn

__enumext_reset_count_resume:en

__enumext_reset_count_resume_all:n

__enumext_reset_count_resume_levels:n

The \resetenumext command “resets” the start value of the “counters” for the enumext and enumext*
environments along with the “internal counters” used by the keys resumewithout value and resume* according
to the value of {〈some counter〉}.
2234 \NewDocumentCommand \resetenumext { s o m }
2235 {
2236 \bool_if:nTF {#1}
2237 {
2238 __enumext_reset_count_resume_all:n {#3}
2239 }
2240 {
2241 \tl_if_novalue:nTF {#2}
2242 {
2243 __enumext_reset_count_resume_levels:n {#3}
2244 }
2245 {

74 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/q/746644
https://tex.stackexchange.com/q/746644

enumext v2.1 §.13 Implementation

2246 \str_if_eq:nnTF {#2} { * }
2247 { __enumext_starred_reset:n {#3} }
2248 {
2249 \bool_lazy_and:nnTF
2250 { \int_compare_p:nNn {#2} > 0 }
2251 { \int_compare_p:nNn {#2} < 5 }
2252 { __enumext_standard_reset:nn {#2} {#3} }
2253 {
2254 \msg_error:nne { enumext } { out-of-range } { \int_eval:n {#2} }
2255 }
2256 }
2257 }
2258 }
2259 }
2260 \cs_new_protected:Npn __enumext_standard_reset:nn #1 %#2
2261 {
2262 __enumext_reset_count_resume:en { \int_to_roman:n {#1} } %{#2}
2263 }
2264 \cs_new_protected:Npn __enumext_starred_reset:n #1
2265 {
2266 __enumext_reset_count_resume:nn { vii } {#1}
2267 }
2268 \cs_new_protected:Npn __enumext_reset_count_resume:nn #1 #2
2269 {
2270 \counterwithin*{enumX#1}{#2}
2271 \counterwithin*{__enumext_resume_#1_int}{#2}
2272 }
2273 \cs_generate_variant:Nn __enumext_reset_count_resume:nn { e }
2274 \cs_new_protected:Npn __enumext_reset_count_resume_all:n #1
2275 {
2276 \clist_map_inline:nn { i,ii,iii,iv,vii }
2277 {
2278 __enumext_reset_count_resume:nn { ##1 } { #1 }
2279 }
2280 }
2281 \cs_new_protected:Npn __enumext_reset_count_resume_levels:n #1
2282 {
2283 \clist_map_inline:nn { i,ii,iii,iv }
2284 {
2285 __enumext_reset_count_resume:nn { ##1 } { #1 }
2286 }
2287 }

(End of definition for \resetenumext and others. This function is documented on page 11.)

13.28 The reset and reset* keys
The \resetenumext command does not work, for example, after an unnumbered chapter, so it is preferable
to provide a pair of 〈keys〉 that adjust the internal variables if necessary.

reset
reset*

We define the keys reset and reset* for the “all levels” of enumext and enumext*.
2288 \cs_set_protected:Npn __enumext_tmp:n #1
2289 {
2290 \keys_define:nn { enumext / #1 }
2291 {
2292 reset .code:n = __enumext_standard_reset_key:,
2293 reset .value_forbidden:n = true,
2294 reset* .code:n = __enumext_standard_reset_key_star:,
2295 reset* .value_forbidden:n = true,
2296 }
2297 }
2298 \clist_map_inline:nn {level-1, level-2, level-3, level-4} { __enumext_tmp:n {#1} }
2299 \keys_define:nn { enumext / enumext* }
2300 {
2301 reset .code:n = __enumext_starred_reset_key:,
2302 reset .value_forbidden:n = true,
2303 reset* .code:n = __enumext_starred_reset_key:,
2304 reset* .value_forbidden:n = true,
2305 }

(End of definition for reset and reset*.)

75 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

13.28.1 Internal functions for reset and reset* keys

__enumext_standard_reset_key:

__enumext_standard_reset_key_star:

__enumext_starred_reset_key:

The function __enumext_standard_reset_key: will be handled by the reset key and will “reset” the
counter \c@__enumext_resume_X_int to “zero” according to the level at which it is executed within the
enumext environment.
2306 \cs_new_protected:Nn __enumext_standard_reset_key:
2307 {
2308 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2309 {
2310 \int_if_exist:cT { c@ __enumext_resume_ \int_to_roman:n { \l__enumext_level_int } _int }
2311 {
2312 \int_gzero:c { c@ __enumext_resume_ \int_to_roman:n { \l__enumext_level_int } _int }
2313 }
2314 }
2315 }

The function __enumext_standard_reset_key_star: will be handled by the reset* key and will “reset”
the counters \c@__enumext_resume_X_int to “zero” from the level at which it is executed within the
enumext environment to the lower levels.
2316 \cs_new_protected:Nn __enumext_standard_reset_key_star:
2317 {
2318 \cs_set:Npn __enumext_tmp:n ##1
2319 {
2320 \int_if_exist:cT { c@ __enumext_resume_ \int_to_roman:n {##1} _int }
2321 {
2322 \int_gzero:c { c@ __enumext_resume_ \int_to_roman:n {##1} _int }
2323 }
2324 }
2325 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
2326 {
2327 \int_step_function:nnN { \l__enumext_level_int } { 4 } __enumext_tmp:n
2328 }
2329 }

The function __enumext_starred_reset_key: will be handled by reset keys and reset* will “reset”
the counter \c@__enumext_resume_vii_int to “zero” when executed in the enumext* environment.
2330 \cs_new_protected:Nn __enumext_starred_reset_key:
2331 {
2332 \int_gzero:c { c@ __enumext_resume_vii_int }
2333 }

(End of definition for __enumext_standard_reset_key: , __enumext_standard_reset_key_star: , and __enumext_starred_-
reset_key:.)

13.29 Setting save-ans, check-ans and no-store keys
The key save-ans is directly associated with the keys check-ans, no-store, resume and resume*, this
will activate the entire “storage system” in the enumext package.

13.29.1 Setting save-ans key

save-ans We define the keys save-ans only for the “first level” of enumext and enumext*.
2334 \cs_set_protected:Npn __enumext_tmp:n #1
2335 {
2336 \keys_define:nn { enumext / #1 }
2337 {
2338 save-ans .code:n = __enumext_storing_set:n {##1},
2339 save-ans .value_required:n = true,
2340 }
2341 }
2342 \clist_map_inline:nn { level-1, enumext* } { __enumext_tmp:n {#1} }

(End of definition for save-ans.)

13.29.2 Internal functions for save-ans key

__enumext_start_save_ans_msg:

__enumext_stop_save_ans_msg:

The functions __enumext_start_save_ans_msg: and __enumext_stop_save_ans_msg: will display
in the terminal and .log file the environment in which the save-ans key was executed along with the
line at the beginning and end of it. The function __enumext_start_save_ans_msg: will be passed to
__enumext_storing_set:n and the function __enumext_stop_save_ans_msg: will be passed to the
function __enumext_execute_after_env:.
2343 \cs_new_protected:Nn __enumext_start_save_ans_msg:
2344 {
2345 \msg_term:nnVV { enumext } { save-ans-log }

76 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2346 \g__enumext_envir_name_tl \l__enumext_store_name_tl
2347 }
2348 \cs_new_protected:Nn __enumext_stop_save_ans_msg:
2349 {
2350 \msg_term:nnVV { enumext } { save-ans-log-hook }
2351 \g__enumext_envir_name_tl \g__enumext_store_name_tl
2352 }

(End of definition for __enumext_start_save_ans_msg: and __enumext_stop_save_ans_msg:.)

__enumext_storing_set:n
__enumext_storing_exec:

The function __enumext_storing_set:n first pass the value of the save-ans key to the variable \l__-
enumext_store_name_tl which will contain the {〈store name〉} of the sequence and prop list we will use.
If \l__enumext_store_name_tl is empty we return an error message, otherwise will return the appro-
priate message __enumext_start_save_ans_msg: and proceed to execute the function __enumext_-
storing_exec: for enumext and enumext* environments.
2353 \cs_new_protected:Npn __enumext_storing_set:n #1
2354 {
2355 \tl_set:Ne \l__enumext_store_name_tl {#1}
2356 \tl_if_empty:NTF \l__enumext_store_name_tl
2357 {
2358 \bool_lazy_or:nnT
2359 { \l__enumext_standar_first_bool } { \l__enumext_starred_first_bool }
2360 {
2361 \msg_error:nnV { enumext } { save-ans-empty } \g__enumext_envir_name_tl
2362 }
2363 }
2364 {
2365 \bool_lazy_or:nnT
2366 { \l__enumext_standar_first_bool } { \l__enumext_starred_first_bool }
2367 {
2368 __enumext_start_save_ans_msg:
2369 __enumext_storing_exec:
2370 }
2371 }
2372 }

The function __enumext_storing_exec: will set to true the variable \l__enumext_store_active_-
bool which activates the use of the \anskey command and the anskey*, keyans, keyans* and keyanspic
environments and will set to “true” the variable \l__enumext_check_answers_bool used for internal
checking answers mechanism set by the check-ans and no-store keys, copy {〈store name〉} into the
variable \g__enumext_store_name_tl.
2373 \cs_new_protected:Nn __enumext_storing_exec:
2374 {
2375 \bool_set_true:N \l__enumext_store_active_bool
2376 \bool_set_true:N \l__enumext_check_answers_bool
2377 \tl_gset:NV \g__enumext_store_name_tl \l__enumext_store_name_tl

The prop list \g__enumext_series_〈store name〉_prop and the sequence \g__enumext_series_〈store
name〉_seq will be created globally to “store content” in case they do not exist together with the integer
variable \g__enumext_series_〈store name〉_int used by the keys resume and resume*.
2378 \prop_if_exist:cF { g__enumext_ \l__enumext_store_name_tl _prop }
2379 {
2380 \msg_log:nnV { enumext } { store-prop } \l__enumext_store_name_tl
2381 \prop_new:c { g__enumext_ \l__enumext_store_name_tl _prop }
2382 }
2383 \seq_if_exist:cF { g__enumext_ \l__enumext_store_name_tl _seq }
2384 {
2385 \msg_log:nnV { enumext } { store-seq } \l__enumext_store_name_tl
2386 \seq_new:c { g__enumext_ \l__enumext_store_name_tl _seq }
2387 }
2388 \int_if_exist:cF { g__enumext_resume_ \l__enumext_store_name_tl _int }
2389 {
2390 \msg_log:nnV { enumext } { store-int } \l__enumext_store_name_tl
2391 \int_new:c { g__enumext_resume_ \l__enumext_store_name_tl _int }
2392 }
2393 }

(End of definition for __enumext_storing_set:n and __enumext_storing_exec:.)

77 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

13.29.3 The check answer mechanism

The internal mechanism for “checking answers” follows this logic:

If the line begins with \item or \item* and does NOT open a nested environment, each \item
or \item* must contain a single execution of the \anskey command, i.e. the counter of the
executions of the \anskey command must be equal to the counter associated with the sum of
executions of \item and \item*.

If the line begins with \item or \item* and opens a nested environment each \item or \item* in
the nested environment must have a single execution of the \anskey command and the counter
associated to the sum of \item and \item* executions must decrementing by “one” to maintain
equality.

In order for the mechanism for the check-answer to work (not counting keyans, keyans* and keyanspic)
we need:

1. We must keep track of the total number of \item and \item* (enumerated) that appear within the
environment including the nested levels.

2. We must keep track of the total number of \item and \item* (enumerated) that appear per level of nesting.
3. Keeping track of the number of times the environment nests.

The integer variable associated to the sum of each \item and \item* in the environment \g__enumext_-
item_number_int must match the integer variable \g__enumext_item_anskey_int associated to the
execution of the command \anskey. We analyze the cases:

a) If the list only has one level the number of \item + \item* = \anskey
b) If the list has nested levels, for each level of nesting we need to decrementing by one (for the \item or

\item* that opens the nest) so that the account remains the same.

With keyans, keyans* and keyanspic it is enough to increase in one the integer of \anskey. The integers
created must be global if they are not lost in the interior levels of nesting and to execute the test we will use a
“hook” function after closing the first level of the environment.

13.29.4 Setting check-ans and no-store keys

check-ans
no-store

Now we define the keys check-ans and no-store for all levels of enumext and enumext* environments.
2394 \cs_set_protected:Npn __enumext_tmp:n #1
2395 {
2396 \keys_define:nn { enumext / #1 }
2397 {
2398 check-ans .bool_set:N = \l__enumext_check_ans_key_bool,
2399 check-ans .initial:n = false,
2400 check-ans .value_required:n = true,
2401 no-store .code:n = {
2402 \bool_set_false:N \l__enumext_check_answers_bool
2403 \bool_set_false:N \l__enumext_check_ans_key_bool
2404 },
2405 no-store .value_forbidden:n = true,
2406 }
2407 }
2408 \clist_map_inline:nn
2409 {
2410 level-1, level-2, level-3, level-4, enumext*
2411 }
2412 { __enumext_tmp:n {#1} }

(End of definition for check-ans and no-store.)

13.29.5 Set-up check answer mechanism

__enumext_check_ans_active:
__enumext_check_ans_level:

The function __enumext_check_ans_active: will first check the state of the variable \l__enumext_-
store_name_tl, that is, the save-ans key is active, if so it will check the state of the variable \l__enumext_-
check_answers_bool handled by the key no-store and will execute the function __enumext_check_-
ans_level: only if “true”, i.e. the key no-store is not active.
2413 \cs_new_protected:Nn __enumext_check_ans_active:
2414 {
2415 \tl_if_empty:NF \l__enumext_store_name_tl
2416 {
2417 \bool_if:NT \l__enumext_check_answers_bool
2418 {
2419 __enumext_check_ans_level:
2420 }
2421 }
2422 }

78 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

The function __enumext_check_ans_level: will decrement by “one” the value of the variable \g__-
enumext_item_number_int which keeps track of the executions of \item and \item* for each level of
nesting of the environment enumext, taking into account whether it is nested within enumext* or the opposite
and set \l__enumext_item_number_bool to “false” .
2423 \cs_new_protected:Nn __enumext_check_ans_level:
2424 {
2425 \int_case:nn { \l__enumext_level_int }
2426 {
2427 { 1 }{
2428 \bool_lazy_all:nT
2429 {
2430 { \bool_if_p:N \g__enumext_starred_bool }
2431 { \int_compare_p:nNn { \l__enumext_level_h_int } = { 1 } }
2432 }
2433 {
2434 \int_gdecr:N \g__enumext_item_number_int
2435 \bool_set_false:N \l__enumext_item_number_bool
2436 }
2437 }
2438 { 2 }{
2439 \int_gdecr:N \g__enumext_item_number_int
2440 \bool_set_false:N \l__enumext_item_number_bool
2441 }
2442 { 3 }{
2443 \int_gdecr:N \g__enumext_item_number_int
2444 \bool_set_false:N \l__enumext_item_number_bool
2445 }
2446 { 4 }{
2447 \int_gdecr:N \g__enumext_item_number_int
2448 \bool_set_false:N \l__enumext_item_number_bool
2449 }
2450 }

We should only execute this if enumext* is nested in the “first level” of enumext, for the rest of the cases the
value of \g__enumext_item_number_int is already decreased.
2451 \int_case:nn { \l__enumext_level_h_int }
2452 {
2453 { 1 }{
2454 \bool_lazy_all:nT
2455 {
2456 { \bool_if_p:N \g__enumext_standar_bool }
2457 { \int_compare_p:nNn { \l__enumext_level_int } = { 1 } }
2458 }
2459 {
2460 \int_gdecr:N \g__enumext_item_number_int
2461 \bool_set_false:N \l__enumext_item_number_bool
2462 }
2463 }
2464 }
2465 }

(End of definition for __enumext_check_ans_active: and __enumext_check_ans_level:.)

__enumext_check_ans_key_hook: The function __enumext_check_ans_key_hook: will export the status of the local variable \l__-
enumext_check_ans_key_bool to the global variable \g__enumext_check_ans_key_bool only if the
key check-ans is active.
2466 \cs_new_protected:Nn __enumext_check_ans_key_hook:
2467 {
2468 \bool_lazy_and:nnT
2469 { \bool_if_p:N \l__enumext_check_ans_key_bool }
2470 { \bool_if_p:N \g__enumext_standar_bool }
2471 {
2472 \bool_gset_true:N \g__enumext_check_ans_key_bool
2473 }
2474 \bool_lazy_and:nnT
2475 { \bool_if_p:N \l__enumext_check_ans_key_bool }
2476 { \bool_if_p:N \g__enumext_starred_bool }
2477 {
2478 \bool_gset_true:N \g__enumext_check_ans_key_bool
2479 }
2480 }

79 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

(End of definition for __enumext_check_ans_key_hook:.)

__enumext_item_answer_diff: The function __enumext_item_answer_diff: will set the value of the variable \g__enumext_item_-
answer_diff_int which is used by the functions __enumext_check_ans_show: for the key save-ans
and by the function __enumext_check_ans_log: by the internal “check answer” mechanism. This function
will be passed to the function __enumext_execute_after_env:.
2481 \cs_new_protected:Nn __enumext_item_answer_diff:
2482 {
2483 \int_gset:Nn \g__enumext_item_answer_diff_int
2484 {
2485 \int_sign:n { \g__enumext_item_number_int - \g__enumext_item_anskey_int }
2486 }
2487 }

(End of definition for __enumext_item_answer_diff:.)

__enumext_check_ans_show:
__enumext_check_ans_msg_less:

__enumext_check_ans_msg_same_ok:

__enumext_check_ans_msg_greater:

The function __enumext_check_ans_show:will be executed within the function __enumext_execute_-
after_env: when the key check-ans is active, that is, when \g__enumext_check_ans_key_bool is “true”
and will return the appropriate message according to the value of \g__enumext_item_answer_diff_int
set by the function __enumext_item_answer_diff:.
2488 \cs_new_protected:Nn __enumext_check_ans_show:
2489 {
2490 \int_case:nn { \g__enumext_item_answer_diff_int }
2491 {
2492 { -1 }{ __enumext_check_ans_msg_less: }
2493 { 0 }{ __enumext_check_ans_msg_same_ok: }
2494 { 1 }{ __enumext_check_ans_msg_greater: }
2495 }
2496 }
2497 \cs_new_protected:Nn __enumext_check_ans_msg_less:
2498 {
2499 \msg_warning:nneee { enumext } { item-less-answer } { \g__enumext_store_name_tl }
2500 { \g__enumext_envir_name_tl } { \g__enumext_start_line_tl }
2501 }
2502 \cs_new_protected:Nn __enumext_check_ans_msg_same_ok:
2503 {
2504 \msg_term:nneee { enumext } { items-same-answer } { \g__enumext_store_name_tl }
2505 { \g__enumext_envir_name_tl } { \g__enumext_start_line_tl }
2506 }
2507 \cs_new_protected:Nn __enumext_check_ans_msg_greater:
2508 {
2509 \msg_warning:nneee { enumext } { item-greater-answer } { \g__enumext_store_name_tl }
2510 { \g__enumext_envir_name_tl } { \g__enumext_start_line_tl }
2511 }

(End of definition for __enumext_check_ans_show: and others.)

__enumext_check_ans_log:
__enumext_check_ans_log_msg_less:

__enumext_check_ans_log_msg_same_ok:

__enumext_check_ans_log_msg_greater:

The function __enumext_check_ans_log: will be executed within the function __enumext_execute_-
after_env: when the key check-ans is not active, that is, when \g__enumext_check_ans_key_bool is
“false” and write in the log the appropriate message according to the value of \g__enumext_item_answer_-
diff_int set by the function __enumext_item_answer_diff:.
2512 \cs_new_protected:Nn __enumext_check_ans_log:
2513 {
2514 \int_case:nn { \g__enumext_item_answer_diff_int }
2515 {
2516 { -1 }{ __enumext_check_ans_log_msg_less: }
2517 { 0 }{ __enumext_check_ans_log_msg_same_ok: }
2518 { 1 }{ __enumext_check_ans_log_msg_greater: }
2519 }
2520 }
2521 \cs_new_protected:Nn __enumext_check_ans_log_msg_less:
2522 {
2523 \msg_log:nneee { enumext } { item-less-answer } { \g__enumext_store_name_tl }
2524 { \g__enumext_envir_name_tl } { \g__enumext_start_line_tl }
2525 }
2526 \cs_new_protected:Nn __enumext_check_ans_log_msg_same_ok:
2527 {
2528 \msg_log:nneee { enumext } { items-same-answer } { \g__enumext_store_name_tl }
2529 { \g__enumext_envir_name_tl } { \g__enumext_start_line_tl }
2530 }

80 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2531 \cs_new_protected:Nn __enumext_check_ans_log_msg_greater:
2532 {
2533 \msg_log:nneee { enumext } { item-greater-answer } { \g__enumext_store_name_tl }
2534 { \g__enumext_envir_name_tl } { \g__enumext_start_line_tl }
2535 }

(End of definition for __enumext_check_ans_log: and others.)

13.29.6 Check for \item* and \anspic* commands

__enumext_check_starred_cmd:n The function __enumext_check_starred_cmd:n performs an extra check for the keyans, keyans* and
keyanspic environments. Unlike the check executed by check-ans key this one is not controlled by any key,
it is intended to prevent the forgetting of \item* or \anspic* in these environments.
2536 \cs_new_protected:Npn __enumext_check_starred_cmd:n #1
2537 {
2538 \int_compare:nNnT
2539 { \g__enumext_check_starred_cmd_int } = { 0 }
2540 {
2541 \msg_warning:nnnV
2542 { enumext } { missing-starred }{ #1 } \l__enumext_check_start_line_env_tl
2543 }
2544 \int_compare:nNnT
2545 { \g__enumext_check_starred_cmd_int } > { 1 }
2546 {
2547 \msg_warning:nnnV
2548 { enumext } { many-starred }{ #1 } \l__enumext_check_start_line_env_tl
2549 }
2550 \int_gzero:N \g__enumext_check_starred_cmd_int
2551 \tl_clear:N \l__enumext_check_start_line_env_tl
2552 }

(End of definition for __enumext_check_starred_cmd:n.)

13.30 Keys and functions associated with storage
13.30.1 Keys for marks, wrap and show

The enumext package provides a set of 〈keys〉 for manipulating “symbol marks” associated with “answers” and
how they are displayed and stored in the sequence and prop list as well as an internal “label and ref” system.

mark-ans*
mark-pos*
mark-sep*
wrap-ans*
wrap-opt
save-sep
show-ans
show-pos

For the keyans and keyans* environments we will only add the keys mark-ans*, mark-pos*, mark-sep*,
wrap-ans*, wrap-opt, save-sep, show-ans and show-pos.
2553 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
2554 {
2555 \keys_define:nn { enumext / #1 }
2556 {
2557 mark-ans* .tl_set:c = { l__enumext_mark_answer_sym_#2_tl },
2558 mark-ans* .initial:n = \textasteriskcentered,
2559 mark-ans* .value_required:n = true,
2560 mark-pos* .choice:,
2561 mark-pos* / left .code:n = \str_set:cn { l__enumext_mark_position_#2_str } { l },
2562 mark-pos* / right .code:n = \str_set:cn { l__enumext_mark_position_#2_str } { r },
2563 mark-pos* / center .code:n = \str_set:cn { l__enumext_mark_position_#2_str } { c },
2564 mark-pos* / unknown .code:n =
2565 \msg_error:nneee { enumext } { unknown-choice }
2566 { mark-pos } { left,~right,~center } { \exp_not:n {##1} },
2567 mark-pos* .initial:n = right,
2568 mark-pos* .value_required:n = true,
2569 mark-sep* .dim_set:c = { l__enumext_mark_sym_sep_#2_dim },
2570 mark-sep* .value_required:n = true,
2571 wrap-ans* .cs_set_protected:cp = { __enumext_keyans_wrapper_item_#2:n } ##1,
2572 wrap-ans* .value_required:n = true,
2573 wrap-opt .cs_set_protected:cp = { __enumext_keyans_wrapper_opt_#2:n } ##1,
2574 wrap-opt .initial:n = [{##1}],
2575 wrap-opt .value_required:n = true,
2576 save-sep .tl_set:c = { l__enumext_store_keyans_item_opt_sep_#2_tl },
2577 save-sep .initial:n = {,~},
2578 save-sep .value_required:n = true,
2579 show-ans .bool_set:N = \l__enumext_show_answer_bool,
2580 show-ans .initial:n = false,
2581 show-ans .value_required:n = true,
2582 show-pos .bool_set:N = \l__enumext_show_position_bool,
2583 show-pos .initial:n = false,

81 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2584 show-pos .value_required:n = true,
2585 }
2586 }
2587 \clist_map_inline:nn { {keyans}{v}, {keyans*}{viii} } { __enumext_tmp:nn #1 }

(End of definition for mark-ans* and others.)

mark-ref
save-ref
show-ans
show-pos
mark-ans
mark-pos
mark-sep
wrap-ans

mark-ans*
mark-pos*
mark-sep*
wrap-ans*
wrap-opt
save-sep

We add the 〈keys〉 mark-ref and save-ref related to the “storage system” and internal mechanism of “label
and ref” along with the 〈keys〉 show-ans, show-pos and the〈keys〉 mark-ans, mark-pos, mark-sep and
wrap-ans for the command \anskey, the environment anskey* and the the 〈keys〉 for environments keyans
and keyans* only at the first level of enumext and enumext*.
2588 \cs_set_protected:Npn __enumext_tmp:n #1
2589 {
2590 \keys_define:nn { enumext / #1 }
2591 {
2592 mark-ref .tl_set:N = \l__enumext_mark_ref_sym_tl,
2593 mark-ref .initial:n = \textreferencemark,
2594 mark-ref .value_required:n = true,
2595 save-ref .bool_set:N = \l__enumext_store_ref_key_bool,
2596 save-ref .initial:n = false,
2597 save-ref .value_required:n = true,
2598 show-ans .bool_set:N = \l__enumext_show_answer_bool,
2599 show-ans .initial:n = false,
2600 show-ans .value_required:n = true,
2601 show-pos .bool_set:N = \l__enumext_show_position_bool,
2602 show-pos .initial:n = false,
2603 show-pos .value_required:n = true,
2604 mark-ans .tl_set:N = \l__enumext_mark_answer_sym_tl,
2605 mark-ans .initial:n = \textasteriskcentered,
2606 mark-ans .value_required:n = true,
2607 mark-sep .dim_set:N = \l__enumext_mark_sym_sep_dim,
2608 mark-sep .value_required:n = true,
2609 mark-pos .choice:,
2610 mark-pos / left .code:n = \str_set:Nn \l__enumext_mark_position_str { l },
2611 mark-pos / right .code:n = \str_set:Nn \l__enumext_mark_position_str { r },
2612 mark-pos / center .code:n = \str_set:Nn \l__enumext_mark_position_str { c },
2613 mark-pos / unknown .code:n =
2614 \msg_error:nneee { enumext } { unknown-choice }
2615 { mark-pos } { left,~right,~center } { \exp_not:n {##1} },
2616 mark-pos .initial:n = right,
2617 mark-pos .value_required:n = true,
2618

2619 wrap-ans .cs_set_protected:Np = __enumext_anskey_wrapper:n ##1,
2620 wrap-ans .initial:n =
2621 {
2622 \fbox{\parbox[t]{\dimeval{\itemwidth -2\fboxsep -2\fboxrule}}{##1}}
2623 },
2624 wrap-ans .value_required:n = true,
2625 mark-ans* .code:n = {
2626 \keys_set:nn { enumext / keyans } { mark-ans* = {##1} }
2627 \keys_set:nn { enumext / keyans* } { mark-ans* = {##1} }
2628 },
2629 mark-ans* .value_required:n = true,
2630 mark-pos* .code:n = {
2631 \keys_set:nn { enumext / keyans } { mark-pos* = {##1} }
2632 \keys_set:nn { enumext / keyans* } { mark-pos* = {##1} }
2633 },
2634 mark-pos* .value_required:n = true,
2635 mark-sep* .code:n = {
2636 \keys_set:nn { enumext / keyans } { mark-sep* = {##1} }
2637 \keys_set:nn { enumext / keyans* } { mark-sep* = {##1} }
2638 },
2639 mark-sep* .value_required:n = true,
2640 wrap-ans* .code:n = {
2641 \keys_set:nn { enumext / keyans } { wrap-ans* = {##1} }
2642 \keys_set:nn { enumext / keyans* } { wrap-ans* = {##1} }
2643 },
2644 wrap-ans* .value_required:n = true,
2645 wrap-opt .code:n = {
2646 \keys_set:nn { enumext / keyans } { wrap-opt = {##1} }
2647 \keys_set:nn { enumext / keyans* } { wrap-opt = {##1} }

82 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2648 },
2649 wrap-opt .value_required:n = true,
2650 save-sep .code:n = {
2651 \keys_set:nn { enumext / keyans } { save-sep = {##1} }
2652 \keys_set:nn { enumext / keyans* } { save-sep = {##1} }
2653 },
2654 save-sep .value_required:n = true,
2655 }
2656 }
2657 \clist_map_inline:nn { level-1, enumext* } { __enumext_tmp:n {#1} }

(End of definition for mark-ref and others.)

13.30.2 Storing structure of the environments

The idea behind “storing structure” in the sequence is to have a copy of the structure of the environment in
which the key save-ans is being executed so we must capture the optional argument passed to the levels of
the environment in which it is executed and “storing” this in the sequence.

__enumext_store_active_keys:n

__enumext_store_active_keys_vii:n

The functions __enumext_store_active_keys:n and __enumext_store_active_keys_vii:n will
be responsible for the “storing keys” filtered from the optional argument of the environment in which the
key save-ans is executed and the levels within this for the enumext and enumext* environments. We will
execute this function only if the variable \l__enumext_store_save_key_X_bool is false, that is, the key
store-key is not active, establishing the variable \l__enumext_store_save_key_X_tl with the filtered
〈keys〉.
2658 \cs_new_protected:Npn __enumext_store_active_keys:n #1
2659 {
2660 \bool_if:cF { l__enumext_store_save_key_ __enumext_level: _bool }
2661 {
2662 \tl_clear:c { l__enumext_store_save_key_ __enumext_level: _tl }
2663 \tl_set:ce
2664 { l__enumext_store_save_key_ __enumext_level: _tl }
2665 { __enumext_filter_save_key:n {#1} }
2666 }
2667 }
2668 \cs_new_protected:Npn __enumext_store_active_keys_vii:n #1
2669 {
2670 \bool_if:NF \l__enumext_store_save_key_vii_bool
2671 {
2672 \tl_clear:N \l__enumext_store_save_key_vii_tl
2673 \tl_set:Ne \l__enumext_store_save_key_vii_tl { __enumext_filter_save_key:n {#1} }
2674 }
2675 }

(End of definition for __enumext_store_active_keys:n and __enumext_store_active_keys_vii:n.)

13.30.3 Setting save-key key

Since this “storing structure” in the sequence established by the save-ans key when executing \anskey or
anskey*, we will not be able to modify it. The best thing here is to have a key that allows you to modify the
optional argument of the “storing structure” in the sequence.

save-key The values set by this key passed in the optional argument of the enumext and enumext* environ-
ments will override the values of the \l__enumext_store_save_key_X_tl variable set by the functions
__enumext_store_active_keys:n and __enumext_store_active_keys_vii:n. Now define the key
save-key for all levels of enumext and enumext* environments.
2676 \cs_set_protected:Npn __enumext_tmp:n #1
2677 {
2678 \keys_define:nn { enumext / enumext* }
2679 {
2680 save-key .code:n = __enumext_parse_save_key_vii:n {##1},
2681 save-key .value_required:n = true,
2682 }
2683 \keys_define:nn { enumext / #1 }
2684 {
2685 save-key .code:n = __enumext_parse_save_key:n {##1},
2686 save-key .value_required:n = true,
2687 }
2688 }
2689 \clist_map_inline:nn { level-1, level-2, level-3, level-4 } { __enumext_tmp:n {#1} }

(End of definition for save-key.)

83 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

__enumext_parse_save_key:n
__enumext_parse_save_key_vii:n

The functions __enumext_parse_save_key:n and __enumext_parse_save_key_vii:nwill be respon-
sible for “storing keys” in the variable \l__enumext_store_save_key_X_tl for enumext and enumext*.
2690 \cs_new_protected:Npn __enumext_parse_save_key:n #1
2691 {
2692 \bool_set_true:c { l__enumext_store_save_key_ __enumext_level: _bool }
2693 \tl_clear:c { l__enumext_save_key_ __enumext_level: _tl }
2694 \tl_set:ce
2695 { l__enumext_store_save_key_ __enumext_level: _tl }
2696 { __enumext_filter_save_key:n {#1} }
2697 }
2698 \cs_new_protected:Npn __enumext_parse_save_key_vii:n #1
2699 {
2700 \bool_set_true:N \l__enumext_store_save_key_vii_bool
2701 \tl_clear:N \l__enumext_store_save_key_vii_tl
2702 \tl_set:Ne \l__enumext_store_save_key_vii_tl { __enumext_filter_save_key:n {#1} }
2703 }

(End of definition for __enumext_parse_save_key:n and __enumext_parse_save_key_vii:n.)

13.30.4 Internal functions to store optional arguments

__enumext_filter_save_key:n
__enumext_filter_save_key_key:n

__enumext_filter_save_key_pair:nn

The function __enumext_filter_save_key:n will be in charge of “filtering keys” we want to stored in
sequence where {#1} represents the optional argument passed to the environment.
2704 \cs_new:Npn __enumext_filter_save_key:n #1
2705 {
2706 \use:e
2707 {
2708 \keyval_parse:NNn
2709 __enumext_filter_save_key_key:n
2710 __enumext_filter_save_key_pair:nn {#1}
2711 }
2712 }

The function __enumext_filter_save_key_key:n will be responsible for “filtering keys” that are passed
“without value” by excluding the resume, resume*, reset, reset*, no-store and base-fix keys.
2713 \cs_new:Npn __enumext_filter_save_key_key:n #1
2714 {
2715 \str_case:nnF {#1}
2716 {
2717 { resume } {} { resume* } {} { reset } {} { reset* } {} { no-store } {} { base-fix } {}
2718 }
2719 { , { \exp_not:n {#1} } }
2720 }

The function __enumext_filter_save_key_pair:nnwill be responsible for “filtering keys” that are passed
“with value” by excluding the series, resume, save-ans, save-ref, save-key, check-ans, show-ans,
save-pos, mark-ans, mark-pos, mark-sep, wrap-ans, mark-ans*, mark-pos*, mark-sep*, wrap-ans*,
wrap-opt, save-sep, mark-ref, mini-env, mini-sep, mini-right and mini-right* keys.
2721 \cs_new:Npn __enumext_filter_save_key_pair:nn #1#2
2722 {
2723 \str_case:nnF {#1}
2724 {
2725 { series } {} { resume } {} { save-ans } {} { save-ref } {}
2726 { save-key } {} { check-ans } {} { show-ans } {} { show-pos } {}
2727 { mark-ans } {} { mark-pos } {} { mark-sep } {} { wrap-ans } {}
2728 { mark-ans* } {} { mark-pos* } {} { mark-sep* } {} { wrap-ans* } {}
2729 { wrap-opt } {} { save-sep } {} { mark-ref } {} { mini-env } {}
2730 { mini-sep } {} { mini-right } {} { mini-right* } {}
2731 }
2732 { , { \exp_not:n {#1} } = { \exp_not:n {#2} } }
2733 }

(End of definition for __enumext_filter_save_key:n , __enumext_filter_save_key_key:n , and __enumext_filter_-
save_key_pair:nn.)

13.30.5 Function for storing content in prop list

__enumext_store_addto_prop:n

__enumext_store_addto_prop:V

The function __enumext_store_addto_prop:n stores the {〈content〉} in prop list defined by save-ans
key. The “stored content” is retrieved by means of the \getkeyans command.
The form in which the {〈content〉} is “stored” in the prop list is {〈position〉}{〈content〉}. This function is used
by \anskey in enumext and enumext* environments, \item* in keyans and keyans* environments and
\anspic* in keyanspic environment.
2734 \cs_new_protected:Npn __enumext_store_addto_prop:n #1

84 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2735 {
2736 \prop_gput_if_not_in:cen { g__enumext_ \l__enumext_store_name_tl _prop }
2737 {
2738 \int_eval:n { \prop_count:c { g__enumext_ \l__enumext_store_name_tl _prop } + 1 }
2739 }
2740 { #1 }
2741 }
2742 \cs_generate_variant:Nn __enumext_store_addto_prop:n { V }

(End of definition for __enumext_store_addto_prop:n.)

13.30.6 Function for storing content in sequence

__enumext_store_addto_seq:n
__enumext_store_addto_seq:v
__enumext_store_addto_seq:V

The function __enumext_store_addto_seq:n stores the {〈content〉} in sequence defined by save-ans
key. This function is used by \anskey in enumext, \item* in keyans and \anspic in keyanspic.
The form in which the {〈content〉} is stored in sequence is in a internal enumext or enumext* environments
with the “same structure” in which the command was executed.
The “stored content” is retrieved by means of the \printkeyans command.
2743 \cs_new_protected:Npn __enumext_store_addto_seq:n #1
2744 {
2745 \seq_gput_right:cn { g__enumext_ \l__enumext_store_name_tl _seq } { #1 }
2746 }
2747 \cs_generate_variant:Nn __enumext_store_addto_seq:n { v, V }

(End of definition for __enumext_store_addto_seq:n.)

13.30.7 Functions for storing structure in the sequence

__enumext_store_level_open:
__enumext_store_level_close:

The “storing structure” is handled by the functions __enumext_store_level_open: and __enumext_-
store_level_close: which are executed per level within the enumext environment.
2748 \cs_new_protected:Nn __enumext_store_level_open:
2749 {
2750 \bool_if:NT \l__enumext_check_answers_bool
2751 {
2752 \tl_if_empty:cTF { l__enumext_store_save_key_ __enumext_level: _tl }
2753 {
2754 __enumext_store_addto_seq:n
2755 {
2756 \item \begin{enumext}
2757 }
2758 }
2759 {
2760 \tl_put_left:cn { l__enumext_store_save_key_ __enumext_level: _tl }
2761 {
2762 \item \begin{enumext} [
2763 }
2764 \tl_put_right:cn { l__enumext_store_save_key_ __enumext_level: _tl }
2765 {
2766]
2767 }
2768 __enumext_store_addto_seq:v { l__enumext_store_save_key_ __enumext_level: _tl }
2769 }
2770 }
2771 }
2772 \cs_new_protected:Nn __enumext_store_level_close:
2773 {
2774 \bool_if:NT \l__enumext_check_answers_bool
2775 {
2776 __enumext_store_addto_seq:n { \end{enumext} }
2777 }
2778 }

(End of definition for __enumext_store_level_open: and __enumext_store_level_close:.)

__enumext_store_level_open_vii:

__enumext_store_level_close_vii:

The “storing structure” is handled by the functions __enumext_store_level_open_vii: and __enumext_-
store_level_close_vii: which are executed in the enumext* environment.

2779 \cs_new_protected:Nn __enumext_store_level_open_vii:
2780 {
2781 \bool_if:NT \l__enumext_check_answers_bool
2782 {
2783 \tl_if_empty:NTF \l__enumext_store_save_key_vii_tl
2784 {

85 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2785 __enumext_store_addto_seq:n
2786 {
2787 \item \begin{enumext*}
2788 }
2789 }
2790 {
2791 \tl_put_left:Nn \l__enumext_store_save_key_vii_tl
2792 {
2793 \item \begin{enumext*}[
2794 }
2795 \tl_put_right:Nn \l__enumext_store_save_key_vii_tl
2796 {
2797]
2798 }
2799 __enumext_store_addto_seq:V \l__enumext_store_save_key_vii_tl
2800 }
2801 }
2802 }
2803 \cs_new_protected:Nn __enumext_store_level_close_vii:
2804 {
2805 \bool_if:NT \l__enumext_check_answers_bool
2806 {
2807 __enumext_store_addto_seq:n { \end{enumext*} }
2808 }
2809 }

(End of definition for __enumext_store_level_open_vii: and __enumext_store_level_close_vii:.)

13.30.8 Function for show marks and position

__enumext_print_keyans_box:NN

__enumext_print_keyans_box:cc

The function __enumext_print_keyans_box:NN print a box in the left margin with \l__enumext_mark_-
answer_sym_tl used by the wrap-ans, show-ans and show-pos keys. The function takes two arguments:
#1 : \l__enumext_labelwidth_X_dim
#2 : \l__enumext_labelsep_X_dim

2810 \cs_new_protected:Nn __enumext_print_keyans_box:NN
2811 {
2812 \mode_leave_vertical:
2813 \skip_horizontal:n { -\dim_use:N #2 }
2814 \hbox_overlap_left:n
2815 {
2816 \makebox[\dim_use:N #1][\l__enumext_mark_position_str]
2817 {
2818 \tl_use:N \l__enumext_mark_answer_sym_tl
2819 }
2820 }
2821 \skip_horizontal:n { \dim_use:N #2 }
2822 }
2823 \cs_generate_variant:Nn __enumext_print_keyans_box:NN { cc }

(End of definition for __enumext_print_keyans_box:NN.)

13.31 The internal label and ref
The function __enumext_store_internal_ref: handles the “internal label and ref” system used by the
save-ref and mark-ref keys for \anskey will allow to execute \ref{〈store name : position〉} and will
return 1.(a).i.A.

__enumext_store_internal_ref: First we will remove the dots “.” from the current 〈labels〉, we do not want to get double dots in our references,
then we will place this in the variable \l__enumext_newlabel_arg_two_tl.
2824 \cs_new_protected:Nn __enumext_store_internal_ref:
2825 {
2826 \cs_set_protected:Npn __enumext_tmp:n ##1
2827 {
2828 \tl_set_eq:cc { l__enumext_label_copy_##1_tl } { l__enumext_label_##1_tl }
2829 \tl_reverse:c { l__enumext_label_copy_##1_tl }
2830 \tl_remove_once:cn { l__enumext_label_copy_##1_tl } { . }
2831 \tl_reverse:c { l__enumext_label_copy_##1_tl }
2832 }
2833 \clist_map_inline:nn { i, ii, iii, iv, vii } { __enumext_tmp:n {##1} }
2834 \cs_set:Npn __enumext_tmp:n ##1
2835 { . \tl_use:c { l__enumext_label_copy_ \int_to_roman:n {##1} _tl } }

86 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

Here we need to analyse the cases where the environment is started with enumext* and if \anskey or anskey*
is running alone in it or if it is running in a nested enumext environment within the starting environment.
2836 \bool_lazy_all:nT
2837 {
2838 { \bool_if_p:N \g__enumext_starred_bool }
2839 { \int_compare_p:nNn { \l__enumext_level_int } = { 0 } }
2840 }
2841 {
2842 \tl_put_right:Ne \l__enumext_newlabel_arg_two_tl
2843 { \tl_use:N \l__enumext_label_copy_vii_tl }
2844 }
2845 \bool_lazy_all:nT
2846 {
2847 { \bool_not_p:n { \g__enumext_standar_bool } }
2848 { \bool_if_p:N \l__enumext_standar_bool }
2849 { \int_compare_p:nNn { \l__enumext_level_int } > { 0 } }
2850 }
2851 {
2852 \tl_put_right:Ne \l__enumext_newlabel_arg_two_tl
2853 {
2854 \tl_use:N \l__enumext_label_copy_vii_tl
2855 \int_step_function:nnN { 1 } { \l__enumext_level_int } __enumext_tmp:n
2856 }
2857 }

If started with enumext and if \anskey or anskey* is running alone in it or if it is running in a nested
enumext* environment within the starting environment.
2858 \bool_lazy_all:nT
2859 {
2860 { \bool_if_p:N \g__enumext_standar_bool }
2861 { \int_compare_p:nNn { \l__enumext_level_int } > { 0 } }
2862 { \int_compare_p:nNn { \l__enumext_level_h_int } = { 0 } }
2863 }
2864 {
2865 \tl_put_right:Ne \l__enumext_newlabel_arg_two_tl
2866 {
2867 \tl_use:N \l__enumext_label_copy_i_tl
2868 \int_step_function:nnN { 2 } { \l__enumext_level_int } __enumext_tmp:n
2869 }
2870 }
2871 \cs_set:Npn __enumext_tmp:n ##1
2872 { \tl_use:c { l__enumext_label_copy_ \int_to_roman:n {##1} _tl } . }
2873 \bool_lazy_all:nT
2874 {
2875 { \bool_if_p:N \g__enumext_standar_bool }
2876 { \bool_if_p:N \l__enumext_starred_bool }
2877 { \int_compare_p:nNn { \l__enumext_level_int } > { 0 } }
2878 }
2879 {
2880 \tl_put_right:Ne \l__enumext_newlabel_arg_two_tl
2881 {
2882 \int_step_function:nnN { 1 } { \l__enumext_level_int } __enumext_tmp:n
2883 \tl_use:N \l__enumext_label_copy_vii_tl
2884 }
2885 }

Now we set the variable \l__enumext_newlabel_arg_one_tl which will contain {〈store name : position〉}.
2886 \tl_put_right:Ne \l__enumext_newlabel_arg_one_tl
2887 {
2888 \l__enumext_store_name_tl \c_colon_str
2889 \int_eval:n { \prop_count:c { g__enumext_ \l__enumext_store_name_tl _prop } }
2890 }

Now execute the function __enumext_newlabel:nn and save the result in the variable \l__enumext_-
write_aux_file_tl and finally we write in the .aux file.
2891 \tl_put_right:Ne \l__enumext_write_aux_file_tl
2892 {
2893 __enumext_newlabel:nn
2894 { \exp_not:V \l__enumext_newlabel_arg_one_tl }
2895 { \l__enumext_newlabel_arg_two_tl }
2896 }
2897 \l__enumext_write_aux_file_tl

87 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

2898 }

(End of definition for __enumext_store_internal_ref:.)

13.32 Common functions for \anskey and anskey* environment
__enumext_store_anskey_arg:n The internal function __enumext_store_anskey_arg:n first we pass the {〈argument〉} to the prop list,

then checks the state of the variable \l__enumext_store_ref_key_bool handled by the save-ref key and
will call the function __enumext_store_internal_ref: for the “internal label and ref” system. Followed
by this if the show-ans or show-pos keys are active we will show the “wrapped” {〈argument〉}.
2899 \cs_new_protected:Npn __enumext_store_anskey_arg:n #1
2900 {
2901 \int_gincr:N \g__enumext_item_anskey_int
2902 __enumext_store_addto_prop:n {#1}
2903 \bool_if:NT \l__enumext_store_ref_key_bool
2904 {
2905 __enumext_store_internal_ref:
2906 }
2907 __enumext_anskey_show_wrap_left:n { #1 }

Now we start processing the [〈key = val〉] passed to the command to build our \item in the variable
\l__enumext_store_anskey_arg_tl which we will “store” in the sequence. First we clear the variable
\l__enumext_store_anskey_arg_tl and process the 〈keys〉, if the break-col key is present and the
command is running under enumext (not in enumext*) we will add \columnbreak and then \item.
2908 \tl_clear:N \l__enumext_store_anskey_arg_tl
2909 \bool_lazy_and:nnT
2910 { \bool_if_p:N \l__enumext_store_columns_break_bool }
2911 { \bool_not_p:n { \l__enumext_starred_bool } }
2912 {
2913 \tl_put_left:Nn \l__enumext_store_anskey_arg_tl { \columnbreak }
2914 }
2915 \tl_put_right:Nn \l__enumext_store_anskey_arg_tl { \item }

If the item-join key is present and the command is running under enumext* we will add (〈number〉) to
\l__enumext_store_anskey_arg_tl.
2916 \bool_lazy_and:nnT
2917 { \bool_not_p:n { \l__enumext_starred_bool } }
2918 { \int_compare_p:nNn { \l__enumext_store_item_join_int } > { 1 } }
2919 {
2920 \tl_put_right:Ne \l__enumext_store_anskey_arg_tl
2921 {
2922 (\exp_not:V \l__enumext_store_item_join_int)
2923 }
2924 }

And now we will review the keys item-star, item-sym* and item-pos* and pass them to \l__enumext_-
store_anskey_arg_tl along with the {〈argument〉} for \anskey or 〈body〉 for anskey*.
2925 \bool_if:NTF \l__enumext_store_item_star_bool
2926 {
2927 \tl_put_right:Nn \l__enumext_store_anskey_arg_tl { * }
2928 \tl_if_empty:NF \l__enumext_store_item_symbol_tl
2929 {
2930 \tl_put_right:Ne \l__enumext_store_anskey_arg_tl
2931 {
2932 [\exp_not:V \l__enumext_store_item_symbol_tl]
2933 }
2934 }
2935 \dim_compare:nT
2936 {
2937 \l__enumext_store_item_symbol_sep_dim != \c_zero_dim
2938 }
2939 {
2940 \tl_put_right:Ne \l__enumext_store_anskey_arg_tl
2941 {
2942 [\exp_not:V \l__enumext_store_item_symbol_sep_dim]
2943 }
2944 }
2945 \tl_put_right:Nn \l__enumext_store_anskey_arg_tl {#1}
2946 }
2947 {
2948 \tl_put_right:Nn \l__enumext_store_anskey_arg_tl {#1}
2949 }

88 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

Finally we check if the save-ref key are active along with the hyperref package load, if both conditions are
met, it will create the \hyperlink with “symbol” set by mark-ref key and then store in sequence.
2950 \bool_lazy_and:nnT
2951 { \bool_if_p:N \l__enumext_store_ref_key_bool }
2952 { \bool_if_p:N \l__enumext_hyperref_bool }
2953 {
2954 \tl_put_right:Ne \l__enumext_store_anskey_arg_tl
2955 {
2956 \hfill \exp_not:N \hyperlink { \exp_not:V \l__enumext_newlabel_arg_one_tl }
2957 { \exp_not:V \l__enumext_mark_ref_sym_tl }
2958 }
2959 }
2960 __enumext_store_addto_seq:V \l__enumext_store_anskey_arg_tl
2961 }

(End of definition for __enumext_store_anskey_arg:n.)

__enumext_anskey_show_wrap_arg:n The function __enumext_anskey_show_wrap_arg:n “wraps” the {〈argument〉} passed to \anskey and
the 〈body〉 for anskey* when using the wrap-ans and wrap-sep keys.
2962 \cs_new_protected:Npn __enumext_anskey_show_wrap_arg:n #1
2963 {
2964 \par
2965 \bool_if:NTF \l__enumext_starred_bool
2966 {
2967 \dim_compare:nNnT { \l__enumext_mark_sym_sep_dim } = { \c_zero_dim }
2968 {
2969 \dim_set:Nn \l__enumext_mark_sym_sep_dim { \l__enumext_labelsep_vii_dim }
2970 }
2971 __enumext_print_keyans_box:NN
2972 \l__enumext_labelwidth_vii_dim \l__enumext_mark_sym_sep_dim
2973 }
2974 {
2975 \dim_compare:nNnT { \l__enumext_mark_sym_sep_dim } = { \c_zero_dim }
2976 {
2977 \dim_set:Nn \l__enumext_mark_sym_sep_dim
2978 {
2979 \dim_use:c {l__enumext_labelsep_ __enumext_level: _dim }
2980 }
2981 }
2982 __enumext_print_keyans_box:cc
2983 { l__enumext_labelwidth_ __enumext_level: _dim } { l__enumext_mark_sym_sep_dim }
2984 }
2985 __enumext_anskey_wrapper:n { #1 }
2986 }

(End of definition for __enumext_anskey_show_wrap_arg:n.)

__enumext_anskey_show_wrap_left:n The function __enumext_anskey_show_wrap_left:n will show the “mark” defined by the mark-ans key
or the “position” of the {〈content〉} stored in the prop list when using the show-pos key on the left margin
next to the “wraps” {〈argument〉} passed to \anskey and the 〈body〉 in anskey* on the right side when using
the show-ans key.
2987 \cs_new_protected:Npn __enumext_anskey_show_wrap_left:n #1
2988 {
2989 \bool_if:NT \l__enumext_show_answer_bool
2990 {
2991 __enumext_anskey_show_wrap_arg:n { #1 }
2992 }
2993 \bool_if:NT \l__enumext_show_position_bool
2994 {
2995 \tl_set:Ne \l__enumext_mark_answer_sym_tl
2996 {
2997 \group_begin:
2998 \exp_not:N \normalfont
2999 \exp_not:N \footnotesize [\int_eval:n
3000 {
3001 \prop_count:c { g__enumext_ \l__enumext_store_name_tl _prop }
3002 }
3003]
3004 \group_end:
3005 }

89 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3006 __enumext_anskey_show_wrap_arg:n { #1 }
3007 }
3008 }

(End of definition for __enumext_anskey_show_wrap_left:n.)

13.33 The command \anskey
Since we will be “storing content” in a list environment within sequences and can (more or less) manage the
options passed to each level, it is necessary that we have a little more control over \item when storing.
The \anskey command will cover this point and give it similar behaviour to that of \item in the enumext
and enumext* environments executed as follows \anskey[〈key = val〉]{〈content〉}.

break-col
item-join
item-star
item-sym*
item-pos*
unknown

__enumext_anskey_unknown:n
__enumext_anskey_unknown:nn

First we’ll add the keys break-col, item-join, item-star, item-sym* and item-pos*.
3009 \keys_define:nn { enumext / anskey }
3010 {
3011 break-col .bool_set:N = \l__enumext_store_columns_break_bool,
3012 break-col .default:n = true,
3013 break-col .value_forbidden:n = true,
3014 item-join .int_set:N = \l__enumext_store_item_join_int,
3015 item-join .value_required:n = true,
3016 item-star .bool_set:N = \l__enumext_store_item_star_bool,
3017 item-star .default:n = true,
3018 item-star .value_forbidden:n = true,
3019 item-sym* .tl_set:N = \l__enumext_store_item_symbol_tl,
3020 item-sym* .value_required:n = true,
3021 item-pos* .dim_set:N = \l__enumext_store_item_symbol_sep_dim,
3022 item-pos* .value_required:n = true,
3023 unknown .code:n = { __enumext_anskey_unknown:n {#1} },
3024 }

The 〈keys〉 are stored in \l_keys_key_str and the value (if any) is passed as an argument to the function
__enumext_anskey_unknown:n.
3025 \cs_new_protected:Npn __enumext_anskey_unknown:n #1
3026 {
3027 \exp_args:NV __enumext_anskey_unknown:nn \l_keys_key_str {#1}
3028 }
3029 \cs_new_protected:Npn __enumext_anskey_unknown:nn #1 #2
3030 {
3031 \tl_if_blank:nTF {#2}
3032 {
3033 \msg_error:nnn { enumext } { anskey-cmd-key-unknown } {#1}
3034 }
3035 {
3036 \msg_error:nnnn { enumext } { anskey-cmd-key-value-unknown } {#1} {#2}
3037 }
3038 }

(End of definition for break-col and others.)
BOMB The \anskey command will only be present when using the save-ans key in enumext and enumext* environments,

otherwise it will return an error.

\anskey We will first call the function __enumext_anskey_safe_outer: to be sure where we execute the command,
then we will check the state of the variable \l__enumext_check_answers_bool set by the key no-store,
if is true we will increment \g__enumext_item_anskey_int for the internal “check answer” system and
execute the function __enumext_anskey_safe_inner:n to ensure that the command is not nested and
that the argument is not empty, finally search the [〈key = val〉] and call the function __enumext_store_-
anskey_arg:n.
3039 \NewDocumentCommand \anskey { o +m }
3040 {
3041 __enumext_anskey_safe_outer:
3042 \group_begin:
3043 \bool_if:NT \l__enumext_check_answers_bool
3044 {
3045 \tl_if_novalue:nF {#1}
3046 {
3047 \keys_set:nn { enumext / anskey } {#1}
3048 }
3049 \tl_if_blank:nTF {#2}
3050 {
3051 \msg_error:nn { enumext } { anskey-empty-arg }

90 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3052 }
3053 {
3054 __enumext_anskey_safe_inner:
3055 __enumext_store_anskey_arg:n {#2}
3056 }
3057 }
3058 \group_end:
3059 }

(End of definition for \anskey. This function is documented on page 14.)

13.33.1 Internal functions for the command

__enumext_anskey_safe_outer:

__enumext_anskey_safe_inner:

The __enumext_store_anskey_safe_outer: function will return the appropriate messages when the
command is executed outside the environment in which the save-ans key was activated.
3060 \cs_new_protected:Nn __enumext_anskey_safe_outer:
3061 {
3062 \bool_if:NF \l__enumext_store_active_bool
3063 {
3064 \msg_error:nnnn { enumext } { anskey-wrong-place }{ anskey }{ enumext }
3065 }
3066 \int_compare:nNnT { \l__enumext_keyans_level_int } = { 1 }
3067 {
3068 \msg_error:nnnn { enumext } { command-wrong-place }{ anskey }{ keyans }
3069 }
3070 \int_compare:nNnT { \l__enumext_keyans_level_h_int } = { 1 }
3071 {
3072 \msg_error:nnnn { enumext } { command-wrong-place }{ anskey }{ keyans* }
3073 }
3074 \int_compare:nNnT { \l__enumext_keyans_pic_level_int } = { 1 }
3075 {
3076 \msg_error:nnnn { enumext } { command-wrong-place }{ anskey }{ keyanspic }
3077 }
3078 }

The __enumext_anskey_safe_inner: function will first check if the command is nested, if preceded by a
not numbered \item or if it is in math mode returning the appropriate messages.
3079 \cs_new_protected:Nn __enumext_anskey_safe_inner:
3080 {
3081 \int_incr:N \l__enumext_anskey_level_int
3082 \int_compare:nNnT { \l__enumext_anskey_level_int } > { 1 }
3083 {
3084 \msg_error:nn { enumext } { anskey-nested }
3085 }
3086 \bool_if:NF \l__enumext_item_number_bool
3087 {
3088 \msg_error:nn { enumext } { anskey-unnumber-item }
3089 }
3090 \mode_if_math:T
3091 {
3092 \msg_error:nne { enumext } { anskey-math-mode } { \c_backslash_str anskey }
3093 }
3094 }

(End of definition for __enumext_anskey_safe_outer: and __enumext_anskey_safe_inner:.)

13.34 The environment anskey*
The original implementation of the anskey* environment used non-public functions from the scontents[4]
package, which was not the best approach. Fortunately LATEX release 2025-06-01 implemented the new c-type
argument in the ltcmd[13], with which we can record the 〈body〉 of the environment in verbatim mode and
\tl_retokenize:n (wrapper around the \scantokens) provide by LATEX3 release 2025-07-08 do the work as
the original implementation.

break-col
item-join
item-star
item-sym*
item-pos*
force-eol
write-env
overwrite
unknown

First we add the same keys from the \anskey command along with the force-eol, write-env and
overwrite keys that were in the original implementation that used the scontents support package for
these.
3095 \keys_define:nn { enumext / anskey* }
3096 {
3097 break-col .bool_set:N = \l__enumext_store_columns_break_bool,
3098 break-col .default:n = true,
3099 break-col .value_forbidden:n = true,
3100 item-join .int_set:N = \l__enumext_store_item_join_int,

91 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3101 item-join .value_required:n = true,
3102 item-star .bool_set:N = \l__enumext_store_item_star_bool,
3103 item-star .default:n = true,
3104 item-star .value_forbidden:n = true,
3105 item-sym* .tl_set:N = \l__enumext_store_item_symbol_tl,
3106 item-sym* .value_required:n = true,
3107 item-pos* .dim_set:N = \l__enumext_store_item_symbol_sep_dim,
3108 item-pos* .value_required:n = true,
3109 force-eol .bool_set:N = \l__enumext_anskey_env_force_eol_bool,
3110 force-eol .initial:n = false,
3111 force-eol .default:n = true,
3112 write-env .code:n = {
3113 \bool_set_true:N \l__enumext_write_anskey_env_bool
3114 \tl_set:Nn \l__enumext_write_anskey_env_file_name_tl {#1}
3115 },
3116 write-env .value_required:n = true,
3117 overwrite .bool_set:N = \l__enumext_anskey_env_overwrite_bool,
3118 overwrite .initial:n = false,
3119 overwrite .default:n = true,
3120 unknown .code:n = { __enumext_anskey_env_unknown:n {#1} },
3121 }

(End of definition for break-col and others.)

__enumext_anskey_env_unknown:n

__enumext_anskey_env_unknown:nn

The 〈keys〉 are stored in \l_keys_key_str and the value (if any) is passed as an argument to the function
__enumext_anskey_env_unknown:n.
3122 \cs_new_protected:Npn __enumext_anskey_env_unknown:n #1
3123 {
3124 \exp_args:NV __enumext_anskey_env_unknown:nn \l_keys_key_str {#1}
3125 }
3126 \cs_new_protected:Npn __enumext_anskey_env_unknown:nn #1#2
3127 {
3128 \tl_if_blank:nTF {#2}
3129 {
3130 \msg_error:nnn { enumext } { anskey-env-key-unknown } {#1}
3131 }
3132 {
3133 \msg_error:nnnn { enumext } { anskey-env-key-value-unknown } {#1} {#2}
3134 }
3135 }

(End of definition for __enumext_anskey_env_unknown:n and __enumext_anskey_env_unknown:nn.)

__enumext_anskey_env_file_if_writable:n

__enumext_anskey_env_file_if_writable:nT

__enumext_anskey_env_file_if_writable:nF

__enumext_anskey_env_file_if_writable:nTF

The conditional function __enumext_anskey_env_file_if_writable:n used by the write-env and
overwrite keys in the anskey* environment to determine whether the output file is written or overwritten.
3136 \prg_new_protected_conditional:Npnn __enumext_anskey_env_file_if_writable:n #1 { T, F, TF }
3137 {
3138 \bool_if:NTF \l__enumext_write_anskey_env_bool
3139 {
3140 \file_if_exist:nTF {#1}
3141 {
3142 \bool_if:NTF \l__enumext_anskey_env_overwrite_bool
3143 {
3144 \msg_warning:nne { enumext } { overwrite-file } {#1}
3145 \prg_return_true:
3146 }
3147 {
3148 \msg_warning:nne { enumext } { not-writing } {#1}
3149 \prg_return_false:
3150 }
3151 }
3152 {
3153 \msg_warning:nne { enumext } { writing-file } {#1}
3154 \prg_return_true:
3155 }
3156 }
3157 { \prg_return_false: }
3158 }

The __enumext_anskey_env_file_write:nn function is used by the write-env key in the anskey*
environment to write the output file with the 〈body〉 of the environment.

92 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3159 \cs_new_protected:Npn __enumext_anskey_env_file_write:nn #1#2
3160 {
3161 __enumext_anskey_env_file_if_writable:nT {#1}
3162 {
3163 \iow_open:Nn \l__enumext_write_anskey_env_file_iow {#1}
3164 \iow_now:Nn \l__enumext_write_anskey_env_file_iow {#2}
3165 \iow_close:N \l__enumext_write_anskey_env_file_iow
3166 }
3167 }
3168 \cs_generate_variant:Nn __enumext_anskey_env_file_write:nn { VV }

(End of definition for __enumext_anskey_env_file_if_writable:n and others.)

anskey* First, we’ll call the function __enumext_anskey_env_safe_outer: to make sure where we’re running
the environment, then, we’ll check the state of the variable \l__enumext_check_answers_bool set by the
key no-store. If it’s true, we’ll look for [〈key = val〉] and verify that the argument c-type 〈body〉 is not
empty. Finally, we’ll run the internal check function __enumext_anskey_env_safe_inner:n and call the
function __enumext_store_anskey_arg:n.
3169 \NewDocumentEnvironment{anskey*}{ o c }
3170 {
3171 __enumext_anskey_env_safe_outer:
3172 \bool_if:NT \l__enumext_check_answers_bool
3173 {
3174 \tl_if_novalue:nF {#1}
3175 {
3176 \keys_set:nn { enumext / anskey* } {#1}
3177 }
3178 \tl_if_blank:nTF {#2}
3179 {
3180 \msg_error:nn { enumext } { anskey-empty-arg }
3181 }
3182 {
3183 __enumext_anskey_env_safe_inner:
3184 __enumext_store_anskey_env:n {#2}
3185 }
3186 }
3187 } { }

(End of definition for anskey*. This function is documented on page 15.)

13.34.1 Internal functions for the environment

__enumext_anskey_env_safe_outer:

__enumext_anskey_env_safe_inner:

__enumext_store_anskey_env:n

The function __enumext_store_anskey_safe_outer: will return the appropriate messages when
anskey* is executed outside the environment in which the save-ans key was activated or within the keyans,
keyans* or keyanspic environments.
3188 \cs_new_protected:Nn __enumext_anskey_env_safe_outer:
3189 {
3190 \bool_if:NF \l__enumext_store_active_bool
3191 {
3192 \msg_error:nnn { enumext } { anskey-env-error } { anskey* }
3193 }
3194 \int_compare:nNnT { \l__enumext_keyans_level_int } = { 1 }
3195 {
3196 \msg_error:nnn { enumext } { anskey-env-wrong }{ keyans }
3197 }
3198 \int_compare:nNnT { \l__enumext_keyans_level_h_int } = { 1 }
3199 {
3200 \msg_error:nnn { enumext } { anskey-env-wrong } { keyans* }
3201 }
3202 \int_compare:nNnT { \l__enumext_keyans_pic_level_int } = { 1 }
3203 {
3204 \msg_error:nnn { enumext } { anskey-env-wrong } { keyanspic }
3205 }
3206 }

The function __enumext_anskey_env_safe_inner: will first check if preceded by a not numbered \item
or if it is in math mode returning the appropriate messages.
3207 \cs_new_protected:Nn __enumext_anskey_env_safe_inner:
3208 {
3209 \bool_if:NF \l__enumext_item_number_bool
3210 {
3211 \msg_error:nn { enumext } { anskey-unnumber-item }

93 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3212 }
3213 \mode_if_math:T
3214 {
3215 \msg_error:nnn { enumext } { anskey-math-mode } { anskey* }
3216 }
3217 }

The __enumext_store_anskey_env:n function will first pass the c-type argument 〈body〉 to the variable
\l__enumext_store_anskey_env_tl and replace the macro \obeyedline with ^^J and then execute the
write-env and overwrite keys, check the state of the variable \l__enumext_anskey_env_force_eol_-
bool managed by the force-eol key and we will add \c__enumext_anskey_env_hidden_space_str
if necessary. Finally we will use \exp_args:Ne on the __enumext_store_anskey_arg:n to expand
the \tl_retokenize:n function which rescans the \l__enumext_store_anskey_env_tl variable before
processing it.
3218 \cs_new_protected:Npn __enumext_store_anskey_env:n #1
3219 {
3220 \tl_set:Nn \l__enumext_store_anskey_env_tl {#1}
3221 \RenewDocumentCommand \obeyedline { } { \iow_char:N \^^J }
3222 \tl_replace_all:Nee \l__enumext_store_anskey_env_tl { \obeyedline } { \iow_char:N \^^J }
3223 __enumext_anskey_env_file_write:VV
3224 \l__enumext_write_anskey_env_file_name_tl \l__enumext_store_anskey_env_tl
3225 \bool_if:NF \l__enumext_anskey_env_force_eol_bool
3226 {
3227 \tl_put_right:Ne \l__enumext_store_anskey_env_tl
3228 {
3229 \c__enumext_anskey_env_hidden_space_str
3230 }
3231 }
3232 \exp_args:Ne
3233 __enumext_store_anskey_arg:n
3234 {
3235 \tl_retokenize:n { \l__enumext_store_anskey_env_tl }
3236 }
3237 }

BOMB Since \obeyedline can be redefined by the user, for example to \mbox{}\par, it is necessary to redefine it to ^^J in
order to use \tl_replace_all:Nee otherwise it returns an error.

(End of definition for __enumext_anskey_env_safe_outer: , __enumext_anskey_env_safe_inner: , and __enumext_store_-
anskey_env:n.)

13.35 Executing check-ans system and write .log
__enumext_execute_after_env: The __enumext_execute_after_env: function will first return the appropriate message for the end of the

environment in which the save-ans key is being executed, then call the __enumext_item_answer_diff:
function and then will write the values of the global variables used to the .log file. If the key check-ans
is active it will execute the function __enumext_check_ans_show: and show the result in the terminal,
otherwise it will execute the function __enumext_check_ans_log: and write the results in the .log file
and finally we execute the function __enumext_reset_global_vars: returning the used variables to their
original state.
3238 \cs_new_protected:Nn __enumext_execute_after_env:
3239 {
3240 \int_compare:nNnT { \l__enumext_level_int } = { 0 }
3241 {
3242 \tl_if_empty:NF \g__enumext_store_name_tl
3243 {
3244 __enumext_stop_save_ans_msg:
3245 __enumext_item_answer_diff:
3246 __enumext_log_global_vars:
3247 __enumext_log_answer_vars:
3248 \bool_if:NTF \g__enumext_check_ans_key_bool
3249 {
3250 __enumext_check_ans_show:
3251 }
3252 { __enumext_check_ans_log: }
3253 }
3254 __enumext_reset_global_vars:
3255 }
3256 }

BOMB This function is passed to the function __enumext_after_env:nn for the environments enumext (§13.42) and enumext*
(§13.47) and it is executed only when the environments are not nested or at some level of these..

94 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

(End of definition for __enumext_execute_after_env:.)

13.36 Common functions for keyans, keyans* and keyanspic

13.36.1 Storing content in prop list

__enumext_keyans_addto_prop:n The function __enumext_keyans_addto_prop:n will pass the the current 〈label〉 for \item* in keyans
environment and the current 〈label〉 for \anspic* in keyanspic environment followed by the 〈contents〉 of
the optional argument of both commands to the \l__enumext_store_current_label_tl variable, which
will be stored to the prop list defined by the save-ans key using the function __enumext_store_addto_-
prop:V.
3257 \cs_new_protected:Npn __enumext_keyans_addto_prop:n #1
3258 {
3259 \tl_clear:N \l__enumext_store_current_label_tl
3260 \int_compare:nNnTF { \l__enumext_keyans_pic_level_int } = { 1 }
3261 {
3262 \tl_put_right:Ne \l__enumext_store_current_label_tl { \l__enumext_label_vi_tl }
3263 }
3264 {
3265 \tl_put_right:Ne \l__enumext_store_current_label_tl { \l__enumext_label_v_tl }
3266 }

If the optional argument is present and the save-sep key is not empty, we save it.
3267 \tl_if_novalue:nF { #1 }
3268 {
3269 \tl_if_empty:NF \l__enumext_store_keyans_item_opt_sep_v_tl
3270 {
3271 \tl_put_right:NV \l__enumext_store_current_label_tl \l__enumext_store_keyans_item_opt_sep_v_tl
3272 }
3273 \tl_put_right:Nn \l__enumext_store_current_label_tl { #1 }
3274 }
3275 __enumext_store_addto_prop:V \l__enumext_store_current_label_tl
3276 }

(End of definition for __enumext_keyans_addto_prop:n.)

13.36.2 The save-ref key for keyans, keyans* and keyanspic

The “internal label and ref” system for the keyans, keyans* and keyanspic environments has slight differences
with the one implemented for \anskey basically because in this environments the interest is in the current
〈label〉 for \item* and \anspic* with the 〈contents〉 of the optional argument. The mechanism defined here
will allow to execute \ref{〈store name : position〉} and will return 1.(A).

__enumext_keyans_store_ref:
__enumext_keyans_store_ref_aux_i:

__enumext_keyans_store_ref_aux_ii:

The function __enumext_keyans_store_ref: handles the “internal label and ref” system used by the
save-ref key for \item* and \anspic* commands. First we will create copies of the current 〈labels〉 and
remove the dots “.” from them, we do not want to get double dots in references.
3277 \cs_new_protected:Nn __enumext_keyans_store_ref:
3278 {
3279 \bool_if:NT \l__enumext_store_ref_key_bool
3280 {
3281 \cs_set_protected:Npn __enumext_tmp:n ##1
3282 {
3283 \tl_set_eq:cc { l__enumext_label_copy_##1_tl } { l__enumext_label_##1_tl }
3284 \tl_reverse:c { l__enumext_label_copy_##1_tl }
3285 \tl_remove_once:cn { l__enumext_label_copy_##1_tl } { . }
3286 \tl_reverse:c { l__enumext_label_copy_##1_tl }
3287 }
3288 \clist_map_inline:nn { i, v, vi, vii, viii } { __enumext_tmp:n {##1} }
3289 __enumext_keyans_store_ref_aux_i:
3290 }
3291 }

The auxiliary function __enumext_keyans_store_ref_aux_i: set the variable \l__enumext_newlabel_-
arg_one_tl which will contain {〈store name : position〉} analyzing whether the environment in which they
are executed is enumext* or enumext.
3292 \cs_new_protected:Nn __enumext_keyans_store_ref_aux_i:
3293 {
3294 \bool_if:NT \g__enumext_starred_bool
3295 {
3296 \tl_set_eq:NN \l__enumext_label_copy_i_tl \l__enumext_label_copy_vii_tl
3297 }
3298 \int_compare:nNnT { \l__enumext_keyans_pic_level_int } = { 1 }
3299 {

95 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3300 \tl_put_right:Ne \l__enumext_newlabel_arg_two_tl
3301 { \l__enumext_label_copy_i_tl . \l__enumext_label_copy_vi_tl }
3302 }
3303 \int_compare:nNnT { \l__enumext_keyans_level_int } = { 1 }
3304 {
3305 \tl_put_right:Ne \l__enumext_newlabel_arg_two_tl
3306 { \l__enumext_label_copy_i_tl . \l__enumext_label_copy_v_tl }
3307 }
3308 \int_compare:nNnT { \l__enumext_keyans_level_h_int } = { 1 }
3309 {
3310 \tl_put_right:Ne \l__enumext_newlabel_arg_two_tl
3311 { \l__enumext_label_copy_i_tl . \l__enumext_label_copy_viii_tl }
3312 }
3313 \tl_put_right:Ne \l__enumext_newlabel_arg_one_tl
3314 {
3315 \l__enumext_store_name_tl \c_colon_str
3316 \int_eval:n { \prop_count:c { g__enumext_ \l__enumext_store_name_tl _prop } }
3317 }
3318 __enumext_keyans_store_ref_aux_ii:
3319 }

Now auxiliary function __enumext_keyans_store_ref_aux_ii: save the result in the variable \l__-
enumext_write_aux_file_tl and finally we write in the .aux file.
3320 \cs_new_protected:Nn __enumext_keyans_store_ref_aux_ii:
3321 {
3322 \tl_put_right:Ne \l__enumext_write_aux_file_tl
3323 {
3324 __enumext_newlabel:nn
3325 { \exp_not:V \l__enumext_newlabel_arg_one_tl }
3326 { \l__enumext_newlabel_arg_two_tl }
3327 }
3328 \l__enumext_write_aux_file_tl
3329 }

(End of definition for __enumext_keyans_store_ref: , __enumext_keyans_store_ref_aux_i: , and __enumext_keyans_-
store_ref_aux_ii:.)

13.36.3 Storing content in sequence

__enumext_keyans_addto_seq:n

__enumext_keyans_addto_seq_link:

The function __enumext_keyans_addto_seq:n will pass the contents of the current 〈label〉 \l__-
enumext_label_v_tl for the keyans environment and the \l__enumext_label_vi_tl for the keyanspic
environment when using \item* and \anspic*, followed by the 〈contents〉 of the optional argument of both
commands to the \l__enumext_store_current_label_tl variable to the sequence defined by the save-
ans key.
3330 \cs_new_protected:Npn __enumext_keyans_addto_seq:n #1
3331 {
3332 \tl_clear:N \l__enumext_store_current_label_tl
3333 \int_compare:nNnTF { \l__enumext_keyans_pic_level_int } = { 1 }
3334 {
3335 \tl_put_right:Ne \l__enumext_store_current_label_tl { \item \l__enumext_label_vi_tl }
3336 }
3337 {
3338 \tl_put_right:Ne \l__enumext_store_current_label_tl { \item \l__enumext_label_v_tl }
3339 }
3340 \tl_if_novalue:nF { #1 }
3341 {
3342 \tl_if_empty:NF \l__enumext_store_keyans_item_opt_sep_v_tl
3343 {
3344 \tl_put_right:NV \l__enumext_store_current_label_tl \l__enumext_store_keyans_item_opt_sep_v_tl
3345 }
3346 \tl_put_right:Nn \l__enumext_store_current_label_tl { #1 }
3347 }
3348 __enumext_keyans_addto_seq_link:
3349 }

Checks if the save-ref key is active along with the hyperref package load, if both conditions are met,
it will create the \hyperlink and then store using the __enumext_store_addto_seq:V function. Fi-
nally, copy the contents of the variable \l__enumext_store_current_label_tl into the global variable
\g__enumext_check_ans_item_tl to be used by the function __enumext_check_starred_cmd:n and
increment the value of the integer variable \g__enumext_item_anskey_int handled by the check-ans
key.
3350 \cs_new_protected:Nn __enumext_keyans_addto_seq_link:

96 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3351 {
3352 \bool_lazy_and:nnT
3353 { \bool_if_p:N \l__enumext_store_ref_key_bool }
3354 { \bool_if_p:N \l__enumext_hyperref_bool }
3355 {
3356 \tl_put_right:Ne \l__enumext_store_current_label_tl
3357 {
3358 \hfill \exp_not:N \hyperlink
3359 {
3360 \exp_not:V \l__enumext_newlabel_arg_one_tl
3361 }
3362 { \exp_not:V \l__enumext_mark_ref_sym_tl }
3363 }
3364 }
3365 __enumext_store_addto_seq:V \l__enumext_store_current_label_tl
3366 \bool_if:NT \l__enumext_check_answers_bool
3367 {
3368 \int_gincr:N \g__enumext_item_anskey_int
3369 }
3370 }

(End of definition for __enumext_keyans_addto_seq:n and __enumext_keyans_addto_seq_link:.)

13.36.4 The show-ans and show-pos keys for keyans and keyanspic

__enumext_keyans_save_item_opt:n

__enumext_keyans_show_item_opt:

__enumext_keyans_show_item_opt_viii:

The function __enumext_keyans_save_item_opt:n will save the optional argument of \item* and
\anspic* in the variable \l__enumext_store_current_opt_arg_tl.
3371 \cs_new_protected:Npn __enumext_keyans_save_item_opt:n #1
3372 {
3373 \tl_if_novalue:nF { #1 }
3374 {
3375 \tl_set:Nn \l__enumext_store_current_opt_arg_tl { #1 }
3376 }
3377 }

The function __enumext_keyans_show_item_opt: will print the optional arguments of \item* and
\anspic*when the show-ans or show-pos keys are set next to the key wrap-opt in keyans and keyanspic
environments.
3378 \cs_new_protected:Nn __enumext_keyans_show_item_opt:
3379 {
3380 \tl_if_empty:NF \l__enumext_store_current_opt_arg_tl
3381 {
3382 \bool_lazy_or:nnT
3383 { \bool_if_p:N \l__enumext_show_answer_bool }
3384 { \bool_if_p:N \l__enumext_show_position_bool }
3385 {
3386 __enumext_keyans_wrapper_opt_v:n
3387 { \l__enumext_store_current_opt_arg_tl } \c_space_tl
3388 }
3389 }
3390 }

The function __enumext_keyans_show_item_opt_viii: will print the optional argument of \item*
when the show-ans or show-pos keys are set next to the key wrap-opt in keyans* environment.
3391 \cs_new_protected:Nn __enumext_keyans_show_item_opt_viii:
3392 {
3393 \tl_if_empty:NF \l__enumext_store_current_opt_arg_tl
3394 {
3395 \bool_lazy_or:nnT
3396 { \bool_if_p:N \l__enumext_show_answer_bool }
3397 { \bool_if_p:N \l__enumext_show_position_bool }
3398 {
3399 __enumext_keyans_wrapper_opt_viii:n
3400 { \l__enumext_store_current_opt_arg_tl } \c_space_tl
3401 }
3402 }
3403 }

(End of definition for __enumext_keyans_save_item_opt:n , __enumext_keyans_show_item_opt: , and __enumext_keyans_-
show_item_opt_viii:.)

97 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

__enumext_keyans_pos_mark_set:

__enumext_keyans_show_ans:
__enumext_keyans_show_pos:

The function __enumext_keyans_pos_mark_set: adjusts the horizontal spaces for the mark-sep* key
taking into account the value of the align key and the width of 〈label〉.
3404 \cs_new_protected:Nn __enumext_keyans_pos_mark_set:
3405 {
3406 __enumext_label_width_by_box:Nn
3407 \l__enumext_mark_sep_tmpa_dim { \l__enumext_label_v_tl }
3408 \str_case:Vn \l__enumext_align_label_pos_v_str
3409 {
3410 { l }
3411 {
3412 \dim_set:Nn \l__enumext_mark_sep_tmpb_dim { \c_zero_dim }
3413 }
3414 { r }
3415 {
3416 \dim_set:Nn \l__enumext_mark_sep_tmpb_dim
3417 { \l__enumext_labelwidth_v_dim - \l__enumext_mark_sep_tmpa_dim }
3418 }
3419 { c }
3420 {
3421 \dim_set:Nn \l__enumext_mark_sep_tmpb_dim
3422 { 0.5\l__enumext_labelwidth_v_dim - 0.5\l__enumext_mark_sep_tmpa_dim }
3423 }
3424 }

Here we set the default values for the key mark-ans*, mark-sep* and mark-pos*.
3425 \dim_compare:nNnT { \l__enumext_mark_sym_sep_v_dim } = { \c_zero_dim }
3426 {
3427 \dim_set:Nn \l__enumext_mark_sym_sep_v_dim { \l__enumext_labelsep_v_dim }
3428 }
3429 \tl_set_eq:NN \l__enumext_mark_answer_sym_tl \l__enumext_mark_answer_sym_v_tl
3430 \dim_add:Nn \l__enumext_mark_sym_sep_v_dim { \l__enumext_mark_sep_tmpb_dim }
3431 \str_set_eq:NN \l__enumext_mark_position_str \l__enumext_mark_position_v_str
3432 }

The function __enumext_keyans_show_ans: will print the 〈symbol〉 set by the mark-ans* key when the
show-ans key is active.
3433 \cs_new_protected:Nn __enumext_keyans_show_ans:
3434 {
3435 \bool_lazy_all:nT
3436 {
3437 { \bool_if_p:N \l__enumext_show_answer_bool }
3438 { \bool_if_p:N \l__enumext_item_wrap_key_bool }
3439 }
3440 {
3441 __enumext_keyans_pos_mark_set:
3442 __enumext_print_keyans_box:NN
3443 \l__enumext_labelwidth_v_dim \l__enumext_mark_sym_sep_v_dim
3444 }
3445 }

The function __enumext_keyans_show_pos: will print the 〈position〉 of the stored content in prop list.
Need add 1 to \g__enumext_〈store name〉_prop for keyans environment.
3446 \cs_new_protected:Nn __enumext_keyans_show_pos:
3447 {
3448 \int_compare:nNnTF { \l__enumext_keyans_level_int } = { 1 }
3449 {
3450 \int_incr:N \l__enumext_show_pos_tmp_int
3451 }
3452 {
3453 \int_zero:N \l__enumext_show_pos_tmp_int
3454 }
3455 \bool_lazy_all:nT
3456 {
3457 { \bool_if_p:N \l__enumext_show_position_bool }
3458 { \bool_if_p:N \l__enumext_item_wrap_key_bool }
3459 }
3460 {
3461 \tl_set:Ne \l__enumext_mark_answer_sym_v_tl
3462 {
3463 \group_begin:
3464 \exp_not:N \normalfont
3465 \exp_not:N \footnotesize [\int_eval:n

98 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3466 {
3467 \prop_count:c { g__enumext_ \l__enumext_store_name_tl _prop }
3468 + \l__enumext_show_pos_tmp_int
3469 }
3470]
3471 \group_end:
3472 }
3473 __enumext_keyans_pos_mark_set:
3474 __enumext_print_keyans_box:NN
3475 \l__enumext_labelwidth_v_dim \l__enumext_mark_sym_sep_v_dim
3476 }
3477 }

(End of definition for __enumext_keyans_pos_mark_set: , __enumext_keyans_show_ans: , and __enumext_keyans_show_-
pos:.)

13.37 Redefining \item and \makelabel in enumext
Redefining the \item command is not as simple as I thought. This command works in conjunction with the
\makelabel command so I have to redefine both of them, in addition to this, we will have to use a couple of
global variables to pass the values from one command to the other.
When labeling PDF is active \makelabel is redefined as \hss #1 and the only way to get the align key
to work correctly is to redefine \makelabel using \makebox. The best way to implement this is to use the
conditional command \IfDocumentMetadataTF to force this redefinition and the dedicated mode-box key
to manually activate it by the user.
The \item and \item[〈custom〉] commands work in the usual way on enumext and we will add \item*,
\item*[〈symbol〉] and \item*[〈symbol〉][〈offset〉].

__enumext_default_item:n First we will see if the optional argument is present, if it is NOT present we will check the state of the variable
\l__enumext_check_answers_bool set by the key no-store, set the boolean variable \l__enumext_-
wrap_label_X_bool to “true” for the key wrap-label and execute __enumext_item_std:w and the key
itemindent, otherwise we will check the state of the boolean variable \l__enumext_wrap_label_opt_-
X_bool set by the key wrap-label* and execute __enumext_item_std:w with the optional argument and
the key itemindent.
3478 \cs_new_protected:Npn __enumext_default_item:n #1
3479 {
3480 \tl_if_novalue:nTF {#1}
3481 {
3482 \bool_if:NT \l__enumext_check_answers_bool
3483 {
3484 \int_gincr:N \g__enumext_item_number_int
3485 \bool_set_true:N \l__enumext_item_number_bool
3486 }
3487 \bool_set_true:c { l__enumext_wrap_label_ __enumext_level: _bool }
3488 __enumext_item_std:w \tl_use:c { l__enumext_fake_item_indent_ __enumext_level: _tl }
3489 }
3490 {
3491 \bool_set_eq:cc
3492 { l__enumext_wrap_label_ __enumext_level: _bool }
3493 { l__enumext_wrap_label_opt_ __enumext_level: _bool }
3494 __enumext_item_std:w [#1] \tl_use:c { l__enumext_fake_item_indent_ __enumext_level: _tl }
3495 }
3496 }

(End of definition for __enumext_default_item:n.)

__enumext_item_starred_exec:nn

__enumext_item_starred_exec:

The \item*, \item*[〈symbol〉] and \item*[〈symbol〉][〈offset〉] works like the numbered \item, but
placing a 〈symbol〉 to the “left” of the 〈label〉 separated from it by the value the second optional argument
〈offset〉.
#1 : \l__enumext_item_symbol_X_tl
#2 : \l__enumext_item_symbol_sep_X_dim
First we will make a copy of \l__enumext_item_symbol_X_tl which is set by the key item-sym* or passed
as “first” optional argument in the global variable \g__enumext_item_symbol_aux_tl, followed by setting
the variable \l__enumext_item_symbol_sep_X_dim set by the key item-pos* or by the “second” optional
argument, then we will see the state of the variable \l__enumext_check_answers_bool set by the key
no-store, set the boolean variable \l__enumext_wrap_label_X_bool to “true” for the key wrap-label
and execute __enumext_item_std:w and the key itemindent.
3497 \cs_new_protected:Npn __enumext_item_starred_exec:nn #1 #2
3498 {
3499 \tl_if_novalue:nTF {#1}

99 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3500 {
3501 \tl_gset_eq:Nc
3502 \g__enumext_item_symbol_aux_tl { l__enumext_item_symbol_ __enumext_level: _tl }
3503 }
3504 {
3505 \tl_gset:Nn \g__enumext_item_symbol_aux_tl {#1}
3506 }
3507 \tl_if_novalue:nTF {#2}
3508 {
3509 \dim_set_eq:cc
3510 { l__enumext_item_symbol_sep_ __enumext_level: _dim }
3511 { l__enumext_labelsep_ __enumext_level: _dim }
3512 }
3513 {
3514 \dim_set:cn { l__enumext_item_symbol_sep_ __enumext_level: _dim } {#2}
3515 }
3516 \bool_if:NT \l__enumext_check_answers_bool
3517 {
3518 \int_gincr:N \g__enumext_item_number_int
3519 \bool_set_true:N \l__enumext_item_number_bool
3520 }
3521 \bool_set_true:c { l__enumext_wrap_label_ __enumext_level: _bool }
3522 __enumext_item_std:w \tl_use:c { l__enumext_fake_item_indent_ __enumext_level: _tl }
3523 }

The function __enumext_item_starred_exec: will be responsible for executing \item* for the enumext
environment.
3524 \cs_new_protected:Nn __enumext_item_starred_exec:
3525 {
3526 \tl_if_empty:cF { l__enumext_item_symbol_ __enumext_level: _tl }
3527 {
3528 \mode_leave_vertical:
3529 \skip_horizontal:n { -\dim_use:c { l__enumext_item_symbol_sep_ __enumext_level: _dim } }
3530 \hbox_overlap_left:n { \g__enumext_item_symbol_aux_tl }
3531 \skip_horizontal:n { \dim_use:c { l__enumext_item_symbol_sep_ __enumext_level: _dim } }
3532 }
3533 }

(End of definition for __enumext_item_starred_exec:nn and __enumext_item_starred_exec:.)

__enumext_redefine_item: The function __enumext_redefine_item: will redefine the \item command in the enumext environment
adding \item*. This function are passed to __enumext_list_arg_two_X: used in the definition of the
enumext environment (§13.42).
3534 \cs_new_protected:Nn __enumext_redefine_item:
3535 {
3536 \RenewDocumentCommand \item { s o o }
3537 {
3538 \bool_if:nTF {##1}
3539 {
3540 __enumext_item_starred_exec:nn {##2} {##3}
3541 }
3542 { __enumext_default_item:n {##2} }
3543 }
3544 }

(End of definition for __enumext_redefine_item:.)

__enumext_make_label:
__enumext_make_label_std:
__enumext_make_label_box:

The function __enumext_make_label: redefine \makelabel for the keys mode-box, align, font, wrap-
label, wrap-label* and \item* for enumext environment. This function are passed to __enumext_-
list_arg_two_X: used in the definition of the enumext environment (§13.42).
3545 \cs_new_protected:Nn __enumext_make_label:
3546 {
3547 \IfDocumentMetadataTF
3548 {
3549 __enumext_make_label_box:
3550 }
3551 {
3552 \bool_if:NTF \l__enumext_mode_box_bool
3553 {
3554 __enumext_make_label_box:
3555 }

100 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3556 {
3557 __enumext_make_label_std:
3558 }
3559 }
3560 }

Standard definition when \DocumentMetadata is not active.
3561 \cs_new_protected:Nn __enumext_make_label_std:
3562 {
3563 \RenewDocumentCommand \makelabel { m }
3564 {
3565 \tl_use:c { l__enumext_label_fill_left_ __enumext_level: _tl }
3566 __enumext_item_starred_exec:
3567 \tl_use:c { l__enumext_label_font_style_ __enumext_level: _tl }
3568 \bool_if:cTF { l__enumext_wrap_label_ __enumext_level: _bool }
3569 {
3570 \use:c { __enumext_wrapper_label_ __enumext_level: :n } { ##1 }
3571 }
3572 { ##1 }
3573 \tl_use:c { l__enumext_label_fill_right_ __enumext_level: _tl }
3574 \tl_gclear:N \g__enumext_item_symbol_aux_tl
3575 }
3576 }

Definition using \makebox when \DocumentMetadata is active or mode-box is active.
TagHere it is necessary to use \strut\smash to maintain text alignment in case the user wants to use \labelbx for example.
In my experiments with mimicking the description environment it was the only way out and it seems to have no adverse
effects and may serve in the future as a basis for a more generic list environment package than enumext.

3577 \cs_new_protected:Nn __enumext_make_label_box:
3578 {
3579 \RenewDocumentCommand \makelabel { m }
3580 {
3581 \strut\smash
3582 {
3583 \makebox
3584 [\dim_use:c { l__enumext_labelwidth_ __enumext_level: _dim }]
3585 [\str_use:c { l__enumext_align_label_pos_ __enumext_level: _str }]
3586 {
3587 __enumext_item_starred_exec:
3588 \tl_use:c { l__enumext_label_font_style_ __enumext_level: _tl }
3589 \bool_if:cTF { l__enumext_wrap_label_ __enumext_level: _bool }
3590 {
3591 \use:c { __enumext_wrapper_label_ __enumext_level: :n } { ##1 }
3592 }
3593 { ##1 }
3594 \tl_gclear:N \g__enumext_item_symbol_aux_tl
3595 }
3596 } % close smash
3597 }
3598 }

(End of definition for __enumext_make_label: , __enumext_make_label_std: , and __enumext_make_label_box:.)

13.38 Setting item-sym* and item-pos* keys
In order to have a cleaner implementation of \item* for the enumext and enumext* environments it is best
to define a couple of keys that allow us to control and set by default the 〈symbol〉 and its 〈offset〉.

item-sym*
item-pos*

Define and set item-sym* and item-pos* keys for enumext and enumext*.
3599 \cs_set_protected:Npn __enumext_tmp:nn #1 #2
3600 {
3601 \keys_define:nn { enumext / #1 }
3602 {
3603 item-sym* .tl_set:c = { l__enumext_item_symbol_#2_tl },
3604 item-sym* .value_required:n = true,
3605 item-sym* .initial:n = {\textborn},
3606 item-pos* .dim_set:c = { l__enumext_item_symbol_sep_#2_dim },
3607 item-pos* .value_required:n = true,
3608 }
3609 }
3610 \clist_map_inline:nn
3611 {

101 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3612 {level-1}{i}, {level-2}{ii}, {level-3}{iii}, {level-4}{iv}, {enumext*}{vii}
3613 }
3614 { __enumext_tmp:nn #1 }

(End of definition for item-sym* and item-pos*.)

13.39 Handling unknown keys
At this point in the code I already know that I will NOT add more 〈keys〉 for and since I have already been
quite paranoid and restrictive with the definitions of environments and commands, the only thing left to do is
do it with the 〈keys〉 (you have to be consistent in life).

BOMB Well, the paragraph above is not so real, after all I had to add more 〈keys〉 than I had planned, not everything turns out
the way one thinks in life.

13.39.1 Handling unknown keys for keyans, keyans* and keyanspic

unknown
__enumext_keyans_unknown_keys:n

__enumext_keyans_unknown_keys:nn

Define and set unknown key for keyans, keyans* and keyanspic environments. Here it is necessary to set
\l__enumext_envir_name_tl in case an unknown key is passed using \setenumext.
3615 \cs_set_protected:Npn __enumext_tmp:n #1
3616 {
3617 \keys_define:nn { enumext / #1 }
3618 {
3619 unknown .code:n = {
3620 \tl_set:Nn \l__enumext_envir_name_tl {#1}
3621 __enumext_keyans_unknown_keys:n {##1}
3622 },
3623 }
3624 }
3625 \clist_map_inline:nn { keyans, keyans*, keyanspic } { __enumext_tmp:n {#1} }

Internal functions for handling unknown key.
3626 \cs_new_protected:Npn __enumext_keyans_unknown_keys:n #1
3627 {
3628 \exp_args:NV __enumext_keyans_unknown_keys:nn \l_keys_key_str {#1}
3629 }
3630 \cs_new_protected:Npn __enumext_keyans_unknown_keys:nn #1#2
3631 {
3632 \tl_if_blank:nTF {#2}
3633 {
3634 \msg_error:nne { enumext } { keyans-unknown-key } {#1}
3635 }
3636 {
3637 \msg_error:nnee { enumext } { keyans-unknown-key-value } {#1} {#2}
3638 }
3639 }

(End of definition for unknown , __enumext_keyans_unknown_keys:n , and __enumext_keyans_unknown_keys:nn.)

13.39.2 Handling unknown keys for enumext*

unknown
__enumext_starred_unknown_keys:n

__enumext_starred_unknown_keys:nn

Define and set unknown key for enumext* environment.
3640 \keys_define:nn { enumext / enumext* }
3641 {
3642 unknown .code:n = {
3643 \tl_set:Nn \l__enumext_envir_name_tl { enumext* }
3644 __enumext_starred_unknown_keys:n {#1}
3645 },
3646 }

Internal functions for handling unknown key.
3647 \cs_new_protected:Npn __enumext_starred_unknown_keys:n #1
3648 {
3649 \exp_args:NV __enumext_starred_unknown_keys:nn \l_keys_key_str {#1}
3650 }
3651 \cs_new_protected:Npn __enumext_starred_unknown_keys:nn #1#2
3652 {
3653 \tl_if_blank:nTF {#2}
3654 {
3655 \msg_error:nne { enumext } { starred-unknown-key } {#1}
3656 }
3657 {
3658 \msg_error:nnee { enumext } { starred-unknown-key-value } {#1} {#2}
3659 }
3660 }

(End of definition for unknown , __enumext_starred_unknown_keys:n , and __enumext_starred_unknown_keys:nn.)

102 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

13.39.3 Handling unknown keys for enumext

unknown
__enumext_standar_unknown_keys:n

__enumext_standar_unknown_keys:nn

Defines and set the key unknown for enumext environment.
3661 \cs_set_protected:Npn __enumext_tmp:n #1
3662 {
3663 \keys_define:nn { enumext / level-#1 }
3664 {
3665 unknown .code:n = {
3666 \int_set:Nn \l__enumext_level_int { #1 }
3667 \tl_set:Nn \l__enumext_envir_name_tl { enumext }
3668 __enumext_standar_unknown_keys:n {##1}
3669 },
3670 }
3671 }
3672 \clist_map_inline:nn {1, 2, 3, 4} { __enumext_tmp:n {#1} }

Internal functions for handling unknown key.
3673 \cs_new_protected:Npn __enumext_standar_unknown_keys:n #1
3674 {
3675 \exp_args:NV __enumext_standar_unknown_keys:nn \l_keys_key_str {#1}
3676 }
3677 \cs_new_protected:Npn __enumext_standar_unknown_keys:nn #1#2
3678 {
3679 \tl_if_blank:nTF {#2}
3680 {
3681 \msg_error:nne { enumext } { standar-unknown-key } {#1}
3682 }
3683 {
3684 \msg_error:nnee { enumext } { standar-unknown-key-value } {#1} {#2}
3685 }
3686 }

(End of definition for unknown , __enumext_standar_unknown_keys:n , and __enumext_standar_unknown_keys:nn.)

13.40 Redefining \item and \makelabel in keyans
The \item and \item[〈custom〉] commands work in the usual way in keyans, but the \item* and
\item*[〈content〉] commands store the current 〈label〉 next to the 〈content〉 if it is present in the sequence
and prop list defined by save-ans key.

__enumext_keyans_default_item:n The function __enumext_keyans_default_item:n executes the original behavior of the \item along
with the keys wrap-label, wrap-label* and itemindent.
3687 \cs_new_protected:Npn __enumext_keyans_default_item:n #1
3688 {
3689 \tl_if_novalue:nTF { #1 }
3690 {
3691 \bool_set_true:N \l__enumext_wrap_label_v_bool
3692 __enumext_item_std:w \tl_use:N \l__enumext_fake_item_indent_v_tl
3693 }
3694 {
3695 \bool_set_eq:NN \l__enumext_wrap_label_v_bool \l__enumext_wrap_label_opt_v_bool
3696 __enumext_item_std:w [#1] \tl_use:N \l__enumext_fake_item_indent_v_tl
3697 }
3698 }

(End of definition for __enumext_keyans_default_item:n.)

__enumext_keyans_starred_item:n The function __enumext_keyans_starred_item:n will take as argument #1 the optional argument [〈con-
tent〉] passed to \item* and save it via the __enumext_keyans_save_item_opt:n function, then activate
the wrap-label key, execute \item using __enumext_item_std:w, the itemindent key and print the
optional argument using the __enumext_keyans_show_item_opt: function handled by the wrap-opt key.
3699 \cs_new_protected:Npn __enumext_keyans_starred_item:n #1
3700 {
3701 __enumext_keyans_save_item_opt:n { #1 }
3702 \bool_set_true:N \l__enumext_wrap_label_v_bool
3703 __enumext_item_std:w \tl_use:N \l__enumext_fake_item_indent_v_tl
3704 __enumext_keyans_show_item_opt:

Now store the current 〈label〉 first in the prop list (including the optional argument), run the internal “label and
ref” system if the save-ref key is active, then store in the sequence and finally increments \g__enumext_-
check_starred_cmd_int for internal check system.
3705 __enumext_keyans_addto_prop:n { #1 }

103 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3706 __enumext_keyans_store_ref:
3707 __enumext_keyans_addto_seq:n { #1 }
3708 \int_gincr:N \g__enumext_check_starred_cmd_int
3709 }

(End of definition for __enumext_keyans_starred_item:n.)

\item*
__enumext_keyans_redefine_item:

The function __enumext_keyans_redefine_item: is responsible for adding the starred argument and
optional argument by the __enumext_list_arg_two_v: function in the definition of the keyans environ-
ment. Here we will set to true the variable \l__enumext_item_wrap_key_bool used by the wrap-ans*
key only when \item* is executed and additionally we need to use \peek_remove_spaces:n to avoid
an unwanted space when using \item* together with the itemindent key. This function are passed to
__enumext_list_arg_two_v: used in the definition of the keyans environment (§13.41).
3710 \cs_new_protected:Nn __enumext_keyans_redefine_item:
3711 {
3712 \RenewDocumentCommand \item { s o }
3713 {
3714 \bool_if:nTF {##1}
3715 {
3716 \bool_set_true:N \l__enumext_item_wrap_key_bool % wrap-ans*
3717 \peek_remove_spaces:n
3718 {
3719 __enumext_keyans_starred_item:n {##2}
3720 }
3721 }
3722 {
3723 \bool_set_false:N \l__enumext_item_wrap_key_bool
3724 __enumext_keyans_default_item:n {##2}
3725 }
3726 }
3727 }

(End of definition for \item* and __enumext_keyans_redefine_item:. This function is documented on page 17.)

__enumext_keyans_make_label:

__enumext_keyans_wrapper_label:n

__enumext_keyans_make_label_std:

__enumext_keyans_make_label_box:

The function __enumext_keyans_make_label: redefine \makelabel for the keys mode-box, align,
font, wrap-label, wrap-label*, wrap-ans* and \item* for keyans environment. This function are
passed to __enumext_list_arg_two_v: used in the definition of the keyans environment (§13.41).
3728 \cs_new_protected:Nn __enumext_keyans_make_label:
3729 {
3730 \IfDocumentMetadataTF
3731 {
3732 __enumext_keyans_make_label_box:
3733 }
3734 {
3735 \bool_if:NTF \l__enumext_mode_box_bool
3736 {
3737 __enumext_keyans_make_label_box:
3738 }
3739 {
3740 __enumext_keyans_make_label_std:
3741 }
3742 }
3743 }

We added conditionals to the __enumext_keyans_wraper_label:n function to handle the keys wrap-
ans*, wrap-label and wrap-label*.
3744 \cs_new_protected:Npn __enumext_keyans_wrapper_label:n #1
3745 {
3746 \bool_lazy_all:nT
3747 {
3748 { \bool_if_p:N \l__enumext_wrap_label_v_bool }
3749 { \bool_if_p:N \l__enumext_show_answer_bool }
3750 { \bool_if_p:N \l__enumext_item_wrap_key_bool }
3751 { \cs_if_exist_p:N __enumext_keyans_wrapper_item_v:n }
3752 }
3753 {
3754 \cs_set_eq:NN __enumext_wrapper_label_v:n __enumext_keyans_wrapper_item_v:n
3755 }
3756 \bool_if:NTF \l__enumext_wrap_label_v_bool
3757 {
3758 __enumext_wrapper_label_v:n { #1 }

104 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3759 }
3760 { #1 }
3761 }

Standard definition when \DocumentMetadata is not active.
3762 \cs_new_protected:Nn __enumext_keyans_make_label_std:
3763 {
3764 \RenewDocumentCommand \makelabel { m }
3765 {
3766 \tl_use:N \l__enumext_label_fill_left_v_tl
3767 __enumext_keyans_show_ans:
3768 __enumext_keyans_show_pos:
3769 \tl_use:N \l__enumext_label_font_style_v_tl
3770 __enumext_keyans_wrapper_label:n { ##1 }
3771 \tl_use:N \l__enumext_label_fill_right_v_tl
3772 }
3773 }

Definition using \makebox when \DocumentMetadata is active or mode-box is active.
3774 \cs_new_protected:Nn __enumext_keyans_make_label_box:
3775 {
3776 \RenewDocumentCommand \makelabel { m }
3777 {
3778 \strut\smash
3779 {
3780 \makebox[\l__enumext_labelwidth_v_dim][\l__enumext_align_label_pos_v_str]
3781 {
3782 __enumext_keyans_show_ans:
3783 __enumext_keyans_show_pos:
3784 \tl_use:N \l__enumext_label_font_style_v_tl
3785 __enumext_keyans_wrapper_label:n { ##1 }
3786 }
3787 }
3788 }
3789 }

(End of definition for __enumext_keyans_make_label: and others.)

13.41 Second argument of the lists
At this point in the code we have already programmed most of the tools needed to create a custom list
environment, remember that the __enumext_start_list:nn function takes two arguments, we have the
“first” one ready, the “second” one we will define for all levels of the enumext environment, the keyans
environment and the enumext* and keyans* environments.
Here we will implement the __enumext_list_arg_two_X: function, which will be responsible for setting all
the list parameters, the counter, the redefinition of \item, \makelabel along with the keys ref, itemindent
and show-length.

13.41.1 Calculation of \leftmargin and \itemindent

Consider the figure 9 where the default margins (on the left) of a list are represented.

margin page

list-offset \labelwidth \labelsep

\leftmargin + \itemindent
list-indent

Figure 9: Representation of standard horizontal lengths in list environment.

The idea is to have control over these margins so that our list does not overlap the left margin of the page. The
key relationship is that the “right edge” of the \labelsep equals the “right edge” of the \itemindent, so that
the left edge of the “label box” is at \leftmargin+\itemindent minus \labelwidth+\labelsep. Thus,
the handling of the margins by the package will be as shown in the figure 10.

margin page

list-offset \labelwidth \labelsep

\leftmargin + \itemindent
list-indent

Figure 10: Representation of horizontal lengths concept in list in enumext.

Where the default values will look like in the figure 11.
105 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

margin page

labelwidth labelsep

\leftmargin + \itemindent
list-indent

Figure 11: Default horizontal lengths in enumext.

__enumext_calc_hspace:NNNNNNN

__enumext_calc_hspace:ccccccc

The function __enumext_calc_hspace:NNNNNNN takes seven arguments to be able to determine horizontal
spaces for all list environment:

#1: \l__enumext_labelwidth_X_dim #2: \l__enumext_labelsep_X_dim
#3: \l__enumext_listoffset_X_dim #4: \l__enumext_leftmargin_tmp_X_dim
#5: \l__enumext_leftmargin_X_dim #6: \l__enumext_itemindent_X_dim
#7: \l__enumext_leftmargin_tmp_X_bool

And returns the “adjusted” values of \leftmargin and \itemindent.

3790 \cs_new_protected:Npn __enumext_calc_hspace:NNNNNNN #1 #2 #3 #4 #5 #6 #7
3791 {
3792 \dim_compare:nNnT { #1 } < { \c_zero_dim }
3793 {
3794 \msg_warning:nnnV { enumext } { width-non-positive }{ labelwidth } #1
3795 \dim_set:Nn #1 { \dim_abs:n { #1 } }
3796 }
3797 \dim_compare:nNnT { #2 } < { \c_zero_dim }
3798 {
3799 \msg_warning:nnnV { enumext } { width-negative }{ labelsep } #2
3800 \dim_set:Nn #2 { \dim_abs:n { #2 } }
3801 }

If no value has been passed to the labelwidth and labelsep keys we set the default values for \l__-
enumext_leftmargin_tmp_X_dim.
3802 \bool_if:NF #7 { \dim_set:Nn #4 { #1 + #2} }

We now analyze the cases and set the values for \leftmargin and \itemindent.
3803 \dim_compare:nNnTF { #4 } < { \c_zero_dim }
3804 {
3805 \dim_set:Nn #6 { #1 + #2 - #4}
3806 \dim_set:Nn #5 { #1 + #2 + #3 - #6 }
3807 }
3808 {
3809 \dim_compare:nNnT { #4 } = { #1 + #2 }
3810 { \dim_set:Nn #6 { \c_zero_dim } }
3811 \dim_compare:nNnT { #4 } < { #1 + #2 }
3812 { \dim_set:Nn #6 { #1 + #2 - #4} }
3813 \dim_compare:nNnT { #4 } > { #1 + #2 }
3814 {
3815 \dim_set:Nn #6 { -#1 - #2 + #4}
3816 \dim_set:Nn #6 { #6*-1}
3817 }
3818 \dim_set:Nn #5 { #1 + #2 + #3 - #6 }
3819 }
3820 }
3821 \cs_generate_variant:Nn __enumext_calc_hspace:NNNNNNN { ccccccc }

(End of definition for __enumext_calc_hspace:NNNNNNN.)

13.41.2 Setting second argument of the lists

__enumext_list_arg_two_i:
__enumext_list_arg_two_ii:
__enumext_list_arg_two_iii:
__enumext_list_arg_two_iv:
__enumext_list_arg_two_v:

We will “not set” \leftmargini, \leftmarginii, \leftmarginiii or \leftmarginiv, in this case, we
will directly set the parameters for vertical and horizontal list spacing per level.
3822 \cs_set_protected:Npn __enumext_tmp:n #1
3823 {
3824 \cs_new_protected:cpn { __enumext_list_arg_two_#1: }
3825 {
3826 __enumext_calc_hspace:ccccccc
3827 { l__enumext_labelwidth_#1_dim } { l__enumext_labelsep_#1_dim }
3828 { l__enumext_listoffset_#1_dim } { l__enumext_leftmargin_tmp_#1_dim }
3829 { l__enumext_leftmargin_#1_dim } { l__enumext_itemindent_#1_dim }
3830 { l__enumext_leftmargin_tmp_#1_bool }

106 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3831 \clist_map_inline:nn
3832 { labelsep, labelwidth, itemindent, leftmargin, rightmargin, listparindent }
3833 { \dim_set_eq:cc {####1} { l__enumext_####1_#1_dim } }
3834 \clist_map_inline:nn { topsep, parsep, partopsep, itemsep }
3835 { \skip_set_eq:cc {####1} { l__enumext_####1_#1_skip } }
3836 \clist_map_inline:nn { beginparpenalty, itempenalty, endparpenalty }
3837 { \int_set_eq:cc {@####1} { l__enumext_####1_#1_int } }
3838 \usecounter { enumX#1 }
3839 \setcounter { enumX#1 } { \int_eval:n { \int_use:c { l__enumext_start_#1_int } - 1 } }
3840 \str_if_eq:nnTF {#1} { v }
3841 {
3842 __enumext_keyans_redefine_item:
3843 __enumext_keyans_make_label:
3844 __enumext_keyans_ref:
3845 __enumext_keyans_fake_item_indent:
3846 \bool_if:cT { l__enumext_show_length_#1_bool }
3847 {
3848 \msg_term:nnnn { enumext } { list-lengths-not-nested } { v } { keyans }
3849 }
3850 }
3851 {
3852 __enumext_redefine_item:
3853 __enumext_make_label:
3854 __enumext_standar_ref:
3855 __enumext_fake_item_indent:
3856 \bool_if:cT { l__enumext_show_length_#1_bool }
3857 {
3858 \msg_term:nnne { enumext } { list-lengths } {#1}
3859 { \int_use:N \l__enumext_level_int }
3860 }
3861 }
3862 }
3863 }
3864 \clist_map_inline:nn { i, ii, iii, iv, v } { __enumext_tmp:n {#1} }

(End of definition for __enumext_list_arg_two_i: and others.)

__enumext_list_arg_two_vii:
__enumext_list_arg_two_viii:

For the horizontal environments enumext* and keyans* the implementation is similar, but, the value of
\partopsep is always 0pt. At this point we will modify the parsep key to make it take the value of the
itemsep key and later, in the environment definition, we will modify parindent to make it set the value of
lisparindent and parsep to set the value of \parskip locally.
3865 \cs_set_protected:Npn __enumext_tmp:n #1
3866 {
3867 \cs_new_protected:cpn { __enumext_list_arg_two_#1: }
3868 {
3869 \bool_set_true:c { l__enumext_leftmargin_tmp_#1_bool }
3870 \dim_zero:c { l__enumext_leftmargin_tmp_#1_dim }
3871 __enumext_calc_hspace:ccccccc
3872 { l__enumext_labelwidth_#1_dim } { l__enumext_labelsep_#1_dim }
3873 { l__enumext_listoffset_#1_dim } { l__enumext_leftmargin_tmp_#1_dim }
3874 { l__enumext_leftmargin_#1_dim } { l__enumext_itemindent_#1_dim }
3875 { l__enumext_leftmargin_tmp_#1_bool }
3876 \clist_map_inline:nn
3877 { labelsep, labelwidth, itemindent, leftmargin, rightmargin, listparindent }
3878 { \dim_set_eq:cc {####1} { l__enumext_####1_#1_dim } }
3879 \clist_map_inline:nn { topsep, parsep, partopsep, itemsep }
3880 { \skip_set_eq:cc {####1} { l__enumext_####1_#1_skip } }
3881 \clist_map_inline:nn { beginparpenalty, itempenalty, endparpenalty }
3882 { \int_set_eq:cc {@####1} { l__enumext_####1_#1_int } }
3883 \skip_set_eq:Nc \parsep { l__enumext_itemsep_#1_skip }
3884 \skip_zero:N \partopsep
3885 \usecounter { enumX#1 }
3886 \setcounter { enumX#1 } { \int_eval:n { \int_use:c { l__enumext_start_#1_int } - 1 } }
3887 __enumext_starred_ref:
3888 \str_if_eq:nnTF {#1} { vii }
3889 {
3890 __enumext_fake_item_indent_vii:
3891 \bool_if:cT { l__enumext_show_length_vii_bool }
3892 { \msg_term:nnnn { enumext } { list-lengths-not-nested } { vii } { enumext* } }
3893 }
3894 {

107 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3895 __enumext_fake_item_indent_viii:
3896 \bool_if:cT { l__enumext_show_length_#1_bool }
3897 { \msg_term:nnnn { enumext } { list-lengths-not-nested } { #1 } { keyans* } }
3898 }
3899 }
3900 }
3901 \clist_map_inline:nn { vii, viii } { __enumext_tmp:n {#1} }

(End of definition for __enumext_list_arg_two_vii: and __enumext_list_arg_two_viii:.)

13.42 The environment enumext
__enumext_safe_exec: The __enumext_safe_exec: function first call the function __enumext_is_not_nested: which sets

\g__enumext_standar_bool to “true” if we are NOT nested within enumext*, then call the function
__enumext_internal_mini_page: to create the environment __enumext_mini_page, we will increment
\l__enumext_level_int to restrict nesting of the environment, set \l__enumext_standar_bool to “true”
and finally call the function __enumext_is_on_first_level: which sets \l__enumext_standar_-
first_bool to “true” only if the environment is NOT nested and we are at the “first level”.
3902 \cs_new_protected:Nn __enumext_safe_exec:
3903 {
3904 __enumext_is_not_nested:
3905 __enumext_internal_mini_page:
3906 \int_incr:N \l__enumext_level_int
3907 \int_compare:nNnT { \l__enumext_level_int } > { 4 }
3908 { \msg_fatal:nn { enumext } { list-too-deep } }
3909 \bool_set_true:N \l__enumext_standar_bool
3910 \bool_set_false:N \l__enumext_starred_bool
3911 __enumext_is_on_first_level:
3912 }

(End of definition for __enumext_safe_exec:.)

__enumext_parse_keys:n The __enumext_parse_store_keys:n function first we will clear the variable \l__enumext_series_-
name_str used by the key series and then we check if we are at the “first level”, if so we process the 〈keys〉
and then execute the function __enumext_parse_series:n used by the key series and call the function
__enumext_nested_base_line_fix: used by the key base-fix, otherwise we will pass the 〈keys〉 to
the inner levels of the environment then we execute the function __enumext_store_active_keys:n and
reprocess the 〈keys〉 to pass them to the sequence if the key save-key is not active.
3913 \cs_new_protected:Npn __enumext_parse_keys:n #1
3914 {
3915 \tl_if_novalue:nF {#1}
3916 {
3917 \str_clear:N \l__enumext_series_name_str
3918 \int_compare:nNnTF { \l__enumext_level_int } = { 1 }
3919 {
3920 \keys_set:nn { enumext / level-1 } {#1}
3921 \bool_if:NF \l__enumext_print_keyans_cmd_bool
3922 {
3923 __enumext_parse_series:n {#1}
3924 }
3925 __enumext_nested_base_line_fix:
3926 }
3927 {
3928 \exp_args:Ne \keys_set:nn
3929 { enumext / level-\int_use:N \l__enumext_level_int } {#1}
3930 \bool_if:NF \l__enumext_print_keyans_cmd_bool
3931 {
3932 __enumext_parse_series:n {#1}
3933 }
3934 }
3935 __enumext_store_active_keys:n {#1}
3936 }
3937 }

(End of definition for __enumext_parse_keys:n.)

__enumext_start_store_level: The __enumext_start_store_level: function activate the “storing structure” mechanism in the sequence
for the command \anskey and the environment anskey*.
3938 \cs_new_protected:Nn __enumext_start_store_level:
3939 {
3940 \bool_lazy_all:nT

108 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3941 {
3942 { \bool_if_p:N \l__enumext_store_active_bool }
3943 { \bool_not_p:n { \l__enumext_keyans_env_bool } }
3944 { \bool_if_p:N \g__enumext_standar_bool }
3945 }
3946 {
3947 \int_compare:nNnT { \l__enumext_level_int } > { 1 }
3948 {
3949 \bool_set_true:c { l__enumext_store_upper_level_ __enumext_level: _bool }
3950 __enumext_store_level_open:
3951 }
3952 }

If enumext are nested in enumext* add __enumext_store_level_open: to preserve the “storing structure”.
3953 \bool_lazy_all:nT
3954 {
3955 { \bool_if_p:N \l__enumext_store_active_bool }
3956 { \bool_not_p:n { \l__enumext_keyans_env_bool } }
3957 { \int_compare_p:nNn { \l__enumext_level_h_int } = { 1 } }
3958 }
3959 {
3960 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
3961 {
3962 \bool_set_true:c { l__enumext_store_upper_level_ __enumext_level: _bool }
3963 __enumext_store_level_open:
3964 }
3965 }
3966 }

(End of definition for __enumext_start_store_level:.)

__enumext_stop_store_level: The __enumext_stop_store_level: function stop the “storing structure” mechanism in the sequence for
the command \anskey and the environment anskey*.
3967 \cs_new_protected:Nn __enumext_stop_store_level:
3968 {
3969 \bool_if:cT { l__enumext_store_upper_level_ __enumext_level: _bool }
3970 {
3971 __enumext_store_level_close:
3972 }
3973 }

(End of definition for __enumext_stop_store_level:.)

__enumext_multicols_start: The function __enumext_multicols_start: will start the multicols environment according to the value
passed by the columns key, then set the default value for \columnsep when columns-sep=0pt and set the
value of \multicolsep equal to zero and leave \columnseprule equal to zero for inner levels.
3974 \cs_new_protected:Nn __enumext_multicols_start:
3975 {
3976 \int_compare:nNnT
3977 { \int_use:c { l__enumext_columns_ __enumext_level: _int } } > { 1 }
3978 {
3979 \dim_compare:nNnT
3980 { \dim_use:c { l__enumext_columns_sep_ __enumext_level: _dim } } = { \c_zero_dim }
3981 {
3982 \dim_set:cn { l__enumext_columns_sep_ __enumext_level: _dim }
3983 {
3984 (\dim_use:c { l__enumext_labelwidth_ __enumext_level: _dim }
3985 + \dim_use:c { l__enumext_labelsep_ __enumext_level: _dim }
3986) / \int_use:c { l__enumext_columns_ __enumext_level: _int }
3987 - \dim_use:c { l__enumext_listoffset_ __enumext_level: _dim }
3988 }
3989 }
3990 \dim_set_eq:Nc \columnsep { l__enumext_columns_sep_ __enumext_level: _dim }
3991 \int_compare:nNnT { \l__enumext_level_int } > { 1 }
3992 {
3993 \dim_zero:N \columnseprule
3994 }

We will calculate the vertical spacing settings for the multicols environment using the function __enumext_-
multi_addvspace:, apply our “vertical adjust spacing”, then start the multicols environment.
3995 \bool_if:cF { l__enumext_minipage_active_ __enumext_level: _bool }
3996 {

109 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

3997 \skip_zero:N \multicolsep
3998 __enumext_multi_addvspace:
3999 }
4000 \raggedcolumns
4001 \begin{multicols}{ \int_use:c { l__enumext_columns_ __enumext_level: _int } }
4002 }
4003 }

(End of definition for __enumext_multicols_start:.)

__enumext_multicols_stop: The function __enumext_multicols_stop: will stop the multicols environment and apply our “vertical
adjust” spacing. For compatibility with tagged PDF, the closing of the list environment is executed here
along with __enumext_stop_store_level:.
4004 \cs_new_protected:Nn __enumext_multicols_stop:
4005 {
4006 \int_compare:nNnTF
4007 { \int_use:c { l__enumext_columns_ __enumext_level: _int } } > { 1 }
4008 {
4009 __enumext_stop_list:
4010 __enumext_stop_store_level:
4011 \end{multicols}
4012 __enumext_unskip_unkern:
4013 __enumext_unskip_unkern:
4014 \par\addvspace{ \skip_use:c { l__enumext_multicols_below_ __enumext_level: _skip } }
4015 }
4016 {
4017 __enumext_stop_list:
4018 __enumext_stop_store_level:
4019 }
4020 }

(End of definition for __enumext_multicols_stop:.)

__enumext_before_list: The function __enumext_before_list: first calls the function __enumext_vspace_above: used by the
keys above and above*, then calls the function __enumext_before_args_exec: used by the key before*
and finally execute the function __enumext_check_ans_active: for the check answer mechanism.
4021 \cs_new_protected:Nn __enumext_before_list:
4022 {
4023 __enumext_vspace_above:
4024 __enumext_before_args_exec:
4025 __enumext_check_ans_active:

When the mini-env key is active it will set the value of the \l__enumext_minipage_right_X_dim to be
the width of the __enumext_mini_page environment on the “right side”, using this value together with the
value of the \l__enumext_minipage_hsep_X_dim set by the mini-sep key, the value of \l__enumext_-
minipage_left_X_dim will be set, which will be the width of __enumext_mini_page environment on the
“left side”, always having a current \linewidth as maximum width between them.
4026 \dim_compare:nNnT
4027 { \dim_use:c { l__enumext_minipage_right_ __enumext_level: _dim } } > { \c_zero_dim }
4028 {
4029 \dim_set:cn { l__enumext_minipage_left_ __enumext_level: _dim }
4030 {
4031 \linewidth
4032 - \dim_use:c { l__enumext_minipage_right_ __enumext_level: _dim }
4033 - \dim_use:c { l__enumext_minipage_hsep_ __enumext_level: _dim }
4034 }

The boolean variable \l__enumext_minipage_active_X_bool will be activated and the integer variable
\g__enumext_minipage_stat_int used by the \miniright command will be incremented, then the func-
tion __enumext_minipage_add_space: is called and the __enumext_mini_page environment on the
“left side” will be initialized followed by the “vertical spacing” applied to preserve the “baseline” between the
left and right side environments. After these actions, the function __enumext_multicols_start: is called
to handle the multicols environment.
4035 \bool_set_true:c { l__enumext_minipage_active_ __enumext_level: _bool }
4036 \int_gincr:N \g__enumext_minipage_stat_int
4037 __enumext_minipage_add_space:
4038 \noindent
4039 __enumext_mini_page{ \dim_use:c { l__enumext_minipage_left_ __enumext_level: _dim } }
4040 }
4041 __enumext_multicols_start:
4042 }

110 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

(End of definition for __enumext_before_list:.)

__enumext_second_part: The function __enumext_second_part: first check the state of the boolean variable \l__enumext_-
minipage_active_X_bool, if it is “true” a small test will be executed to check if we have omitted the use of
\miniright (the __enumext_mini_page environment has not been closed), then close __enumext_mini_-
page and add the adjusted vertical space \l__enumext_minipage_after_skip, otherwise we will close the
multicols environment.
4043 \cs_new_protected:Nn __enumext_second_part:
4044 {
4045 \bool_if:cTF { l__enumext_minipage_active_ __enumext_level: _bool }
4046 {
4047 \int_compare:nNnT { \g__enumext_minipage_stat_int } = { 1 }
4048 {
4049 \msg_warning:nn { enumext } { missing-miniright }
4050 \miniright
4051 }
4052 \int_gzero:N \g__enumext_minipage_stat_int
4053 __enumext_unskip_unkern: % remove topsep + [partopsep]
4054 \end__enumext_mini_page
4055 }
4056 {
4057 __enumext_multicols_stop:
4058 }

Now we will execute the functions __enumext_after_stop_list: used by the key after, __enumext_-
check_ans_key_hook: used by the key check-ans, __enumext_vspace_below: used by the keys below
and below*. Finally set \l__enumext_standar_bool to false and call the function __enumext_resume_-
save_counter: used by the series, resume and resume* keys.
4059 __enumext_after_stop_list:
4060 __enumext_check_ans_key_hook:
4061 __enumext_vspace_below:
4062 \bool_set_false:N \l__enumext_standar_bool
4063 \bool_if:NF \l__enumext_print_keyans_cmd_bool
4064 {
4065 __enumext_standar_save_counter:
4066 }
4067 }

(End of definition for __enumext_second_part:.)

__enumext_set_item_width: The function __enumext_set_item_width: will set the value of \itemwidth taking into account the value
established by the list-offset key for each level of the environment.
4068 \cs_new_protected:Nn __enumext_set_item_width:
4069 {
4070 \dim_set:Nn \itemwidth { \linewidth }
4071 \dim_compare:nT
4072 {
4073 \dim_use:c { l__enumext_listoffset_ __enumext_level: _dim } != \c_zero_dim
4074 }
4075 {
4076 \dim_sub:Nn \itemwidth
4077 {
4078 \dim_use:c { l__enumext_listoffset_ __enumext_level: _dim }
4079 }
4080 }
4081 }

(End of definition for __enumext_set_item_width:.)

enumext Now create the enumext environment based on list environment by levels.
4082 \NewDocumentEnvironment{enumext}{ O{} }
4083 {
4084 __enumext_safe_exec:
4085 __enumext_parse_keys:n {#1}
4086 __enumext_before_list:
4087 __enumext_start_store_level:
4088 __enumext_start_list:nn
4089 { \tl_use:c { l__enumext_label_ __enumext_level: _tl } }
4090 {
4091 \use:c { __enumext_list_arg_two_ __enumext_level: : }
4092 __enumext_before_keys_exec:

111 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4093 }
4094 __enumext_set_item_width:
4095 __enumext_after_args_exec:
4096 }
4097 {
4098 __enumext_second_part:
4099 }

(End of definition for enumext. This function is documented on page 5.)
As we don’t want our check to be executed check-ans by levels but on the complete list, we will take it out of
the enumext environment using the “hook” function __enumext_after_env:nn.
4100 __enumext_after_env:nn {enumext}
4101 {
4102 __enumext_execute_after_env:
4103 }

13.43 The environment keyans
The environment keyans also based on lists. The main differences with the enumext environment are the
nesting and the way the answers (choice) will be stored and checked, this environment is intended exclusively
for “multiple choice questions”.

__enumext_keyans_safe_exec: The keyans environment will only be available if the save-ans key is active and can only be used at the
“first level” within the enumext environment. We do not want the environment to be nested, so we will set a
maximum at this point. If the conditions are not met, an error message will be returned.
4104 \cs_new_protected:Nn __enumext_keyans_safe_exec:
4105 {
4106 \bool_if:NF \l__enumext_store_active_bool
4107 {
4108 \msg_error:nnnn { enumext } { wrong-place }{ keyans }{ save-ans }
4109 }
4110 \int_incr:N \l__enumext_keyans_level_int
4111 \bool_set_true:N \l__enumext_keyans_env_bool
4112 __enumext_keyans_name_and_start:
4113 % Set false for interfering with enumext nested in keyans (yes, its possible and crayze)
4114 \bool_set_false:N \l__enumext_store_active_bool
4115 \int_compare:nNnT { \l__enumext_keyans_level_int } > { 1 }
4116 {
4117 \msg_error:nn { enumext } { keyans-nested }
4118 }
4119 \int_compare:nNnT { \l__enumext_level_int } > { 1 }
4120 {
4121 \msg_error:nn { enumext } { keyans-wrong-level }
4122 }
4123 }

(End of definition for __enumext_keyans_safe_exec:.)

__enumext_keyans_parse_keys:n Parse [〈key = val〉] for keyans environment.
4124 \cs_new_protected:Npn __enumext_keyans_parse_keys:n #1
4125 {
4126 \keys_set:nn { enumext / keyans } {#1}
4127 }

(End of definition for __enumext_keyans_parse_keys:n.)

__enumext_before_list_v:
__enumext_keyans_multicols_start:

__enumext_keyans_multicols_stop:

__enumext_second_part_v:

Same implementation as the one used in the enumext environment.
4128 \cs_new_protected:Nn __enumext_before_list_v:
4129 {
4130 __enumext_vspace_above_v:
4131 __enumext_before_args_exec_v:
4132 \dim_compare:nNnT { \l__enumext_minipage_right_v_dim } > { \c_zero_dim }
4133 {
4134 \dim_set:Nn \l__enumext_minipage_left_v_dim
4135 {
4136 \linewidth - \l__enumext_minipage_right_v_dim - \l__enumext_minipage_hsep_v_dim
4137 }
4138 \bool_set_true:N \l__enumext_minipage_active_v_bool
4139 \int_gincr:N \g__enumext_minipage_stat_int
4140 __enumext_keyans_minipage_add_space:
4141 __enumext_mini_page{ \l__enumext_minipage_left_v_dim }

112 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4142 }
4143 __enumext_keyans_multicols_start:
4144 }
4145 \cs_new_protected:Nn __enumext_keyans_multicols_start:
4146 {
4147 \int_compare:nNnT { \l__enumext_columns_v_int } > { 1 }
4148 {
4149 \dim_compare:nNnT { \l__enumext_columns_sep_v_dim } = { \c_zero_dim }
4150 {
4151 \dim_set:Nn \l__enumext_columns_sep_v_dim
4152 {
4153 (
4154 \l__enumext_labelwidth_v_dim + \l__enumext_labelsep_v_dim
4155) / \l__enumext_columns_v_int
4156 - \l__enumext_listoffset_v_dim
4157 }
4158 }
4159 \dim_set_eq:NN \columnsep \l__enumext_columns_sep_v_dim
4160 \dim_zero:N \columnseprule % no rule here
4161 \bool_if:NF \l__enumext_minipage_active_v_bool
4162 {
4163 \skip_zero:N \multicolsep
4164 __enumext_keyans_multi_addvspace:
4165 }
4166 \raggedcolumns
4167 \begin{multicols}{ \l__enumext_columns_v_int }
4168 }
4169 }
4170 \cs_new_protected:Nn __enumext_keyans_multicols_stop:
4171 {
4172 \int_compare:nNnTF { \l__enumext_columns_v_int } > { 1 }
4173 {
4174 __enumext_stop_list:
4175 \end{multicols}
4176 __enumext_unskip_unkern:
4177 __enumext_unskip_unkern:
4178 \par\addvspace{ \l__enumext_multicols_below_v_skip }
4179 }
4180 {
4181 __enumext_stop_list:
4182 }
4183 }
4184 \cs_new_protected:Nn __enumext_second_part_v:
4185 {
4186 \bool_if:NTF \l__enumext_minipage_active_v_bool
4187 {
4188 \int_compare:nNnT { \g__enumext_minipage_stat_int } = { 1 }
4189 {
4190 \msg_warning:nn { enumext } { missing-miniright }
4191 \miniright
4192 }
4193 \int_gzero:N \g__enumext_minipage_stat_int
4194 __enumext_unskip_unkern: % remove \topsep + [\partopsep]
4195 \end__enumext_mini_page
4196 \par\addvspace{ \l__enumext_minipage_after_skip }
4197 }
4198 {
4199 __enumext_keyans_multicols_stop:
4200 }
4201 \bool_set_false:N \l__enumext_keyans_env_bool
4202 __enumext_after_stop_list_v:
4203 __enumext_vspace_below_v:
4204 }

(End of definition for __enumext_before_list_v: and others.)

__enumext_keyans_set_item_width: The function __enumext_keyans_set_item_width: will set the value of \itemwidth taking into account
the value established by the list-offset key.
4205 \cs_new_protected:Nn __enumext_keyans_set_item_width:
4206 {
4207 \dim_set:Nn \itemwidth { \linewidth }

113 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4208 \dim_compare:nT
4209 {
4210 \l__enumext_listoffset_v_dim != \c_zero_dim
4211 }
4212 {
4213 \dim_sub:Nn \itemwidth { \l__enumext_listoffset_v_dim }
4214 }
4215 }

(End of definition for __enumext_keyans_set_item_width:.)

keyans Now we define the environment keyans also based on lists.
4216 \NewDocumentEnvironment{keyans}{ O{} }
4217 {
4218 __enumext_keyans_safe_exec:
4219 __enumext_keyans_parse_keys:n {#1}
4220 __enumext_before_list_v:
4221 __enumext_start_list:nn
4222 { \tl_use:N \l__enumext_label_v_tl }
4223 {
4224 __enumext_list_arg_two_v:
4225 __enumext_before_keys_exec_v:
4226 }
4227 __enumext_keyans_set_item_width:
4228 __enumext_after_args_exec_v:
4229 }
4230 {
4231 __enumext_check_starred_cmd:n { item }
4232 __enumext_second_part_v:
4233 }

(End of definition for keyans. This function is documented on page 16.)

13.44 Tagging PDF support for non-standart list environments
The LATEX release 2022-06-01 brings automatic support for tagged PDF in several aspects, including the standard
list environments and the list environment. Unfortunately non-standard list environments like keyanspic or
the horizontal list environments enumext* and keyans* are not structured in a nice way, i.e. the expected
result in the PDF file is the expected one, but the underlying structure is not correct. In simple terms, for tagged
PDF a list environment is a list environment, no matter what it looks like in the PDF file.
To maintain a correct list structure when \DocumentMetadata is active, it is necessary to do some things
manually using tagpdf[18] and ltsockets[20]. This implementation is an adaptation of my answer thanks
to Ulrike Fischer’s comments in How can I modify my \item redefinition to be compatible with tagging-pdf.

13.44.1 Socket for tagging support in enumext* and keyans*

start-list-tags
stop-start-tags
stop-list-tags

__enumext_start_list_tag:n
__enumext_stop_start_list_tag:

__enumext_stop_list_tag:n

We will first define the necessary sockets and their behavior for enumext* and keyans*.
4234 \socket_new:nn {tagsupport/__enumext/starred}{ 1 }
4235 \socket_new_plug:nnn {tagsupport/__enumext/starred} {start-list-tags}
4236 {
4237 \tag_resume:n {#1}
4238 \tag_struct_begin:n {tag=LI}
4239 \tag_struct_begin:n {tag=Lbl}
4240 \tag_mc_begin:n {tag=Lbl}
4241 }
4242 \socket_new_plug:nnn {tagsupport/__enumext/starred} {stop-start-tags}
4243 {
4244 \tag_mc_end:
4245 \tag_struct_end:n {tag=Lbl}
4246 \tag_struct_begin:n {tag=LBody}
4247 \tag_struct_begin:n {tag=text-unit}
4248 \tag_struct_begin:n {tag=text}
4249 }
4250 \socket_new_plug:nnn {tagsupport/__enumext/starred} {stop-list-tags}
4251 {
4252 \tag_struct_end:n {tag=text}
4253 \tag_struct_end:n {tag=text-unit}
4254 \tag_struct_end:n {tag=LBody}
4255 \tag_struct_end:n {tag=LI}
4256 \tag_suspend:n {#1}
4257 }

114 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/725902

enumext v2.1 §.13 Implementation

And now we’ll wrap them so that they’re only active when \DocumentMetadata is present.
4258 \cs_new_protected_nopar:Npn __enumext_start_list_tag:n #1
4259 {
4260 \IfDocumentMetadataT
4261 {
4262 \socket_assign_plug:nn {tagsupport/__enumext/starred} {start-list-tags}
4263 \socket_use:nn {tagsupport/__enumext/starred} {#1}
4264 }
4265 }
4266 \cs_new_protected_nopar:Nn __enumext_stop_start_list_tag:
4267 {
4268 \IfDocumentMetadataT
4269 {
4270 \socket_assign_plug:nn {tagsupport/__enumext/starred} {stop-start-tags}
4271 \socket_use:nn {tagsupport/__enumext/starred} { }
4272 }
4273 }
4274 \cs_new_protected_nopar:Npn __enumext_stop_list_tag:n #1
4275 {
4276 \IfDocumentMetadataT
4277 {
4278 \socket_assign_plug:nn {tagsupport/__enumext/starred} {stop-list-tags}
4279 \socket_use:nn {tagsupport/__enumext/starred} {#1}
4280 }
4281 }

(End of definition for start-list-tags and others.)

13.44.2 Socket for tagging support in keyanspic

start-list-tags
stop-start-tags
stop-list-tags

__enumext_anspic_start_list_tag:

__enumext_anspic_stop_start_list_tag:

__enumext_anspic_stop_list_tag:

We will first define the necessary sockets and their behavior for keyanspic environment.
4282 \socket_new:nn {tagsupport/__enumext/keyanspic}{ 0 }
4283 \socket_new_plug:nnn {tagsupport/__enumext/keyanspic} {start-list-tags}
4284 {
4285 \tag_resume:n {keyanspic}
4286 \tag_struct_begin:n {tag=LI}
4287 \tag_struct_begin:n {tag=Lbl}
4288 \tag_mc_begin:n {tag=Lbl}
4289 }
4290 \socket_new_plug:nnn {tagsupport/__enumext/keyanspic} {stop-start-tags}
4291 {
4292 \tag_mc_end:
4293 \tag_struct_end:n {tag=Lbl}
4294 \tag_struct_begin:n {tag=LBody}
4295 \tag_struct_begin:n {tag=text-unit}
4296 \tag_struct_begin:n {tag=text}
4297 \tag_mc_begin:n {tag=text}
4298 }
4299 \socket_new_plug:nnn {tagsupport/__enumext/keyanspic} {stop-list-tags}
4300 {
4301 \tag_mc_end:
4302 \tag_struct_end:n {tag=text}
4303 \tag_struct_end:n {tag=text-unit}
4304 \tag_struct_end:n {tag=LBody}
4305 \tag_struct_end:n {tag=LI}
4306 \tag_suspend:n {keyanspic}
4307 }

And now we’ll wrap them so that they’re only active when \DocumentMetadata is present.
4308 \cs_new_protected_nopar:Nn __enumext_anspic_start_list_tag:
4309 {
4310 \IfDocumentMetadataT
4311 {
4312 \socket_assign_plug:nn {tagsupport/__enumext/keyanspic} {start-list-tags}
4313 \socket_use:n {tagsupport/__enumext/keyanspic}
4314 }
4315 }
4316 \cs_new_protected_nopar:Nn __enumext_anspic_stop_start_list_tag:
4317 {
4318 \IfDocumentMetadataT
4319 {
4320 \socket_assign_plug:nn {tagsupport/__enumext/keyanspic} {stop-start-tags}

115 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4321 \socket_use:n {tagsupport/__enumext/keyanspic}
4322 }
4323 }
4324 \cs_new_protected_nopar:Nn __enumext_anspic_stop_list_tag:
4325 {
4326 \IfDocumentMetadataT
4327 {
4328 \socket_assign_plug:nn {tagsupport/__enumext/keyanspic} {stop-list-tags}
4329 \socket_use:n {tagsupport/__enumext/keyanspic}
4330 }
4331 }

(End of definition for start-list-tags and others.)

13.45 The environment keyanspic and \anspic
The keyanspic environment is a list based environment that uses the same configuration for “spacing” and
〈label〉 as the keyans environment, but it does not use \item. The 〈contents〉 are passed to the environment
by means of the \anspic command as replacement for \item command and placed inside minipage envi-
ronments, with the 〈label〉 centered “above” or “below”, adjusting widths and position according to the options
passed to the environment.

layout-top

layout-sep

layout-top

labelwidth labelsep

minipage one
drawing or tabular

label

minipage two
drawing or tabular

label

minipage three
drawing or tabular

label

minipage four
drawing or tabular

label

minipage five
drawing or tabular

label

Figure 12: Representation of the keyanspic spacing in enumext.

In order for the keyanspic environment and the \anspic command to work correctly, we need to set and
export some variables in the first part of the environment definition and pass them to \anspic which is
executed in the second part of the environment. This implementation is adapted from the answer given by
Enrico Gregorio (@egreg) in How to process the body of an environment and divide it by a \macro?.

13.45.1 The environment keyanspic

label-pos
label-sep
layout-sty
layout-sep
layout-top

mark-ans
mark-pos
mark-sep
save-sep
wrap-opt

wrap-ans*
show-ans
show-pos

First we define the keys that allows us to process the position of the 〈label〉 centered “above” or “below” which
will be label-pos, the vertical separation of these from drawing or tabular will be handled with the key
label-sep. The “layout style” will be handled with the key layout-sty will take two values separated
by comma {〈n° upper, n° lower〉} and will determine the number of minipage environments in which all
arguments of \anspic will be printed at the “upper” and “lower” within the environments separated by the
value of the key layout-sep. The vertical space “top” and “bottom” of the environment will be handled with
the key layout-top.
4332 \keys_define:nn { enumext / keyanspic }
4333 {
4334 label-pos .choice:,
4335 label-pos / above .code:n =
4336 \bool_set_true:N \l__enumext_anspic_label_above_bool
4337 \str_set:Nn \l__enumext_anspic_mini_pos_str { t },
4338 label-pos / below .code:n =
4339 \bool_set_false:N \l__enumext_anspic_label_above_bool
4340 \str_set:Nn \l__enumext_anspic_mini_pos_str { b },
4341 label-pos / unknown .code:n =
4342 \msg_error:nneee { enumext } { unknown-choice }
4343 { label-pos } { above,~ below } { \exp_not:n {#1} },
4344 label-pos .initial:n = below,
4345 label-pos .value_required:n = true,
4346 label-sep .skip_set:N = \l__enumext_anspic_label_sep_skip,
4347 label-sep .value_required:n = true,
4348 layout-sty .tl_set:N = \l__enumext_anspic_layout_style_tl,
4349 layout-sty .value_required:n = true,
4350 layout-sep .code:n = \keys_set:nn { enumext / keyans } { parsep = #1 },
4351 layout-sep .value_required:n = true,
4352 layout-top .code:n = \keys_set:nn { enumext / keyans } { topsep = #1 },
4353 layout-top .value_required:n = true,
4354 mark-ans .code:n = \keys_set:nn { enumext / keyans } { mark-ans = #1 },
4355 mark-ans .value_required:n = true,

116 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/577705/7832

enumext v2.1 §.13 Implementation

4356 mark-pos .code:n = \keys_set:nn { enumext / keyans } { mark-pos = #1 },
4357 mark-pos .value_required:n = true,
4358 mark-sep .code:n = \keys_set:nn { enumext / keyans } { mark-sep = #1 },
4359 mark-sep .value_required:n = true,
4360 save-sep .code:n = \keys_set:nn { enumext / keyans } { save-sep = #1 },
4361 save-sep .value_required:n = true,
4362 wrap-opt .code:n = \keys_set:nn { enumext / keyans } { wrap-opt = #1 },
4363 wrap-opt .value_required:n = true,
4364 wrap-ans* .code:n = \keys_set:nn { enumext / keyans } { wrap-ans* = #1 },
4365 wrap-ans* .value_required:n = true,
4366 show-ans .code:n = \keys_set:nn { enumext / keyans } { show-ans = #1 },
4367 show-ans .value_required:n = true,
4368 show-pos .code:n = \keys_set:nn { enumext / keyans } { show-pos = #1 },
4369 show-pos .value_required:n = true,
4370 unknown .code:n = {
4371 \tl_set:Nn \l__enumext_envir_name_tl { keyanspic }
4372 __enumext_keyans_unknown_keys:n {#1}
4373 },
4374 }

(End of definition for label-pos and others.)

__enumext_keyans_pic_safe_exec:

__enumext_keyans_pic_parse_keys:n

__enumext_keyans_pic_skip_abs:N

__enumext_keyans_pic_arg_two:

The function __enumext_keyans_pic_safe_exec: check the nested level position inside the enumext
environment.
4375 \cs_new_protected:Nn __enumext_keyans_pic_safe_exec:
4376 {
4377 \int_incr:N \l__enumext_keyans_pic_level_int
4378 \int_compare:nNnT { \l__enumext_keyans_pic_level_int } > { 1 }
4379 {
4380 \msg_error:nn { enumext } { keyanspic-nested }
4381 }
4382 __enumext_keyans_name_and_start:
4383 }

Parse [〈key = val〉] for keyanspic environment.
4384 \cs_new_protected:Npn __enumext_keyans_pic_parse_keys:n #1
4385 {
4386 \tl_if_novalue:nF {#1}
4387 {
4388 \keys_set:nn { enumext / keyanspic } {#1}
4389 }
4390 }

The function __enumext_keyans_pic_skip_abs:N will return a positive value \parsep from keyans
environment.
4391 \cs_new_protected:Npn __enumext_keyans_pic_skip_abs:N #1
4392 {
4393 \dim_compare:nNnT { #1 } < { \c_zero_dim }
4394 {
4395 \skip_set:Nn #1 { -#1 }
4396 }
4397 }

The __enumext_keyans_pic_arg_two: function will be used in the second argument of the list environ-
ment that defines the keyanspic environment, with this we will take the configuration of the “spaces” and
the keys label, wrap-label, parsep and topsep from the keyans environment. The first thing we need to
do is set the boolean variable \l__enumext_leftmargin_tmp_v_bool handled by the list-indent key
to “false”, then copy the definition of the second list argument from the keyans environment definition and
make sure that \parsep does not have a negative value.
4398 \cs_new_protected:Npn __enumext_keyans_pic_arg_two:
4399 {
4400 \bool_set_false:N \l__enumext_leftmargin_tmp_v_bool
4401 __enumext_list_arg_two_v:
4402 __enumext_keyans_pic_skip_abs:N \parsep

Now we increment the counter enumXv of the keyans environment and save the total height of the 〈label〉 in
\l__enumext_anspic_label_htdp_dim used by \anspic and we will adjust the values of \parsep only
if the key label-pos is set to below.
4403 \bool_if:NF \l__enumext_anspic_label_above_bool
4404 {
4405 \stepcounter { enumXv }
4406 \hbox_set:Nn \l__enumext_anspic_label_box { \l__enumext_label_v_tl }

117 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4407 \dim_set:Nn \l__enumext_anspic_label_htdp_dim
4408 {
4409 \box_ht_plus_dp:N \l__enumext_anspic_label_box
4410 }
4411 \skip_add:Nn \parsep
4412 {
4413 \l__enumext_anspic_label_htdp_dim
4414 + \box_dp:N \strutbox
4415 + \l__enumext_anspic_label_sep_skip
4416 }
4417 }

Finally we adjust the value of \leftmargin and \topsep then set \listparindent, \partopsep and
\itemsep to zero so that the horizontal and vertical space is not affected.
4418 \dim_add:Nn \leftmargin { -\l__enumext_labelwidth_v_dim - \l__enumext_labelsep_v_dim }
4419 \ignorespaces
4420 \skip_add:Nn \topsep { 0.5\box_dp:N \strutbox }
4421 \dim_zero:N \listparindent
4422 \skip_zero:N \partopsep
4423 \skip_zero:N \itemsep
4424 }

(End of definition for __enumext_keyans_pic_safe_exec: and others.)

keyanspic Now we define the environment keyanspic. For compatibility with tagged PDF we must use the
\begin{list} form and a lot of conditional code using \IfDocumentMetadataTF. We will first stop the
code for automatic tagged PDF for list environments, redefine \item so that it cannot be used, and stop the
code for automatic tagged PDF for the keyanspic environment.
4425 \NewDocumentEnvironment{keyanspic}{ o }
4426 {
4427 __enumext_keyans_pic_safe_exec:
4428 __enumext_keyans_pic_parse_keys:n {#1}
4429 \begin{list} { } { __enumext_keyans_pic_arg_two: }
4430 \IfDocumentMetadataT
4431 {
4432 \tag_suspend:n {list}
4433 }
4434 \item[] \scan_stop:
4435 \RenewDocumentCommand \item {}
4436 {
4437 \msg_error:nn { enumext } { keyanspic-item-cmd }
4438 }
4439 \IfDocumentMetadataT
4440 {
4441 \tag_resume:n {keyanspic}
4442 \tag_tool:n {para/tagging=false} % no socket for this now
4443 \tag_suspend:n {keyanspic}
4444 }
4445 }

In the second part of the environment definition we will manually place our code for tagged PDF and execute
the command \anspic using the __enumext_anspic_exec: function.
4446 {
4447 \IfDocumentMetadataT
4448 {
4449 \tag_resume:n {keyanspic}
4450 }
4451 __enumext_anspic_exec:
4452 \IfDocumentMetadataT
4453 {
4454 \tag_suspend:n {keyanspic}
4455 }
4456 \end{list}
4457 \IfDocumentMetadataT
4458 {
4459 \tag_struct_end:n {tag=L}
4460 }

Finally we check if \anspic* has been used, set the counter enumXvi to zero and apply our “adjusted” vertical
space bottom.
4461 __enumext_check_starred_cmd:n { anspic }
4462 \setcounter { enumXvi } { 0 }

118 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4463 \bool_if:NTF \l__enumext_anspic_label_above_bool
4464 {
4465 \par\addvspace{ 0.5\box_dp:N \strutbox }
4466 }
4467 {
4468 \par
4469 \addvspace
4470 {
4471 \dim_eval:n
4472 {
4473 \l__enumext_anspic_label_htdp_dim + \box_ht_plus_dp:N \strutbox
4474 + \l__enumext_anspic_label_sep_skip + \l__enumext_topsep_v_skip
4475 }
4476 }
4477 }
4478 }

(End of definition for keyanspic. This function is documented on page 17.)

13.45.2 The command \anspic

The \anspic command take three arguments, the starred versions \anspic*[〈content〉] store the current
〈label〉 next to the optional argument [〈content〉] in the sequence and prop list defined by save-ans key. The
third mandatory argument {〈drawing or tabular〉} is NOT stored in the sequence or prop list.
TagOne of the complications here to make the keyanspic environment compatible with tagged PDF is the position of 〈label〉,
the \anspic command processes the arguments in order, where #1 and #2 correspond to 〈label〉 and #3 to the mandatory
argument and puts all this inside a minipage environment. If #1 and #2, that is 〈label〉, is above #3 there are no problems
with tagged PDF, but if #3 comes first the list created with tagged PDF will not be correct.

\anspic
__enumext_anspic_body_dim:n
__enumext_anspic_label:nn

__enumext_anspic_label_pos:nnn

__enumext_anspic_args:nnn
__enumext_anspic_print:n
__enumext_anspic_print:e
__enumext_anspic_print:V

__enumext_anspic_row:n
__enumext_anspic_exec:

We check that the command is active in the keyanspic environment only if the save-ans key is present, oth-
erwise we return an error. The three arguments are handled by the function __enumext_anspic_args:nnn
and stored in the sequence \l__enumext_anspic_args_seq which is processed by the keyanspic environ-
ment.
4479 \NewDocumentCommand \anspic { s o +m }
4480 {
4481 \bool_if:NF \l__enumext_store_active_bool
4482 {
4483 \msg_error:nnnn { enumext } { wrong-place }{ keyanspic }{ save-ans }
4484 }
4485 \int_compare:nNnT { \l__enumext_level_int } > { 1 }
4486 {
4487 \msg_error:nn { enumext } { keyanspic-wrong-level }
4488 }
4489 \int_compare:nNnT { \l__enumext_keyans_level_int } = { 1 }
4490 {
4491 \msg_error:nnnn { enumext } { command-wrong-place }{ anspic }{ keyans }
4492 }
4493 \seq_put_right:Nn \l__enumext_anspic_args_seq
4494 {
4495 __enumext_anspic_args:nnn { #1 } { #2 } { #3 }
4496 }
4497 }

The __enumext_anspic_body_dim:n function will set the value of \l__enumext_anspic_body_htdp_-
dim equal to the “height plus depth” of the mandatory argument if the key label-pos is set “below”.
4498 \cs_new_protected:Npn __enumext_anspic_body_dim:n #1
4499 {
4500 \bool_if:NF \l__enumext_anspic_label_above_bool
4501 {
4502 \IfDocumentMetadataT
4503 {
4504 \tag_suspend:n {keyanspic}
4505 }
4506 \vbox_set:Nn \l__enumext_anspic_body_box { #1 }
4507 \dim_set:Nn \l__enumext_anspic_body_htdp_dim
4508 {
4509 \box_ht_plus_dp:N \l__enumext_anspic_body_box
4510 }
4511 \IfDocumentMetadataT
4512 {
4513 \tag_resume:n {keyanspic}
4514 }

119 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4515 }
4516 }

The __enumext_anspic_label:nn function will process inside \makebox the starred argument ‘*’ and
optional argument passed to the command. Here we will store the 〈label〉 and optional argument in prop list
and sequence and execute the show-ans, show-pos, font, wrap-label, wrap-ans* and wrap-opt keys.
4517 \cs_new_protected:Npn __enumext_anspic_label:nn #1 #2
4518 {
4519 \makebox[\l__enumext_anspic_mini_width_dim][c]
4520 {
4521 \bool_if:nTF { #1 }
4522 {
4523 \bool_set_true:N \l__enumext_item_wrap_key_bool
4524 \bool_set_true:N \l__enumext_wrap_label_v_bool
4525 __enumext_keyans_save_item_opt:n { #2 }
4526 __enumext_keyans_addto_prop:n { #2 }
4527 __enumext_keyans_store_ref:
4528 __enumext_keyans_addto_seq:n { #2 }
4529 \int_gincr:N \g__enumext_check_starred_cmd_int
4530 __enumext_keyans_show_ans:
4531 __enumext_keyans_show_pos:
4532 \makebox[\l__enumext_labelwidth_v_dim][c]
4533 {
4534 \tl_use:N \l__enumext_label_font_style_v_tl
4535 __enumext_keyans_wrapper_label:n { \l__enumext_label_vi_tl }
4536 }
4537 \skip_horizontal:n { \l__enumext_labelsep_v_dim }
4538 __enumext_keyans_show_item_opt:
4539 }
4540 {
4541 \bool_set_false:N \l__enumext_item_wrap_key_bool
4542 \tl_use:N \l__enumext_label_font_style_v_tl
4543 __enumext_wrapper_label_v:n { \l__enumext_label_vi_tl }
4544 }
4545 }
4546 }

The function __enumext_anspic_label_pos:nnn will be in charge of handling the “counter” and the posi-
tion of the 〈label〉, set by label-pos key which will have the same configuration as the keyans environment.
4547 \cs_new_protected:Npn __enumext_anspic_label_pos:nnn #1 #2 #3
4548 {
4549 \stepcounter { enumXvi }
4550 __enumext_anspic_body_dim:n { #3 }
4551 \bool_if:NTF \l__enumext_anspic_label_above_bool
4552 {
4553 __enumext_anspic_label:nn { #1 } { #2 }
4554 }
4555 {
4556 \raisebox
4557 {
4558 -\dim_eval:n
4559 {
4560 \l__enumext_anspic_label_htdp_dim
4561 + \l__enumext_anspic_body_htdp_dim
4562 + \box_dp:N \strutbox
4563 + \l__enumext_anspic_label_sep_skip
4564 }
4565 }
4566 [0pt] [0pt]
4567 {
4568 __enumext_anspic_label:nn { #1 } { #2 }
4569 }
4570 }
4571 }
4572 %

The __enumext_anspic_args:nnn function will be responsible for placing the code compatible with tagged
PDF and the arguments within the \l__enumext_anspic_args_seq sequence which will be processed by the
__enumext_anspic_print:n function in the second part of the definition of the keyanspic environment.
4573 \cs_new_protected:Nn __enumext_anspic_args:nnn
4574 {
4575 __enumext_anspic_start_list_tag:

120 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4576 __enumext_anspic_label_pos:nnn { #1 } { #2 } { #3 }
4577 __enumext_anspic_stop_start_list_tag:
4578 \bool_if:NTF \l__enumext_anspic_label_above_bool
4579 {
4580 \\[\l__enumext_anspic_label_sep_skip] #3
4581 }
4582 {
4583 \\ #3
4584 }
4585 __enumext_anspic_stop_list_tag:
4586 }

The value {〈n° upper, n° lower〉} passed to the layout-sty key is split by comma and is handled directly by
the function __enumext_anspic_print:n and passed to the function __enumext_anspic_row:n.
4587 \cs_new_protected:Nn __enumext_anspic_print:n
4588 {
4589 \clist_map_function:nN { #1 } __enumext_anspic_row:n
4590 }
4591 \cs_generate_variant:Nn __enumext_anspic_print:n { e, V }

The function __enumext_anspic_row:n will set the widths for the minipage environments and place all
arguments passed to \anspic saved in the \l__enumext_anspic_args_seq sequence inside them.
4592 \cs_new_protected:Nn __enumext_anspic_row:n
4593 {
4594 \dim_set:Nn \l__enumext_anspic_mini_width_dim { \linewidth / #1 }
4595 \int_set:Nn \l__enumext_anspic_above_int { \l__enumext_anspic_below_int }
4596 \int_set:Nn \l__enumext_anspic_below_int { \l__enumext_anspic_above_int + #1 }
4597 \int_step_inline:nnn
4598 { \l__enumext_anspic_above_int + 1 }
4599 { \l__enumext_anspic_below_int }
4600 {
4601 \IfDocumentMetadataT
4602 {
4603 \tag_suspend:n {minipage}
4604 }
4605 \begin{minipage}[\l__enumext_anspic_mini_pos_str]{ \l__enumext_anspic_mini_width_dim }
4606 \centering
4607 \seq_item:Nn \l__enumext_anspic_args_seq { ##1 }
4608 \end{minipage}
4609 \IfDocumentMetadataT
4610 {
4611 \tag_resume:n {minipage}
4612 }
4613 }
4614 \par
4615 }

The __enumext_anspic_exec: function will execute all the code in the \anspic command in the second
argument of the keyanspic environment definition. If the key layout-sty is not set, everything will be
printed on a single line.
4616 \cs_new_protected:Nn __enumext_anspic_exec:
4617 {
4618 \tl_if_empty:NTF \l__enumext_anspic_layout_style_tl
4619 {
4620 __enumext_anspic_print:e { \seq_count:N \l__enumext_anspic_args_seq }
4621 }
4622 {
4623 __enumext_anspic_print:V \l__enumext_anspic_layout_style_tl
4624 }
4625 }

(End of definition for \anspic and others. This function is documented on page 18.)

13.46 The horizontal environments
Generating horizontal list environments is NOT as simple as standard LATEX list environments. The fundamental
part of the code is adapted from the shortlst package to a more modern version using expl3. It is not
possible to redefine \item and \makelabel using \RenewDocumentCommand as in the vertical non starred
versions.
To achieve the horizontal list environments we will capture the \item command and the 〈content〉 of this in
horizontal box using \makebox for the label and a minipage environment for the 〈content〉 passed to \item,
we will also add the optional argument (〈number〉) to \item to be able to join columns horizontally, in simple

121 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

terms, we want \item to behave in the same way as in the enumext environment but adding an first optional
argument (〈number〉).
A side effect is the limitation of using \item in this way without using \RenewDocumentCommand, which loses
the original definition and affects the standard list environments provided by LATEX and any environment defined
using base list environment, including: itemize, enumerate, description, quote, quotation, verse,
center, flushleft, flushright, verbatim, tabbing, trivlist, list and all environments created with
\newtheorem.

BOMB One way to get around this is to use something like:

\AddToHook{env/enumerate/before}{recover original \item definition}

inside minipage, but in my partial tests this does not have the desired effect and the vertical and horizontal spacing is
distorted. For now this will remain as a limitation and I will see if it is feasible to implement it in the future.

TagFor compatibility with the tagged PDF we close the environments according to the presence or not of the mini-env key.

13.46.1 Functions for item box width

__enumext_starred_columns_set_vii:

__enumext_starred_columns_set_viii:

We set the default value for thewidth of the box containing the 〈content〉 of the items for enumext* environment.
4626 \cs_new_protected:Nn __enumext_starred_columns_set_vii:
4627 {
4628 \dim_compare:nNnT { \l__enumext_columns_sep_vii_dim } = { \c_zero_dim }
4629 {
4630 \dim_set:Nn \l__enumext_columns_sep_vii_dim
4631 {
4632 (\l__enumext_labelwidth_vii_dim + \l__enumext_labelsep_vii_dim)
4633 / \l__enumext_columns_vii_int
4634 }
4635 }
4636 \int_set:Nn \l__enumext_tmpa_vii_int { \l__enumext_columns_vii_int - 1 }
4637 \dim_set:Nn \l__enumext_item_width_vii_dim
4638 {
4639 (\linewidth - \l__enumext_columns_sep_vii_dim * \l__enumext_tmpa_vii_int)
4640 / \l__enumext_columns_vii_int
4641 - \l__enumext_labelwidth_vii_dim
4642 - \l__enumext_labelsep_vii_dim
4643 }

When the key rightmargin is active we must adjust the values.
4644 \dim_compare:nNnT { \l__enumext_rightmargin_vii_dim } > { \c_zero_dim }
4645 {
4646 \dim_sub:Nn \l__enumext_item_width_vii_dim
4647 {
4648 (\l__enumext_rightmargin_vii_dim * \l__enumext_tmpa_vii_int)
4649 / \l__enumext_columns_vii_int
4650 }
4651 \dim_add:Nn \l__enumext_columns_sep_vii_dim
4652 {
4653 \l__enumext_rightmargin_vii_dim
4654 }
4655 }
4656 }

Same implementation for the keyans* environment.
4657 \cs_new_protected:Nn __enumext_starred_columns_set_viii:
4658 {
4659 \dim_compare:nNnT { \l__enumext_columns_sep_viii_dim } = { \c_zero_dim }
4660 {
4661 \dim_set:Nn \l__enumext_columns_sep_viii_dim
4662 {
4663 (\l__enumext_labelwidth_viii_dim + \l__enumext_labelsep_viii_dim)
4664 / \l__enumext_columns_viii_int
4665 }
4666 }
4667 \int_set:Nn \l__enumext_tmpa_viii_int { \l__enumext_columns_viii_int - 1 }
4668 \dim_set:Nn \l__enumext_item_width_viii_dim
4669 {
4670 (\linewidth - \l__enumext_columns_sep_viii_dim * \l__enumext_tmpa_viii_int)
4671 / \l__enumext_columns_viii_int
4672 - \l__enumext_labelwidth_viii_dim
4673 - \l__enumext_labelsep_viii_dim
4674 }
4675 \dim_compare:nNnT { \l__enumext_rightmargin_viii_dim } > { \c_zero_dim }

122 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4676 {
4677 \dim_sub:Nn \l__enumext_item_width_viii_dim
4678 {
4679 (\l__enumext_rightmargin_viii_dim * \l__enumext_tmpa_vii_int)
4680 / \l__enumext_columns_viii_int
4681 }
4682 \dim_add:Nn \l__enumext_columns_sep_viii_dim
4683 {
4684 \l__enumext_rightmargin_viii_dim
4685 }
4686 }
4687 }

(End of definition for __enumext_starred_columns_set_vii: and __enumext_starred_columns_set_viii:.)

13.46.2 Functions for join item columns

__enumext_starred_joined_item_vii:n

__enumext_starred_joined_item_viii:n

The functions __enumext_starred_joined_item_vii:n and __enumext_starred_joined_item_-
viii:n will set the width of the box in which the 〈content〉 passed to \item(〈columns〉) will be stored together
with the value of \itemwidth for the enumext* environment.
4688 \cs_new_protected:Npn __enumext_starred_joined_item_vii:n #1
4689 {
4690 \int_set:Nn \l__enumext_joined_item_vii_int {#1}
4691 \int_compare:nNnT { \l__enumext_joined_item_vii_int } > { \l__enumext_columns_vii_int }
4692 {
4693 \msg_warning:nnee { enumext } { item-joined }
4694 { \int_use:N \l__enumext_joined_item_vii_int }
4695 { \int_use:N \l__enumext_columns_vii_int }
4696 \int_set:Nn \l__enumext_joined_item_vii_int
4697 {
4698 \l__enumext_columns_vii_int - \l__enumext_item_column_pos_vii_int + 1
4699 }
4700 }
4701 \int_compare:nNnT
4702 { \l__enumext_joined_item_vii_int }
4703 >
4704 { \l__enumext_columns_vii_int - \l__enumext_item_column_pos_vii_int + 1 }
4705 {
4706 \msg_warning:nnee { enumext } { item-joined-columns }
4707 { \int_use:N \l__enumext_joined_item_vii_int }
4708 {
4709 \int_eval:n
4710 { \l__enumext_columns_vii_int - \l__enumext_item_column_pos_vii_int + 1 }
4711 }
4712 \int_set:Nn \l__enumext_joined_item_vii_int
4713 {
4714 \l__enumext_columns_vii_int - \l__enumext_item_column_pos_vii_int + 1
4715 }
4716 }
4717 \int_compare:nNnTF { \l__enumext_joined_item_vii_int } > { 1 }
4718 {
4719 \int_set_eq:NN \l__enumext_joined_item_aux_vii_int \l__enumext_joined_item_vii_int
4720 \int_decr:N \l__enumext_joined_item_aux_vii_int
4721 \int_add:Nn \l__enumext_item_column_pos_vii_int { \l__enumext_joined_item_aux_vii_int }
4722 \int_gadd:Nn \g__enumext_item_count_all_vii_int { \l__enumext_joined_item_aux_vii_int }
4723 \dim_set:Nn \l__enumext_joined_width_vii_dim
4724 {
4725 \l__enumext_item_width_vii_dim * \l__enumext_joined_item_vii_int
4726 + (\l__enumext_labelwidth_vii_dim + \l__enumext_labelsep_vii_dim
4727 + \l__enumext_columns_sep_vii_dim
4728)*\l__enumext_joined_item_aux_vii_int
4729 }
4730 \dim_set_eq:NN \itemwidth \l__enumext_joined_width_vii_dim
4731 }
4732 {
4733 \dim_set_eq:NN \l__enumext_joined_width_vii_dim \l__enumext_item_width_vii_dim
4734 \dim_set_eq:NN \itemwidth \l__enumext_item_width_vii_dim
4735 }
4736 }

Same implementation for the keyans* environment.
4737 \cs_new_protected:Npn __enumext_starred_joined_item_viii:n #1

123 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4738 {
4739 \int_set:Nn \l__enumext_joined_item_viii_int {#1}
4740 \int_compare:nNnT { \l__enumext_joined_item_viii_int } > { \l__enumext_columns_viii_int }
4741 {
4742 \msg_warning:nnee { enumext } { item-joined }
4743 { \int_use:N \l__enumext_joined_item_viii_int }
4744 { \int_use:N \l__enumext_columns_viii_int }
4745 \int_set:Nn \l__enumext_joined_item_viii_int
4746 {
4747 \l__enumext_columns_viii_int - \l__enumext_item_column_pos_viii_int + 1
4748 }
4749 }
4750 \int_compare:nNnT
4751 { \l__enumext_joined_item_viii_int }
4752 >
4753 { \l__enumext_columns_viii_int - \l__enumext_item_column_pos_viii_int + 1 }
4754 {
4755 \msg_warning:nnee { enumext } { item-joined-columns }
4756 { \int_use:N \l__enumext_joined_item_viii_int }
4757 {
4758 \int_eval:n
4759 { \l__enumext_columns_viii_int - \l__enumext_item_column_pos_viii_int + 1 }
4760 }
4761 \int_set:Nn \l__enumext_joined_item_viii_int
4762 {
4763 \l__enumext_columns_viii_int - \l__enumext_item_column_pos_viii_int + 1
4764 }
4765 }
4766 \int_compare:nNnTF { \l__enumext_joined_item_viii_int } > { 1 }
4767 {
4768 \int_set_eq:NN \l__enumext_joined_item_aux_viii_int \l__enumext_joined_item_viii_int
4769 \int_decr:N \l__enumext_joined_item_aux_viii_int
4770 \int_add:Nn \l__enumext_item_column_pos_viii_int { \l__enumext_joined_item_aux_viii_int }
4771 \int_gadd:Nn \g__enumext_item_count_all_viii_int { \l__enumext_joined_item_aux_viii_int }
4772 \dim_set:Nn \l__enumext_joined_width_viii_dim
4773 {
4774 \l__enumext_item_width_viii_dim * \l__enumext_joined_item_viii_int
4775 + (\l__enumext_labelwidth_viii_dim + \l__enumext_labelsep_viii_dim
4776 + \l__enumext_columns_sep_viii_dim
4777)*\l__enumext_joined_item_aux_viii_int
4778 }
4779 \dim_set_eq:NN \itemwidth \l__enumext_joined_width_viii_dim
4780 }
4781 {
4782 \dim_set_eq:NN \l__enumext_joined_width_viii_dim \l__enumext_item_width_viii_dim
4783 \dim_set_eq:NN \itemwidth \l__enumext_item_width_viii_dim
4784 }
4785 }

(End of definition for __enumext_starred_joined_item_vii:n and __enumext_starred_joined_item_viii:n.)

13.46.3 Functions for mini-env, mini-right and mini-right* keys

__enumext_start_mini_vii:
__enumext_stop_mini_vii:

The implementation of the mini-env key support is almost identical to the one used in the enumext and
keyans environments, the difference is that the __enumext_mini_page environment on the “right side” is
executed “after” closing the environment, so it is necessary to make a global copy of the variable \l__-
enumext_minipage_right_vii_dim in the variable \g__enumext_minipage_right_vii_dim.
4786 \cs_new_protected:Nn __enumext_start_mini_vii:
4787 {
4788 \dim_compare:nNnT { \l__enumext_minipage_right_vii_dim } > { \c_zero_dim }
4789 {
4790 \dim_set:Nn \l__enumext_minipage_left_vii_dim
4791 {
4792 \linewidth
4793 - \l__enumext_minipage_right_vii_dim
4794 - \l__enumext_minipage_hsep_vii_dim
4795 }
4796 \bool_set_true:N \l__enumext_minipage_active_vii_bool
4797 \dim_gset_eq:NN
4798 \g__enumext_minipage_right_vii_dim
4799 \l__enumext_minipage_right_vii_dim
4800 __enumext_mini_addvspace_vii:

124 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4801 \nointerlineskip\noindent
4802 __enumext_mini_page{ \l__enumext_minipage_left_vii_dim }
4803 }
4804 }

The function __enumext_stop_mini_vii: closes the __enumext_mini_page environment on the “left
side”, applies \hfill and set the variable \g__enumext_minipage_active_vii_bool to “true” which will
be used in the function __enumext_after_env:nn to execute the minipage on the “right side”. At this
point we will execute the __enumext_stop_list: and __enumext_stop_store_level_vii: functions
stopping the list environment and the level saving mechanism for storage in sequence of the \anskey
command and anskey* environment. This function is passed to the __enumext_after_list_vii: function
in the second part of the enumext* environment definition (§13.47).
4805 \cs_new_protected:Nn __enumext_stop_mini_vii:
4806 {
4807 \bool_if:NTF \l__enumext_minipage_active_vii_bool
4808 {
4809 __enumext_stop_list:
4810 __enumext_stop_store_level_vii:
4811 \IfDocumentMetadataT { \tag_resume:n {enumext*} }
4812 \end__enumext_mini_page
4813 \hfill
4814 \bool_gset_true:N \g__enumext_minipage_active_vii_bool
4815 }
4816 {
4817 __enumext_stop_list:
4818 __enumext_stop_store_level_vii:
4819 }
4820 }

(End of definition for __enumext_start_mini_vii: and __enumext_stop_mini_vii:.)
Finally we execute the {〈code〉} passed to the mini-right or mini-right* keys stored in the variable \g__-
enumext_miniright_code_vii_tl in the minipage environment on the “right side”. For compatibility
with the caption package and possibly other {〈code〉} passed to this key, we will pass it to a box and then
print it.
4821 __enumext_after_env:nn {enumext*}
4822 {
4823 \bool_if:NT \g__enumext_minipage_active_vii_bool
4824 {
4825 __enumext_minipage:w [t] { \g__enumext_minipage_right_vii_dim }
4826 \legacy_if_gset_false:n { @minipage }
4827 \skip_vertical:N \c_zero_skip
4828 \par\addvspace { \g__enumext_minipage_right_skip }
4829 \bool_if:NF \g__enumext_minipage_center_vii_bool
4830 {
4831 \tl_put_left:Nn \g__enumext_miniright_code_vii_tl
4832 {
4833 \centering
4834 }
4835 }
4836 \vbox_set_top:Nn \l__enumext_miniright_code_vii_box
4837 {
4838 \tl_use:N \g__enumext_miniright_code_vii_tl
4839 }
4840 \box_use_drop:N \l__enumext_miniright_code_vii_box
4841 \skip_vertical:N \c_zero_skip
4842 __enumext_endminipage:
4843 \par\addvspace{ \g__enumext_minipage_after_skip }
4844 }
4845 \bool_gset_false:N \g__enumext_minipage_active_vii_bool
4846 \bool_gset_true:N \g__enumext_minipage_center_vii_bool
4847 \tl_gclear:N \g__enumext_miniright_code_vii_tl
4848 \dim_gzero:N \g__enumext_minipage_right_vii_dim
4849 \bool_gset_false:N \g__enumext_starred_bool
4850 }

__enumext_start_mini_viii:
__enumext_stop_mini_viii:

The implementation of the mini-env, mini-right and mini-right* keys is identical to the one used in the
enumext* environment.
4851 \cs_new_protected:Nn __enumext_start_mini_viii:
4852 {
4853 \dim_compare:nNnT { \l__enumext_minipage_right_viii_dim } > { \c_zero_dim }

125 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4854 {
4855 \dim_set:Nn \l__enumext_minipage_left_viii_dim
4856 {
4857 \linewidth
4858 - \l__enumext_minipage_right_viii_dim
4859 - \l__enumext_minipage_hsep_viii_dim
4860 }
4861 \bool_set_true:N \l__enumext_minipage_active_viii_bool
4862 \dim_gset_eq:NN
4863 \g__enumext_minipage_right_viii_dim
4864 \l__enumext_minipage_right_viii_dim
4865 __enumext_mini_addvspace_viii:
4866 \nointerlineskip\noindent
4867 __enumext_mini_page{ \l__enumext_minipage_left_viii_dim }
4868 }
4869 }
4870 \cs_new_protected:Nn __enumext_stop_mini_viii:
4871 {
4872 \bool_if:NTF \l__enumext_minipage_active_viii_bool
4873 {
4874 __enumext_stop_list:
4875 \IfDocumentMetadataT { \tag_resume:n {keyans*} }
4876 \end__enumext_mini_page
4877 \hfill
4878 \bool_gset_true:N \g__enumext_minipage_active_viii_bool
4879 }
4880 {
4881 __enumext_stop_list:
4882 }
4883 }
4884 __enumext_after_env:nn {keyans*}
4885 {
4886 \bool_if:NT \g__enumext_minipage_active_viii_bool
4887 {
4888 __enumext_mini_page{ \g__enumext_minipage_right_viii_dim }
4889 \par\addvspace { \g__enumext_minipage_right_skip }
4890 \bool_if:NF \g__enumext_minipage_center_viii_bool
4891 {
4892 \tl_put_left:Nn \g__enumext_miniright_code_viii_tl
4893 {
4894 \centering
4895 }
4896 }
4897 \vbox_set_top:Nn \l__enumext_miniright_code_viii_box
4898 {
4899 \tl_use:N \g__enumext_miniright_code_viii_tl
4900 }
4901 \box_use_drop:N \l__enumext_miniright_code_viii_box
4902 \end__enumext_mini_page
4903 \par\addvspace{ \g__enumext_minipage_after_skip }
4904 }
4905 \bool_gset_false:N \g__enumext_minipage_active_viii_bool
4906 \bool_gset_true:N \g__enumext_minipage_center_viii_bool
4907 \tl_gclear:N \g__enumext_miniright_code_viii_tl
4908 \dim_gzero:N \g__enumext_minipage_right_viii_dim
4909 }

(End of definition for __enumext_start_mini_viii: and __enumext_stop_mini_viii:.)

13.47 The environment enumext*
enumext* First we will generate the environment and we will give a temporary definition to __enumext_stop_-

item_tmp_vii: equal to __enumext_first_item_tmp_vii: and next to \item equal to __enumext_-
start_item_tmp_vii: which we will redefine later. Unlike the implementation used by the shortlst
package, we will not set the values of \rightskip and \@rightskip equal to \@flushglue whose value is
0.0pt plus 1.0 fil, in the tests I have performed this fails in some circumstances and different results are
obtained when using pdfTEX and LuaTEX.
4910 \NewDocumentEnvironment{enumext*}{ o }
4911 {
4912 __enumext_safe_exec_vii:
4913 __enumext_parse_keys_vii:n {#1}

126 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4914 __enumext_before_list_vii:
4915 __enumext_start_store_level_vii:
4916 __enumext_start_list:nn { }
4917 {
4918 __enumext_list_arg_two_vii:
4919 __enumext_before_keys_exec_vii:
4920 }
4921 \IfDocumentMetadataT { \tag_suspend:n {enumext*} }
4922 __enumext_starred_columns_set_vii:
4923 \item[] \scan_stop:
4924 \cs_set_eq:NN __enumext_stop_item_tmp_vii: __enumext_first_item_tmp_vii:
4925 \cs_set_eq:NN \item __enumext_start_item_tmp_vii:
4926 \ignorespaces
4927 }
4928 {
4929 \IfDocumentMetadataT { \tag_struct_end:n {tag=text-unit} }
4930 __enumext_stop_item_tmp_vii:
4931 __enumext_remove_extra_parsep_vii:
4932 __enumext_after_list_vii:
4933 }

(End of definition for enumext*. This function is documented on page 5.)

__enumext_safe_exec_vii: We will first call the function __enumext_is_not_nested: which sets \g__enumext_starred_bool to
true if we are NOT nested within enumext, then call the function __enumext_internal_mini_page:
to create the environment __enumext_mini_page, we will increment \l__enumext_level_h_int to re-
strict nesting of the environment, set \l__enumext_starred_bool to true and finally call the function
__enumext_is_on_first_level: which sets \l__enumext_starred_first_bool to true if we are not
nested, allowing the “storage system” to be used.
4934 \cs_new_protected:Nn __enumext_safe_exec_vii:
4935 {
4936 __enumext_is_not_nested:
4937 __enumext_internal_mini_page:
4938 \int_incr:N \l__enumext_level_h_int
4939 \int_compare:nNnT { \l__enumext_level_h_int } > { 1 }
4940 {
4941 \msg_error:nn { enumext } { nested }
4942 }
4943 \int_compare:nNnT { \l__enumext_keyans_level_h_int } = { 1 }
4944 {
4945 \msg_error:nnn { enumext } { nested-horizontal } { keyans*}
4946 }
4947 \bool_set_true:N \l__enumext_starred_bool
4948 \bool_set_false:N \l__enumext_standar_bool
4949 __enumext_is_on_first_level:
4950 }

(End of definition for __enumext_safe_exec_vii:.)

__enumext_parse_keys_vii:n We will first check the state of the variable \l__enumext_resume_count_vii_bool set by the key resume
and call the function __enumext_resume_last_counter: if it is “true”, then we will clear the variable
\l__enumext_series_name_str used by the key series, process the environment [〈key = val〉] and
execute the function __enumext_parse_series:n used by the key series, then we execute the function
__enumext_store_active_keys_vii:n and reprocess the 〈keys〉 to pass them to the storage sequence if
the key save-key is not active.

BOMB Here it is necessary to check the status of \l__enumext_resume_count_vii_bool in case the key resume is set using
\setenumext{enumext*}{resume}.

4951 \cs_new_protected:Npn __enumext_parse_keys_vii:n #1
4952 {
4953 \bool_if:NT \l__enumext_resume_count_vii_bool
4954 {
4955 __enumext_resume_last_counter:
4956 }
4957 \tl_if_novalue:nF {#1}
4958 {
4959 \str_clear:N \l__enumext_series_name_str
4960 \keys_set:nn { enumext / enumext* } {#1}
4961 \bool_if:NF \l__enumext_print_keyans_cmd_bool
4962 {

127 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

4963 __enumext_parse_series:n {#1}
4964 }
4965 __enumext_store_active_keys_vii:n {#1}
4966 }
4967 }

(End of definition for __enumext_parse_keys_vii:n.)

__enumext_before_list_vii: The function __enumext_before_list_vii: first calls the function __enumext_vspace_above_vii:
used by the keys above and above*, then calls the function __enumext_check_ans_active: for the check
answer mechanism and finally calls the functions __enumext_before_args_exec: and __enumext_-
start_mini_vii: used by the keys before*, mini-env, mini-right and mini-right*.
4968 \cs_new_protected:Nn __enumext_before_list_vii:
4969 {
4970 __enumext_vspace_above_vii:
4971 __enumext_check_ans_active:
4972 __enumext_before_args_exec_vii:
4973 __enumext_start_mini_vii:
4974 }

(End of definition for __enumext_before_list_vii:.)

__enumext_after_list_vii: The function __enumext_after_list_vii: first calls the function __enumext_stop_mini_vii: which
internally calls __enumext_stop_list: and __enumext_stop_store_level_vii: (§13.46.3) used by
the keys mini-env, mini-right and mini-right*, then to the functions __enumext_after_stop_-
list_vii: used by the key after, __enumext_check_ans_key_hook: used by the key check-ans,
__enumext_vspace_below_vii: used by the keys below and below*. Finally set \l__enumext_-
starred_bool to false and call the __enumext_resume_save_counter: function used by the series,
resume and resume* keys.
4975 \cs_new_protected:Nn __enumext_after_list_vii:
4976 {
4977 __enumext_stop_mini_vii:
4978 __enumext_after_stop_list_vii:
4979 __enumext_check_ans_key_hook:
4980 __enumext_vspace_below_vii:
4981 \bool_set_false:N \l__enumext_starred_bool
4982 \bool_if:NF \l__enumext_print_keyans_cmd_bool
4983 {
4984 __enumext_starred_save_counter:
4985 }
4986 }

(End of definition for __enumext_after_list_vii:.)

__enumext_start_store_level_vii:

__enumext_stop_store_level_vii:

The __enumext_start_store_level_vii: and __enumext_stop_store_level_vii: functions ac-
tivate the “storing structure” mechanism in sequence for \anskey command and anskey* environment if
enumext* are nested in enumext.
4987 \cs_new_protected:Nn __enumext_start_store_level_vii:
4988 {
4989 \bool_if:NT \l__enumext_store_active_bool
4990 {
4991 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
4992 {
4993 __enumext_store_level_open_vii:
4994 }
4995 }
4996 }
4997 \cs_new_protected:Nn __enumext_stop_store_level_vii:
4998 {
4999 \bool_if:NT \l__enumext_store_active_bool
5000 {
5001 \int_compare:nNnT { \l__enumext_level_int } > { 0 }
5002 {
5003 __enumext_store_level_close_vii:
5004 }
5005 }
5006 }

(End of definition for __enumext_start_store_level_vii: and __enumext_stop_store_level_vii:.)

128 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

13.47.1 The command \item in enumext*

__enumext_first_item_tmp_vii: The __enumext_first_item_tmp_vii: function will remove horizontal space equal to \labelwidth plus
\labelsep to the left of the “first” \item in the environment at the point of execution of this function, where
it is equal to the __enumext_stop_item_tmp_vii: function inside the environment body definition.
5007 \cs_new_protected_nopar:Nn __enumext_first_item_tmp_vii:
5008 {
5009 \skip_horizontal:n
5010 {
5011 -\l__enumext_labelwidth_vii_dim - \l__enumext_labelsep_vii_dim
5012 }
5013 \ignorespaces
5014 }

(End of definition for __enumext_first_item_tmp_vii:.)

__enumext_start_item_tmp_vii:

__enumext_item_peek_args_vii:

__enumext_joined_item_vii:w
__enumext_standar_item_vii:w

__enumext_starred_item_vii:w

__enumext_starred_item_vii_aux_i:w

__enumext_starred_item_vii_aux_ii:w

__enumext_starred_item_vii_aux_iii:w

First we will call the function __enumext_stop_item_tmp_vii: that we will redefine later, we will incre-
ment the value of \l__enumext_item_column_pos_vii_int that will count the item’s by rows and the
value of \g__enumext_item_count_all_vii_int that will count the total of item’s in the environment.
After that we will call the function __enumext_item_peek_args_vii: that will handle the arguments
passed to \item.
5015 \cs_new_protected_nopar:Nn __enumext_start_item_tmp_vii:
5016 {
5017 __enumext_stop_item_tmp_vii:
5018 \int_incr:N \l__enumext_item_column_pos_vii_int
5019 \int_gincr:N \g__enumext_item_count_all_vii_int
5020 __enumext_item_peek_args_vii:
5021 }

The function __enumext_item_peek_args_vii: will handle the \item(〈number〉). Look for the argu-
ment “(”, if it is present we will call the function __enumext_joined_item_vii:w (〈number〉), which is
in charge of joining the item’s in the same row, in case they are not present we will set the default value (1).
5022 \cs_new_protected:Nn __enumext_item_peek_args_vii:
5023 {
5024 \peek_meaning:NTF (
5025 { __enumext_joined_item_vii:w }
5026 { __enumext_joined_item_vii:w (1) }
5027 }

The function __enumext_joined_item_vii:w will first call the function __enumext_starred_-
joined_item_vii:n in charge of setting thewidth of the box that will store the content passed to \item. Then
we will look for the argument “*”, if it is present we will call the function __enumext_starred_item_vii:w
otherwise we will call the function __enumext_standar_item_vii:w.
5028 \cs_new_protected:Npn __enumext_joined_item_vii:w (#1)
5029 {
5030 __enumext_starred_joined_item_vii:n {#1}
5031 \peek_meaning_remove:NTF *
5032 { __enumext_starred_item_vii:w }
5033 { __enumext_standar_item_vii:w }
5034 }

The function __enumext_standar_item_vii:w will first look for the argument “[”, if present it will
set the state of the variable \l__enumext_wrap_label_opt_vii_bool equal to the state of the variable
\l__enumext_wrap_label_opt_vii_bool handled by the key wrap-label* and finally execute the non-
enumerated version \item[〈custom〉] by means of the function __enumext_start_item_vii:w, otherwise
we will set the value of the variable \l__enumext_wrap_label_vii_bool handled by the wrap-label key
to true and set the switch \if@noitemarg to true to execute the enumerated version of \item by means of
the function __enumext_start_item_vii:w [\l__enumext_label_vii_tl].
5035 \cs_new_protected:Npn __enumext_standar_item_vii:w
5036 {
5037 \bool_set_false:N \l__enumext_item_starred_vii_bool
5038 \peek_meaning:NTF [
5039 {
5040 \bool_set_eq:NN \l__enumext_wrap_label_vii_bool \l__enumext_wrap_label_opt_vii_bool
5041 __enumext_start_item_vii:w
5042 }
5043 {
5044 \bool_set_true:N \l__enumext_wrap_label_vii_bool
5045 \legacy_if_set_true:n { @noitemarg }
5046 __enumext_start_item_vii:w [\l__enumext_label_vii_tl] \ignorespaces
5047 }
5048 }

129 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

The function __enumext_starred_item_vii:w together with the specified auxiliary functions aux_i:w,
aux_ii:w, and aux_iii:w execute \item*, \item*[〈symbol〉] and \item*[〈symbol〉][〈offset〉].
5049 \cs_new_protected:Npn __enumext_starred_item_vii:w
5050 {
5051 \bool_set_true:N \l__enumext_item_starred_vii_bool
5052 \bool_set_true:N \l__enumext_wrap_label_vii_bool
5053 \peek_meaning:NTF [
5054 { __enumext_starred_item_vii_aux_i:w }
5055 { __enumext_starred_item_vii_aux_ii:w }
5056 }
5057 \cs_new_protected:Npn __enumext_starred_item_vii_aux_i:w [#1]
5058 {
5059 \tl_gset:Nn \g__enumext_item_symbol_aux_vii_tl {#1}
5060 __enumext_starred_item_vii_aux_ii:w
5061 }
5062 \cs_new_protected:Npn __enumext_starred_item_vii_aux_ii:w
5063 {
5064 \peek_meaning:NTF [
5065 { __enumext_starred_item_vii_aux_iii:w }
5066 {
5067 \dim_set_eq:NN \l__enumext_item_symbol_sep_vii_dim \l__enumext_labelsep_vii_dim
5068 \legacy_if_set_true:n { @noitemarg }
5069 __enumext_start_item_vii:w [\l__enumext_label_vii_tl] \ignorespaces
5070 }
5071 }
5072 \cs_new_protected:Npn __enumext_starred_item_vii_aux_iii:w [#1]
5073 {
5074 \dim_set:Nn \l__enumext_item_symbol_sep_vii_dim {#1}
5075 \legacy_if_set_true:n { @noitemarg }
5076 __enumext_start_item_vii:w [\l__enumext_label_vii_tl] \ignorespaces
5077 }

(End of definition for __enumext_start_item_tmp_vii: and others.)

__enumext_fake_make_label_vii:n The __enumext_fake_make_label_vii:n function will be in charge of handling our definition of \item.
First we increment the counter enumXvii for the enumerated items and activate support for the check answers
mechanism, followed by support for \item*[〈symbol〉][〈offset〉] if present, then the wrap-label and wrap-
label* keys which we execute using \makebox whose width will be given by the labelwidth key and
position by the align key, inside the argument of this we will execute the font key together with the
function defined by the wrap-label or wrap-label* keys. Finally we execute the labelsep key applying a
\skip_horizontal:N and \ignorespaces.
TagFor compatibility with tagged PDF and hyperref when an environment enumext is nested in enumext* and the key
save-ans is not active need setting the \if@hyper@item switch to “true”. The explanation for this is given by the master
Heiko Oberdiek on \refstepcounter{enumi} twice (or more) creates destination with the same identifier. This patch is only
needed if you are running pdflatex and not if you are running lualatex

5078 \cs_new_protected_nopar:Npn __enumext_fake_make_label_vii:n #1
5079 {
5080 \legacy_if:nT { @noitemarg }
5081 {
5082 \legacy_if_set_false:n { @noitemarg }
5083 \legacy_if:nT { @nmbrlist }
5084 {
5085 \IfDocumentMetadataT
5086 {
5087 \bool_if:NT \l__enumext_hyperref_bool
5088 {
5089 \legacy_if_set_true:n { @hyper@item }
5090 }
5091 }
5092 \refstepcounter{enumXvii}
5093 \bool_if:NT \l__enumext_check_answers_bool
5094 {
5095 \int_gincr:N \g__enumext_item_number_int
5096 \bool_set_true:N \l__enumext_item_number_bool
5097 }
5098 }
5099 }
5100 \bool_if:NT \l__enumext_item_starred_vii_bool
5101 {
5102 \tl_if_blank:VT \g__enumext_item_symbol_aux_vii_tl

130 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/404911

enumext v2.1 §.13 Implementation

5103 {
5104 \tl_gset_eq:NN
5105 \g__enumext_item_symbol_aux_vii_tl \l__enumext_item_symbol_vii_tl
5106 }
5107 \mode_leave_vertical:
5108 \skip_horizontal:n { -\l__enumext_item_symbol_sep_vii_dim }
5109 \hbox_overlap_left:n { \g__enumext_item_symbol_aux_vii_tl }
5110 \skip_horizontal:N \l__enumext_item_symbol_sep_vii_dim
5111 \tl_gclear:N \g__enumext_item_symbol_aux_vii_tl
5112 }
5113 \makebox[\l__enumext_labelwidth_vii_dim][\l__enumext_align_label_vii_str]
5114 {
5115 \tl_use:N \l__enumext_label_font_style_vii_tl
5116 \bool_if:NTF \l__enumext_wrap_label_vii_bool
5117 {
5118 __enumext_wrapper_label_vii:n {#1}
5119 }
5120 { #1 }
5121 }
5122 \skip_horizontal:N \l__enumext_labelsep_vii_dim \ignorespaces
5123 }

(End of definition for __enumext_fake_make_label_vii:n.)

13.47.2 Real definition of \item in enumext*

The functions __enumext_start_item_vii:w and __enumext_stop_item_vii: executing the true
definition of \item inside the enumext* environment, unlike the implementation in shortlst we will NOT
use an extra group and the plain form of the lrbox environment.

__enumext_start_item_vii:w
__enumext_stop_item_vii:

The first thing we will do is set the value of __enumext_stop_item_tmp_vii: equal to __enumext_-
stop_item_vii: which we will define later, after that we will start capturing \item and “item content” in a
horizontal box where the width will be \itemwidth plus \labelwidth plus \labelsep.
5124 \cs_new_protected_nopar:Npn __enumext_start_item_vii:w [#1]
5125 {
5126 \cs_set_eq:NN __enumext_stop_item_tmp_vii: __enumext_stop_item_vii:
5127 \hbox_set_to_wd:Nnw \l__enumext_item_text_vii_box
5128 {
5129 \l__enumext_joined_width_vii_dim
5130 + \l__enumext_labelwidth_vii_dim
5131 + \l__enumext_labelsep_vii_dim
5132 }

Redefine the \footnote command.
5133 __enumext_renew_footnote_starred:

Now we insert our sockets for tagging PDF support and run \item.
5134 __enumext_start_list_tag:n {enumext*}
5135 __enumext_fake_make_label_vii:n {#1}
5136 __enumext_stop_start_list_tag:

Finally we open the minipage environment, capture the “item content”, make \parindent take the value of
the key listparindent and \parskip take the value of the key parsep, then execute the keys itemindent
and first.

BOMB Here the use of \unskip and \skip_horizontal:n with the value of listparindent is necessary, otherwise an
unwanted space is created when using \item[〈opt〉] and the value passed to the key itemindent is incremented.

5137 __enumext_minipage:w [t]{ \l__enumext_joined_width_vii_dim }
5138 \dim_set_eq:NN \parindent \l__enumext_listparindent_vii_dim
5139 \skip_set_eq:NN \parskip \l__enumext_parsep_vii_skip
5140 __enumext_unskip_unkern:
5141 __enumext_unskip_unkern:
5142 \skip_horizontal:n { -\l__enumext_listparindent_vii_dim } \ignorespaces
5143 \tl_use:N \l__enumext_fake_item_indent_vii_tl
5144 \tl_use:N \l__enumext_after_list_args_vii_tl
5145 }

The __enumext_stop_item_vii: function will finish the fetching \item and “item content” by closing the
minipage environment, the sockets for tagging PDF and the horizontal box.
5146 \cs_new_protected_nopar:Nn __enumext_stop_item_vii:
5147 {
5148 __enumext_endminipage:
5149 __enumext_stop_list_tag:n {enumext*}
5150 \hbox_set_end:

131 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

Here we will reduce the warnings a bit by setting the value of \hbadness to 10000, print \item and “item
content” from the horizontal box,.
5151 \int_set:Nn \hbadness { 10000 }
5152 \box_use_drop:N \l__enumext_item_text_vii_box

Finally apply the vertical space between rows set by itemsep key passed to \parsep using \par\noindent
and horizontal space between columns set by columns-sep key using \skip_horizontal:N.
5153 \int_compare:nNnTF
5154 { \l__enumext_item_column_pos_vii_int } = { \l__enumext_columns_vii_int }
5155 {
5156 \par\noindent
5157 \int_zero:N \l__enumext_item_column_pos_vii_int
5158 }
5159 {
5160 \skip_horizontal:N \l__enumext_columns_sep_vii_dim
5161 }
5162 }

(End of definition for __enumext_start_item_vii:w and __enumext_stop_item_vii:.)

__enumext_remove_extra_parsep_vii: Remove the extra vertical space equal to \parsep=\itemsep when the total number of \item is divisible by
the number of \item in the last row of the environment. Here the use of \unskip or \removelastskip fails
and does not obtain the expected result, using \vspace is the option and in this case, we can use a simplified
version since we are always in 〈vertical mode〉.
5163 \cs_new_protected:Nn __enumext_remove_extra_parsep_vii:
5164 {
5165 \int_compare:nNnT
5166 {
5167 \int_mod:nn
5168 { \g__enumext_item_count_all_vii_int } { \l__enumext_columns_vii_int }
5169 }
5170 =
5171 { 0 }
5172 {
5173 \para_end:
5174 \skip_vertical:n { -\l__enumext_itemsep_vii_skip }
5175 \skip_vertical:N \c_zero_skip
5176 \int_gzero:N \g__enumext_item_count_all_vii_int
5177 }
5178 }

(End of definition for __enumext_remove_extra_parsep_vii:.)

As we don’t want our check to be executed check-ans by levels but on the complete list, we will take it out of
the enumext* environment using the “hook” function __enumext_after_env:nn.
5179 __enumext_after_env:nn {enumext*}
5180 {
5181 __enumext_execute_after_env:
5182 }

13.48 The environment keyans*
keyans* The implementation of keyans* environment is the similar as that used by the enumext* environment except

for the __enumext_check_starred_cmd:n function added in the second part.
5183 \NewDocumentEnvironment{keyans*}{ o }
5184 {
5185 __enumext_safe_exec_viii:
5186 __enumext_parse_keys_viii:n {#1}
5187 __enumext_before_list_viii:
5188 __enumext_start_list:nn { }
5189 {
5190 __enumext_list_arg_two_viii:
5191 __enumext_before_keys_exec_viii:
5192 }
5193 \IfDocumentMetadataT { \tag_suspend:n {keyans*} }
5194 __enumext_starred_columns_set_viii:
5195 \item[] \scan_stop:
5196 \cs_set_eq:NN __enumext_stop_item_tmp_viii: __enumext_first_item_tmp_viii:
5197 \cs_set_eq:NN \item __enumext_start_item_tmp_viii:
5198 \ignorespaces
5199 }

132 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5200 {
5201 \IfDocumentMetadataT { \tag_struct_end:n {tag=text-unit} }
5202 __enumext_stop_item_tmp_viii:
5203 __enumext_remove_extra_parsep_viii:
5204 __enumext_check_starred_cmd:n { item }
5205 __enumext_after_list_viii:
5206 }

(End of definition for keyans*. This function is documented on page 16.)

__enumext_safe_exec_viii: The __enumext_safe_exec_viii: function will first check if the save-ans key is active and only when this
is true the environment will be available, it will increment the value of \l__enumext_keyans_level_h_int
and return an error message when we are nesting the environment, then it will call the __enumext_-
keyans_name_and_start: function in charge of saving the name of the environment and the line it is
running on, then it will check if we are trying to nest keyans* in enumext* returning an error and we will
set \l__enumext_starred_bool to true, finally we will check if we are within the appropriate level within
the enumext environment.
5207 \cs_new_protected:Nn __enumext_safe_exec_viii:
5208 {
5209 \bool_if:NF \l__enumext_store_active_bool
5210 {
5211 \msg_error:nnnn { enumext } { wrong-place }{ keyans* }{ save-ans }
5212 }
5213 \int_incr:N \l__enumext_keyans_level_h_int
5214 \int_compare:nNnT { \l__enumext_keyans_level_h_int } > { 1 }
5215 {
5216 \msg_error:nn { enumext } { nested }
5217 }
5218 __enumext_keyans_name_and_start:
5219 \bool_if:NT \l__enumext_starred_bool
5220 {
5221 \msg_error:nnn { enumext } { nested-horizontal } { enumext* }
5222 }
5223 \bool_set_true:N \l__enumext_starred_bool
5224 % Set false for interfering with enumext nested in keyans* (yes, its possible and crayze)
5225 \bool_set_false:N \l__enumext_store_active_bool
5226 \int_compare:nNnT { \l__enumext_level_int } > { 1 }
5227 {
5228 \msg_error:nn { enumext } { keyans-wrong-level }
5229 }
5230 }

(End of definition for __enumext_safe_exec_viii:.)

__enumext_parse_keys_viii:n Parse [〈key = val〉] for keyans*.
5231 \cs_new_protected:Npn __enumext_parse_keys_viii:n #1
5232 {
5233 \tl_if_novalue:nF {#1}
5234 {
5235 \keys_set:nn { enumext / keyans* } {#1}
5236 }
5237 }

(End of definition for __enumext_parse_keys_viii:n.)

__enumext_before_list_viii: The function __enumext_before_list_viii: will add the vertical spacing on the environment if the
above key is active next to the {〈code〉} defined by the before* key if it is active, the call the function
__enumext_start_mini_viii: handle by mini-env.
5238 \cs_new_protected:Nn __enumext_before_list_viii:
5239 {
5240 __enumext_vspace_above_viii:
5241 __enumext_before_args_exec_viii:
5242 __enumext_start_mini_viii:
5243 }

(End of definition for __enumext_before_list_viii:.)

133 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

__enumext_after_list_viii: The function __enumext_after_list_viii: first call the function __enumext_stop_mini_viii:, then
apply the {〈code〉} handled by the after key together with the vertical space handled by the below key if
they are present.
5244 \cs_new_protected:Nn __enumext_after_list_viii:
5245 {
5246 __enumext_stop_mini_viii:
5247 __enumext_after_stop_list_viii:
5248 __enumext_vspace_below_viii:
5249 }

(End of definition for __enumext_after_list_viii:.)

13.48.1 The command \item in keyans*

The idea here is to make the \item command behave in the same way as in the keyans environment with the
difference of the optional argument (〈number〉) which works in the same way as in the enumext* environment.
In simple terms we want to store the 〈label〉 next to the [〈content〉] if it is present in the sequence and
prop list defined by save-ans key for \item*, \item*[〈content〉], \item(〈number〉)* and \item(〈num-
ber〉)*[〈content〉] commands.

__enumext_first_item_tmp_viii: The __enumext_first_item_tmp_viii: function will remove horizontal space equal to \labelwidth
plus \labelsep to the left of the “first” \item in the environment at the point of execution of this function,
where it is equal to the __enumext_stop_item_tmp_viii: function inside the environment body definition.
5250 \cs_new_protected_nopar:Nn __enumext_first_item_tmp_viii:
5251 {
5252 \skip_horizontal:n
5253 {
5254 -\l__enumext_labelwidth_viii_dim - \l__enumext_labelsep_viii_dim
5255 }
5256 \ignorespaces
5257 }

(End of definition for __enumext_first_item_tmp_viii:.)

__enumext_start_item_tmp_viii:

__enumext_item_peek_args_viii:

__enumext_joined_item_viii:w

__enumext_standar_item_viii:w

First we will call the function __enumext_stop_item_tmp_viii: that we will redefine later, we will
increment the value of \l__enumext_item_column_pos_viii_int that will count the item’s by rows and
the value of \g__enumext_item_count_all_viii_int that will count the total of item’s in the environment.
After that we will call the function __enumext_item_peek_args_viii: that will handle the arguments
passed to \item.
5258 \cs_new_protected_nopar:Nn __enumext_start_item_tmp_viii:
5259 {
5260 __enumext_stop_item_tmp_viii:
5261 \int_incr:N \l__enumext_item_column_pos_viii_int
5262 \int_gincr:N \g__enumext_item_count_all_viii_int
5263 __enumext_item_peek_args_viii:
5264 }

The function __enumext_item_peek_args_viii: will handle the \item(〈number〉). Look for the argu-
ment “(”, if it is present we will call the function __enumext_joined_item_viii:w (〈number〉), which is
in charge of joining the item’s in the same row, in case they are not present we will set the default value (1).
5265 \cs_new_protected:Nn __enumext_item_peek_args_viii:
5266 {
5267 \peek_meaning:NTF (
5268 { __enumext_joined_item_viii:w }
5269 { __enumext_joined_item_viii:w (1) }
5270 }

The function __enumext_joined_item_viii:w will first call the function __enumext_starred_-
joined_item_viii:n in charge of setting the width of the box that will store the content passed to \item.
Then we will look for the argument “*”, if it is present we will call the function __enumext_starred_-
item_viii:w otherwise we will call the function __enumext_standar_item_viii:w.
5271 \cs_new_protected:Npn __enumext_joined_item_viii:w (#1)
5272 {
5273 __enumext_starred_joined_item_viii:n {#1}
5274 \peek_meaning_remove:NTF *
5275 { __enumext_starred_item_viii:w }
5276 { __enumext_standar_item_viii:w }
5277 }

134 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

The function __enumext_standar_item_viii:w will first look for the argument “[”, if present it will
set the state of the variable \l__enumext_wrap_label_opt_viii_bool equal to the state of the vari-
able \l__enumext_wrap_label_opt_viii_bool handled by the key wrap-label* and finally execute
the non-enumerated version \item[〈custom〉] by means of the function __enumext_start_item_viii:w,
otherwise we will set the value of the variable \l__enumext_wrap_label_viii_bool handled by the wrap-
label key to true and set the switch \if@noitemarg to true to execute the enumerated version of \item by
means of the function __enumext_start_item_viii:w [\l__enumext_label_viii_tl].
5278 \cs_new_protected:Npn __enumext_standar_item_viii:w
5279 {
5280 \bool_set_false:N \l__enumext_item_starred_viii_bool
5281 \bool_set_false:N \l__enumext_item_wrap_key_bool
5282 \peek_meaning:NTF [
5283 {
5284 \bool_set_eq:NN \l__enumext_wrap_label_viii_bool \l__enumext_wrap_label_opt_viii_bool
5285 __enumext_start_item_viii:w
5286 }
5287 {
5288 \bool_set_true:N \l__enumext_wrap_label_viii_bool
5289 \legacy_if_set_true:n { @noitemarg }
5290 __enumext_start_item_viii:w [\l__enumext_label_viii_tl] \ignorespaces
5291 }
5292 }

(End of definition for __enumext_start_item_tmp_viii: and others.)

__enumext_starred_item_viii:w

__enumext_starred_item_viii_aux_i:w

__enumext_starred_item_viii_aux_ii:w

__enumext_keyans_starred_item_star:

The function __enumext_starred_item_viii:w together with the specified auxiliary functions aux_i:w
and aux_ii:w execute \item* and \item*[〈content〉].
5293 \cs_new_protected:Npn __enumext_starred_item_viii:w
5294 {
5295 \bool_set_true:N \l__enumext_item_starred_viii_bool
5296 \bool_set_true:N \l__enumext_item_wrap_key_bool
5297 \bool_set_true:N \l__enumext_wrap_label_viii_bool
5298 \peek_meaning:NTF [
5299 { __enumext_starred_item_viii_aux_i:w }
5300 { __enumext_starred_item_viii_aux_ii:w }
5301 }

The function __enumext_starred_item_viii_aux_i:w will save the optional argument to \item* in
\l__enumext_store_current_opt_arg_tl and will save this argument along with the spacing set by
the key save-sep in variable \l__enumext_store_current_label_tl if present, then call the function
__enumext_starred_item_viii_aux_ii:w.
5302 \cs_new_protected:Npn __enumext_starred_item_viii_aux_i:w [#1]
5303 {
5304 \tl_clear:N \l__enumext_store_current_label_tl
5305 \tl_if_novalue:nF { #1 }
5306 {
5307 \tl_if_empty:NF \l__enumext_store_keyans_item_opt_sep_viii_tl
5308 {
5309 \tl_put_right:NV \l__enumext_store_current_label_tl \l__enumext_store_keyans_item_opt_sep_viii_tl
5310 \tl_put_right:Nn \l__enumext_store_current_label_tl { #1 }
5311 }
5312 \tl_set:Nn \l__enumext_store_current_opt_arg_tl { #1 }
5313 }
5314 __enumext_starred_item_viii_aux_ii:w
5315 }
5316 \cs_new_protected:Npn __enumext_starred_item_viii_aux_ii:w
5317 {
5318 \legacy_if_set_true:n { @noitemarg }
5319 __enumext_start_item_viii:w [\l__enumext_label_viii_tl] \ignorespaces
5320 }

The function __enumext_keyans_starred_item_star: will be in charge of storing the current 〈label〉
for \item* followed by the [〈content〉] for \item*[〈content〉] if present in the sequence and prop list set
by the save-ans key. In this same function the keys show-ans, show-pos, mark-sep and save-ref are
implemented.
5321 \cs_new_protected:Nn __enumext_keyans_starred_item_star:
5322 {
5323 \tl_put_left:Ne \l__enumext_store_current_label_tl { \l__enumext_label_viii_tl }
5324 __enumext_store_addto_prop:V \l__enumext_store_current_label_tl
5325 __enumext_keyans_store_ref:
5326 \tl_put_left:Nn \l__enumext_store_current_label_tl { \item }

135 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5327 __enumext_keyans_addto_seq_link:
5328 \int_gincr:N \g__enumext_check_starred_cmd_int
5329 \dim_compare:nNnT { \l__enumext_mark_sym_sep_viii_dim } = { \c_zero_dim }
5330 {
5331 \dim_set:Nn \l__enumext_mark_sym_sep_viii_dim { \l__enumext_labelsep_viii_dim }
5332 }
5333 \bool_if:NT \l__enumext_show_answer_bool
5334 {
5335 \tl_set_eq:NN \l__enumext_mark_answer_sym_tl \l__enumext_mark_answer_sym_viii_tl
5336 \str_set_eq:NN \l__enumext_mark_position_str \l__enumext_mark_position_viii_str
5337 __enumext_print_keyans_box:NN
5338 \l__enumext_labelwidth_viii_dim \l__enumext_mark_sym_sep_viii_dim
5339 }
5340 \bool_if:NT \l__enumext_show_position_bool
5341 {
5342 \tl_set:Ne \l__enumext_mark_answer_sym_tl
5343 {
5344 \group_begin:
5345 \exp_not:N \normalfont
5346 \exp_not:N \footnotesize [\int_eval:n
5347 {
5348 \prop_count:c { g__enumext_ \l__enumext_store_name_tl _prop }
5349 }
5350]
5351 \group_end:
5352 }
5353 \str_set_eq:NN \l__enumext_mark_position_str \l__enumext_mark_position_viii_str
5354 __enumext_print_keyans_box:NN
5355 \l__enumext_labelwidth_viii_dim \l__enumext_mark_sym_sep_viii_dim
5356 }
5357 }

(End of definition for __enumext_starred_item_viii:w and others.)

__enumext_keyans_wraper_label_viii:n

__enumext_fake_make_label_viii:n

The implementation at this is very similar to that of the enumext* environment.
5358 \cs_new_protected:Npn __enumext_keyans_wraper_label_viii:n #1
5359 {
5360 \bool_lazy_all:nT
5361 {
5362 { \bool_if_p:N \l__enumext_wrap_label_viii_bool }
5363 { \bool_if_p:N \l__enumext_show_answer_bool }
5364 { \bool_if_p:N \l__enumext_item_wrap_key_bool }
5365 { \cs_if_exist_p:N __enumext_keyans_wrapper_item_viii:n }
5366 }
5367 {
5368 \cs_set_eq:NN
5369 __enumext_wrapper_label_viii:n __enumext_keyans_wrapper_item_viii:n
5370 }
5371 \bool_if:NTF \l__enumext_wrap_label_viii_bool
5372 {
5373 __enumext_wrapper_label_viii:n {#1}
5374 }
5375 { #1 }
5376 }
5377 \cs_new_protected_nopar:Npn __enumext_fake_make_label_viii:n #1
5378 {
5379 \legacy_if:nT { @noitemarg }
5380 {
5381 \legacy_if_set_false:n { @noitemarg }
5382 \legacy_if:nT { @nmbrlist }
5383 {
5384 \refstepcounter{enumXviii}
5385 }
5386 }
5387 \bool_if:NT \l__enumext_item_starred_viii_bool
5388 {
5389 __enumext_keyans_starred_item_star:
5390 }
5391 \makebox[\l__enumext_labelwidth_viii_dim][\l__enumext_align_label_viii_str]
5392 {
5393 \tl_use:N \l__enumext_label_font_style_viii_tl

136 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5394 __enumext_keyans_wraper_label_viii:n {#1}
5395 }
5396 \skip_horizontal:N \l__enumext_labelsep_viii_dim \ignorespaces
5397 }

(End of definition for __enumext_keyans_wraper_label_viii:n and __enumext_fake_make_label_viii:n.)

13.48.2 Real definition of \item in keyans*

__enumext_start_item_viii:w
__enumext_stop_item_viii:

The implementation at this is very similar to that of the enumext* environment.
5398 \cs_new_protected_nopar:Npn __enumext_start_item_viii:w [#1]
5399 {
5400 \cs_set_eq:NN __enumext_stop_item_tmp_viii: __enumext_stop_item_viii:
5401 \hbox_set_to_wd:Nnw \l__enumext_item_text_viii_box
5402 {
5403 \l__enumext_joined_width_viii_dim
5404 + \l__enumext_labelwidth_viii_dim
5405 + \l__enumext_labelsep_viii_dim
5406 }
5407 __enumext_renew_footnote_starred:
5408 __enumext_start_list_tag:n {keyans*}
5409 __enumext_fake_make_label_viii:n {#1}
5410 __enumext_stop_start_list_tag:
5411 __enumext_minipage:w [t]{ \l__enumext_joined_width_viii_dim }
5412 \dim_set_eq:NN \parindent \l__enumext_listparindent_viii_dim
5413 \skip_set_eq:NN \parskip \l__enumext_parsep_viii_skip
5414 __enumext_unskip_unkern:
5415 __enumext_unskip_unkern:
5416 \skip_horizontal:n { -\l__enumext_listparindent_viii_dim } \ignorespaces
5417 \tl_use:N \l__enumext_fake_item_indent_viii_tl
5418 \bool_if:NT \l__enumext_item_starred_viii_bool
5419 {
5420 __enumext_keyans_show_item_opt_viii:
5421 }
5422 \tl_use:N \l__enumext_after_list_args_viii_tl
5423 }
5424 \cs_new_protected_nopar:Nn __enumext_stop_item_viii:
5425 {
5426 __enumext_endminipage:
5427 __enumext_stop_list_tag:n {keyans*}
5428 \hbox_set_end:
5429 \int_set:Nn \hbadness { 10000 }
5430 \box_use_drop:N \l__enumext_item_text_viii_box
5431 \int_compare:nNnTF
5432 { \l__enumext_item_column_pos_viii_int } = { \l__enumext_columns_viii_int }
5433 {
5434 \par\noindent
5435 \int_zero:N \l__enumext_item_column_pos_viii_int
5436 }
5437 {
5438 \skip_horizontal:N \l__enumext_columns_sep_viii_dim
5439 }
5440 }

(End of definition for __enumext_start_item_viii:w and __enumext_stop_item_viii:.)

__enumext_remove_extra_parsep_viii: The implementation at this is very similar to that of the enumext* environment.
5441 \cs_new_protected:Nn __enumext_remove_extra_parsep_viii:
5442 {
5443 \int_compare:nNnT
5444 {
5445 \int_mod:nn
5446 { \g__enumext_item_count_all_viii_int }
5447 { \l__enumext_columns_viii_int }
5448 }
5449 =
5450 { 0 }
5451 {
5452 \para_end:
5453 \skip_vertical:n { -\l__enumext_itemsep_viii_skip }
5454 \skip_vertical:N \c_zero_skip
5455 \int_gzero:N \g__enumext_item_count_all_viii_int

137 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5456 }
5457 }

(End of definition for __enumext_remove_extra_parsep_viii:.)

13.49 The command \getkeyans

\getkeyans
__enumext_getkeyans_aux:n

__enumext_getkeyans:nn

The \getkeyans command takes a mandatory argument of the form {〈store name : position〉}. Retrieve a
“single content” stored by \anskey, \anspic* and \item* and anskey* from prop list defined by save-ans
key.
5458 \NewDocumentCommand \getkeyans { m }
5459 {
5460 \exp_args:Ne __enumext_getkeyans_aux:n
5461 { \tl_to_str:e { \text_expand:n {#1} } }
5462 }

The internal function __enumext_getkeyans_aux:n is in charge of splitting the mandatory argument using
“:”. If “:” is omitted it will return an error.
5463 \cs_new_protected:Npn __enumext_getkeyans_aux:n #1
5464 {
5465 \str_if_in:nnTF {#1} { : }
5466 {
5467 \use:e
5468 {
5469 \cs_set:Npn \exp_not:N __enumext_tmp:w ##1 \c_colon_str ##2 \scan_stop:
5470 { {##1} {##2} }
5471 }
5472 \exp_after:wN __enumext_getkeyans:nn __enumext_tmp:w #1 \scan_stop:
5473 }
5474 { \msg_error:nnn { enumext } { missing-colon } {#1} }
5475 }

The internal function __enumext_getkeyans:nn will check for the existence of the prop list, if it does not
exist it will return an error message, then it will fetch the content specified by the second argument from prop
list.
5476 \cs_new_protected:Npn __enumext_getkeyans:nn #1 #2
5477 {
5478 \prop_if_exist:cTF { g__enumext_#1_prop }
5479 {
5480 \prop_item:cn { g__enumext_#1_prop }{#2}
5481 }
5482 {
5483 \msg_error:nnn { enumext } { undefined-storage-anskey } {#1}
5484 }
5485 }

(End of definition for \getkeyans , __enumext_getkeyans_aux:n , and __enumext_getkeyans:nn. This function is documented on
page 19.)

13.50 The command \printkeyans
The \printkeyans command prints “all stored content” in the sequence defined by the save-ans key.
The first thing we will do is define a set of 〈filtered keys〉 with which we will control the options of the
different nesting levels for the environment enumext and enumext* by storing their values in the list of tokens
\l__enumext_print_keyans_X_tl.
The variable \l__enumext_print_keyans_starred_tl will have the default 〈keys〉 for \printkeyans*
and will be set by \setenumext[〈print*〉] and the variable \l__enumext_print_keyans_vii_tl will
have the default keys for the environment enumext* nested within the sequence and will be set by
\setenumext[〈print ,*〉], the rest of the variables will be for the environment enumext and will be set
by \setenumext[〈print , level〉].

5486 \keys_define:nn { enumext / print }
5487 {
5488 print* .code:n = \keys_precompile:neN { enumext / enumext* }
5489 { __enumext_filter_save_key:n {#1} }
5490 \l__enumext_print_keyans_starred_tl, % starred cmd
5491 print* .initial:n = { labelwidth=0pt, labelsep=0.3333em, itemindent=0pt, list-offset=0pt,
5492 rightmargin=0pt, listparindent=0pt, nosep, label=\arabic*.,
5493 columns=2, first=\small, font=\small },
5494 print-1 .code:n = \keys_precompile:neN { enumext / level-1 }
5495 { __enumext_filter_save_key:n {#1} }
5496 \l__enumext_print_keyans_i_tl,
5497 print-1 .initial:n = { labelwidth=0pt, labelsep=0.3333em, itemindent=0pt, list-offset=0pt,

138 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5498 rightmargin=0pt, listparindent=0pt, nosep, label=\arabic*.,
5499 columns=2, first=\small, font=\small },
5500 print-2 .code:n = \keys_precompile:neN { enumext / level-2 }
5501 { __enumext_filter_save_key:n {#1} }
5502 \l__enumext_print_keyans_ii_tl,
5503 print-2 .initial:n = { labelwidth=0pt, labelsep=0.3333em, itemindent=0pt, list-offset=0pt,
5504 rightmargin=0pt, listparindent=0pt, nosep, label=(\alph*),
5505 first=\small, font=\small },
5506 print-3 .code:n = \keys_precompile:neN { enumext / level-3 }
5507 { __enumext_filter_save_key:n {#1} }
5508 \l__enumext_print_keyans_iii_tl,
5509 print-3 .initial:n = { labelwidth=0pt, labelsep=0.3333em, itemindent=0pt, list-offset=0pt,
5510 rightmargin=0pt, listparindent=0pt, nosep, label=\roman*.,
5511 first=\small, font=\small },
5512 print-4 .code:n = \keys_precompile:neN { enumext / level-4 }
5513 { __enumext_filter_save_key:n {#1} }
5514 \l__enumext_print_keyans_iv_tl,
5515 print-4 .initial:n = { labelwidth=0pt, labelsep=0.3333em, itemindent=0pt, list-offset=0pt,
5516 rightmargin=0pt, listparindent=0pt, nosep, label=\Alph*.,
5517 first=\small, font=\small },
5518 print-* .code:n = \keys_precompile:neN { enumext / enumext* }
5519 { __enumext_filter_save_key:n {#1} }
5520 \l__enumext_print_keyans_vii_tl, % starred nested
5521 print-* .initial:n = { labelwidth=0pt, labelsep=0.3333em, itemindent=0pt, list-offset=0pt,
5522 rightmargin=0pt, listparindent=0pt, nosep, label=\arabic*.,
5523 first=\small, font=\small },
5524 }

BOMB The reason for storing 〈keys〉 in token lists using \keys_precompile:neN is because the keys are set via \setenumext
but are later executed by running the command \printkeyans and they are not handled directly by its optional argument,
except those related to the first opening level.

\printkeyans
__enumext_printkeyans:nnn

Create a user command to print “all stored content” in sequence for \anskey, anskey*, \item* and \anspic*.
Within a group we will run our “precompiled keys” and then call the internal function __enumext_-
printkeyans:nnn.
5525 \NewDocumentCommand \printkeyans { s O{} m }
5526 {
5527 \group_begin:
5528 \bool_set_true:N \l__enumext_print_keyans_cmd_bool
5529 \tl_use:N \l__enumext_print_keyans_i_tl
5530 \tl_use:N \l__enumext_print_keyans_ii_tl
5531 \tl_use:N \l__enumext_print_keyans_iii_tl
5532 \tl_use:N \l__enumext_print_keyans_iv_tl
5533 \tl_use:N \l__enumext_print_keyans_vii_tl
5534 __enumext_printkeyans:nnn { #1 } { #2 } { #3 }
5535 \bool_set_false:N \l__enumext_print_keyans_cmd_bool
5536 \group_end:
5537 }

The internal function __enumext_printkeyans:nnn will check for the existence of the sequence, if it does
not exist it will return an error message, then it will check if not empty.
5538 \cs_new_protected:Npn __enumext_printkeyans:nnn #1 #2 #3
5539 {
5540 \seq_if_exist:cTF { g__enumext_#3_seq }
5541 {
5542 \seq_if_empty:cF { g__enumext_#3_seq }
5543 {

If the starred argument ‘*’ is present we will check that the environment enumext* is not saved in the sequence,
then execute the variable \l__enumext_print_keyans_starred_tl that contains the default 〈keys〉 for the
environment enumext*, we set \l__enumext_base_line_fix_bool and \l__enumext_print_keyans_-
star_bool to true for baseline correction, open the enumext* environment passing the optional argument
and map the sequence, then set \l__enumext_base_line_fix_bool and \l__enumext_print_keyans_-
star_bool to false.
5544 \bool_if:nTF {#1}
5545 {
5546 \seq_if_in:cnTF { g__enumext_#3_seq } { \end{enumext*} }
5547 {
5548 \msg_error:nnnn { enumext } { print-starred } {#3} { enumext* }
5549 }
5550 {

139 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5551 \tl_use:N \l__enumext_print_keyans_starred_tl
5552 \bool_set_true:N \l__enumext_base_line_fix_bool
5553 \bool_set_true:N \l__enumext_print_keyans_star_bool
5554 \begin{enumext*}[#2]
5555 \seq_map_inline:cn { g__enumext_#3_seq } { ##1 }
5556 \end{enumext*}
5557 \bool_set_false:N \l__enumext_base_line_fix_bool
5558 \bool_set_false:N \l__enumext_print_keyans_star_bool
5559 }
5560 }

Otherwise it will open the environment enumext passing the optional argument to the “first level” then map
the sequence.
5561 {
5562 \begin{enumext}[#2]
5563 \seq_map_inline:cn { g__enumext_#3_seq } { ##1 }
5564 \end{enumext}
5565 }
5566 }
5567 }
5568 {
5569 \msg_error:nnn { enumext } { undefined-storage-anskey } {#3}
5570 }
5571 }

(End of definition for \printkeyans and __enumext_printkeyans:nnn. This function is documented on page 20.)

13.51 The command \setenumext
The command \setenumext will be in charge of managing the 〈keys〉 passed to all environments and to the
\printkeyans command. We must take precautions with the enumext* and enumext environments so as
not to capture 〈keys〉 that complicate us.

__enumext_filter_level:n
__enumext_filter_level_key:n

__enumext_filter_level_pair:nn

The function __enumext_filter_level:n will be in charge of filtering the 〈keys〉 passed to the enumext
and enumext* environments.
5572 \cs_new:Npn __enumext_filter_level:n #1
5573 {
5574 \use:e
5575 {
5576 \keyval_parse:NNn
5577 __enumext_filter_level_key:n
5578 __enumext_filter_level_pair:nn {#1}
5579 }
5580 }

The function __enumext_filter_level_key:n will be responsible for filtering the 〈keys〉 that are passed
“without value” by excluding the keys resume*, reset and reset* passed to the enumext and enumext*
environments.
5581 \cs_new:Npn __enumext_filter_level_key:n #1
5582 {
5583 \str_case:nnF {#1}
5584 {
5585 { resume* } {} { reset } {} { reset* } {}
5586 }
5587 { , { \exp_not:n {#1} } }
5588 }

The function __enumext_filter_level_pair:nnwill be responsible for filtering the 〈keys〉 that are passed
“with value” by excluding the series, resume and save-ans keys passed to the enumext and enumext*
environments.
5589 \cs_new:Npn __enumext_filter_level_pair:nn #1#2
5590 {
5591 \str_case:nnF {#1}
5592 {
5593 { series } {} { save-ans } {} { resume } {}
5594 }
5595 { , { \exp_not:n {#1} } = { \exp_not:n {#2} } }
5596 }

(End of definition for __enumext_filter_level:n , __enumext_filter_level_key:n , and __enumext_filter_level_-
pair:nn.)
Now define a “meta families” of 〈keys〉 to access from \setenumext.

140 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5597 \keys_define:nn { enumext / meta-families }
5598 {
5599 enumext-1 .code:n = {
5600 \keys_set:ne { enumext / level-1 }
5601 {
5602 __enumext_filter_level:n {#1}
5603 }
5604 },
5605 enumext-2 .code:n = {
5606 \keys_set:ne { enumext / level-2 }
5607 {
5608 __enumext_filter_level:n {#1}
5609 }
5610 },
5611 enumext-3 .code:n = {
5612 \keys_set:ne { enumext / level-3 }
5613 {
5614 __enumext_filter_level:n {#1}
5615 }
5616 },
5617 enumext-4 .code:n = {
5618 \keys_set:ne { enumext / level-4 }
5619 {
5620 __enumext_filter_level:n {#1}
5621 }
5622 },
5623 enumext* .code:n = {
5624 \keys_set:ne { enumext / enumext* }
5625 {
5626 __enumext_filter_level:n {#1}
5627 }
5628 },
5629 keyans .code:n = { \keys_set:nn { enumext / keyans } {#1} },
5630 keyans* .code:n = { \keys_set:nn { enumext / keyans* } {#1} },
5631 print* .code:n = { \keys_set:nn { enumext / print } { print* = {#1} } },
5632 print-1 .code:n = { \keys_set:nn { enumext / print } { print-1 = {#1} } },
5633 print-2 .code:n = { \keys_set:nn { enumext / print } { print-2 = {#1} } },
5634 print-3 .code:n = { \keys_set:nn { enumext / print } { print-3 = {#1} } },
5635 print-4 .code:n = { \keys_set:nn { enumext / print } { print-4 = {#1} } },
5636 print-* .code:n = { \keys_set:nn { enumext / print } { print-* = {#1} } },
5637 unknown .code:n = { \msg_error:nn { enumext } { unknown-key-family } },
5638 }

We store them in the constant sequence \c__enumext_all_families_seq separated by commas.
5639 \seq_const_from_clist:Nn \c__enumext_all_families_seq
5640 {
5641 enumext-1, enumext-2, enumext-3, enumext-4, keyans, enumext*,
5642 keyans*, print-1, print-2, print-3, print-4, print-*, print*,
5643 }

\setenumext
__enumext_set_parse:n
__enumext_set_error:nn

Now we define the user command \setenumext.
5644 \NewDocumentCommand \setenumext { O{enumext,1} +m }
5645 {
5646 \seq_clear:N \l__enumext_setkey_tmpa_seq
5647 \seq_set_from_clist:Nn \l__enumext_setkey_tmpb_seq {#1}
5648 \int_set:Nn \l__enumext_setkey_tmpa_int
5649 {
5650 \seq_count:N \l__enumext_setkey_tmpb_seq
5651 }
5652 \int_compare:nNnTF { \l__enumext_setkey_tmpa_int } > { 1 }
5653 {
5654 \seq_pop_left:NN \l__enumext_setkey_tmpb_seq \l__enumext_setkey_tmpa_tl
5655 \seq_map_function:NN \l__enumext_setkey_tmpb_seq __enumext_set_parse:n
5656 \seq_set_map_e:NNn \l__enumext_setkey_tmpa_seq \l__enumext_setkey_tmpa_seq
5657 {
5658 \tl_use:N \l__enumext_setkey_tmpa_tl - ##1
5659 }
5660 }
5661 {
5662 \seq_put_right:Ne \l__enumext_setkey_tmpa_seq { \tl_trim_spaces:n {#1} }
5663 }

141 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5664 \seq_if_empty:NTF \l__enumext_setkey_tmpa_seq
5665 { \seq_map_inline:Nn \c__enumext_all_families_seq }
5666 { \seq_map_inline:Nn \l__enumext_setkey_tmpa_seq }
5667 {
5668 \keys_set:nn { enumext / meta-families } { ##1 = {#2} }
5669 }
5670 }

Internal functions used by the \setenumext command.
5671 \cs_new_protected:Npn __enumext_set_parse:n #1
5672 {
5673 \tl_set:Ne \l__enumext_setkey_tmpb_tl { \tl_trim_spaces:n {#1} }
5674 \clist_map_inline:nn { 0, 1, 2, 3, 4, * } % <- max level
5675 { \tl_remove_all:Nn \l__enumext_setkey_tmpb_tl {##1} }
5676 \tl_if_empty:NTF \l__enumext_setkey_tmpb_tl
5677 {
5678 \seq_put_right:Ne \l__enumext_setkey_tmpa_seq
5679 { \tl_trim_spaces:n {#1} }
5680 }
5681 { __enumext_set_error:nn {#1} { } }
5682 }
5683 \cs_new_protected:Npn __enumext_set_error:nn #1 #2
5684 { \msg_error:nnnn { enumext } { invalid-key } {#1} {#2} }

(End of definition for \setenumext , __enumext_set_parse:n , and __enumext_set_error:nn. This function is documented on
page 6.)

13.52 The command \setenumextmeta
The command \setenumextmeta will be responsible for adding new “meta-keys” for the enumext and
enumext* environments. The implementation code was given by Jonathan P. Spratte (@Skillmon) answer
in Simplify syntax for command that adds .meta key to existing keys (l3keys).

\setenumextmeta
__enumext_key_set_meta:nnn
__enumext_key_def_meta:nnn
__enumext_key_def_meta:Vnn

First we will create a 〈keys〉 of type .code:n for “all levels” of the enumext environment.
5685 \int_step_inline:nn { 4 }
5686 {
5687 \keys_define:nn { enumext }
5688 {
5689 #1 .code:n = \str_set:Nn \l__enumext_meta_path_str { level-#1 }
5690 ,#1 .value_forbidden:n = true
5691 }
5692 }

And now we define the 〈keys〉 for the environments using .code:n for the enumext environment and .meta:n
for the enumext* environment.
5693 \clist_map_inline:nn { enumext }
5694 {
5695 \keys_define:nn { enumext }
5696 {
5697 #1 .code:n = % ignored for now, might do something useful in the future
5698 ,#1 .value_forbidden:n = true
5699 ,#1* .code:n = \str_set:Nn \l__enumext_meta_path_str { #1* }
5700 ,#1* .value_forbidden:n = true
5701 }
5702 }
5703 \keys_define:nn { enumext }
5704 {
5705 * .meta:n = enumext*
5706 ,* .value_forbidden:n = true
5707 }

Now we create the user command taking care that unknown cannot be passed as an argument.
5708 \NewDocumentCommand \setenumextmeta { s O{enumext,1} m +m }
5709 {
5710 \str_if_eq:eeTF { \tl_trim_spaces:n {#3} } { unknown }
5711 { \msg_error:nn { enumext } { prohibited-unknown } }
5712 {
5713 \bool_if:nTF {#1}
5714 {
5715 \int_step_inline:nn { 4 }
5716 { __enumext_key_set_meta:nnn { enumext, ##1 } {#3} {#4} }
5717 __enumext_key_set_meta:nnn { enumext* } {#3} {#4}
5718 }

142 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/747159

enumext v2.1 §.13 Implementation

5719 { __enumext_key_set_meta:nnn {#2} {#3} {#4} }
5720 }
5721 }

The internal functions __enumext_key_set_meta:nnn and __enumext_key_def_meta:nnn will check
the optional argument and create the “meta-key”.
5722 \cs_new_protected:Npn __enumext_key_set_meta:nnn #1
5723 {
5724 \keys_set:nn { enumext } {#1}
5725 __enumext_key_def_meta:Vnn \l__enumext_meta_path_str
5726 }
5727 \cs_new_protected:Npn __enumext_key_def_meta:nnn #1#2#3
5728 {
5729 \bool_lazy_or:nnTF
5730 { \keys_if_exist_p:nn { enumext / #1} {#2} }
5731 { \keys_if_exist_p:nn { enumext / enumext* } {#2} }
5732 { \msg_error:nnn { enumext } { already-defined } {#2} }
5733 {
5734 \keys_define:nn { enumext / #1 }
5735 {
5736 #2 .meta:n = {#3},
5737 #2 .value_forbidden:n = true
5738 }
5739 }
5740 }
5741 \cs_generate_variant:Nn __enumext_key_def_meta:nnn { V }

(End of definition for \setenumextmeta , __enumext_key_set_meta:nnn , and __enumext_key_def_meta:nnn. This function is
documented on page 6.)

13.53 The command \foreachkeyans
The command \foreachkeyans will execute a loop over the prop list and return its contents. The implemen-
tation code is adapted from the answer provided by Enrico Gregorio (@egreg) in Expand a .cs defined by
key inside the function.

\foreachkeyans
__enumext_parse_foreach_keys:nn

__enumext_parse_foreach_keys:n

__enumext_foreach_keyans:nn
__enumext_foreach_add_body:n

We define a set of 〈keys〉 for command and we will save the default values of these in \g__enumext_-
foreach_default_keys_tl to avoid the use of group.
5742 \keys_define:nn { enumext / foreach }
5743 {
5744 before .tl_set:N = \l__enumext_foreach_before_tl,
5745 before .value_required:n = true,
5746 after .tl_set:N = \l__enumext_foreach_after_tl,
5747 after .value_required:n = true,
5748 start .int_set:N = \l__enumext_foreach_start_int,
5749 start .value_required:n = true,
5750 stop .int_set:N = \l__enumext_foreach_stop_int,
5751 stop .value_required:n = true,
5752 step .int_set:N = \l__enumext_foreach_step_int,
5753 step .value_required:n = true,
5754 wrapper .cs_set_protected:Np = __enumext_foreach_wrapper:n #1,
5755 wrapper .value_required:n = true,
5756 sep .tl_set:N = \l__enumext_foreach_sep_tl,
5757 sep .value_required:n = true,
5758 unknown .code:n = { __enumext_parse_foreach_keys:n {#1} }
5759 }
5760 \keys_precompile:nnN { enumext / foreach }
5761 {
5762 before={},after={},start=1,step=1,stop=0,wrapper=#1,sep={; }
5763 }
5764 \l__enumext_foreach_default_keys_tl

Functions for handling unknown 〈keys〉.
5765 \cs_new_protected:Npn __enumext_parse_foreach_keys:nn #1#2
5766 {
5767 \tl_if_blank:nTF {#2}
5768 {
5769 \msg_error:nnn { enumext } { for-key-unknown } {#1}
5770 }
5771 {
5772 \msg_error:nnnn { enumext } { for-key-value-unknown } {#1} {#2}
5773 }
5774 }

143 / 167©2024–2026 by Pablo González L

https://tex.stackexchange.com/a/721130
https://tex.stackexchange.com/a/721130

enumext v2.1 §.13 Implementation

5775 \cs_new_protected:Npn __enumext_parse_foreach_keys:n #1
5776 {
5777 \exp_args:NV __enumext_parse_foreach_keys:nn \l_keys_key_str {#1}
5778 }

We create the command.
5779 \NewDocumentCommand \foreachkeyans { +O{} m }
5780 {
5781 __enumext_foreach_keyans:nn {#1} {#2}
5782 }

Finally the internal functions __enumext_foreach_keyans:nn and __enumext_foreach_add_body:n
will loop through the prop list and print the contents.
5783 \cs_new_protected:Npn __enumext_foreach_keyans:nn #1 #2
5784 {
5785 \tl_use:N \l__enumext_foreach_default_keys_tl
5786 \keys_set:nn { enumext / foreach } {#1}
5787 \tl_set:Nn \l__enumext_foreach_name_prop_tl {#2}
5788 \prop_if_exist:cF { g__enumext_#2_prop }
5789 {
5790 \msg_error:nnn { enumext } { undefined-storage-anskey } {#2}
5791 }
5792 \int_compare:nNnT { \l__enumext_foreach_stop_int } = { 0 }
5793 {
5794 \int_set:Nn \l__enumext_foreach_stop_int
5795 { \prop_count:c { g__enumext_#2_prop } }
5796 }
5797 \seq_clear:N \l__enumext_foreach_print_seq
5798 \int_step_function:nnnN
5799 { \l__enumext_foreach_start_int }
5800 { \l__enumext_foreach_step_int }
5801 { \l__enumext_foreach_stop_int }
5802 __enumext_foreach_add_body:n
5803 \seq_use:NV \l__enumext_foreach_print_seq \l__enumext_foreach_sep_tl
5804 }
5805 \cs_new_protected:Npn __enumext_foreach_add_body:n #1
5806 {
5807 \seq_put_right:Ne \l__enumext_foreach_print_seq
5808 {
5809 \exp_not:V \l__enumext_foreach_before_tl
5810 __enumext_foreach_wrapper:n
5811 {
5812 \prop_item:cn { g__enumext_ \l__enumext_foreach_name_prop_tl _prop }{#1}
5813 }
5814 \exp_not:V \l__enumext_foreach_after_tl
5815 }
5816 }

(End of definition for \foreachkeyans and others. This function is documented on page 19.)

13.54 Messages
Message used by package-load for multicol and hyperref packages.
5817 \msg_new:nnn { enumext } { package-load }
5818 {
5819 The~'#1'~package~is~already~loaded.
5820 }
5821 \msg_new:nnn { enumext } { package-not-load }
5822 {
5823 The~'#1'~package~will~be~loaded~as~a~dependency.
5824 }

Message used in the creation of counters by enumext package.
5825 \msg_new:nnn { enumext } { counters }
5826 {
5827 The~counter~'#1'~is~already~defined~by~some~\\
5828 package~or~macro,~it~cannot~be~continued.
5829 }

Message used by align and mark-pos keys.
5830 \msg_new:nnn { enumext } { unknown-choice }
5831 {
5832 The~value~'#3'~for~'#1'~key~is~invalid~use~('#2').
5833 }

144 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

Message used by reserved anskey* environment by enumext package.
5834 \msg_new:nnnn { enumext } { anskey-env-error }
5835 {
5836 The~environment~'#1'~is~reserved~by ~\\
5837 'enumext'~package,~It~is~already~defined.
5838 }
5839 {
5840 The~environment~'#1'~is~defined~internally ~
5841 for~the~'save-ans'~key~with~save-ans~key~active.~See~documentation.\\
5842 }

Message used in the creation of prop list by enumext package.
5843 \msg_new:nnn { enumext } { store-prop }
5844 {
5845 *~Package~enumext:~Creating ~
5846 \c_backslash_str g__enumext_#1_prop~\msg_line_context:.
5847 }
5848 \msg_new:nnn { enumext } { store-seq }
5849 {
5850 *~Package~enumext:~Creating ~
5851 \c_backslash_str g__enumext_#1_seq~\msg_line_context:.
5852 }
5853 \msg_new:nnn { enumext } { store-int }
5854 {
5855 *~Package~enumext:~Creating ~
5856 \c_backslash_str g__enumext_resume_#1_int~\msg_line_context:.
5857 }
5858 \msg_new:nnn { enumext } { prop-seq-int-hook }
5859 {
5860 *~Package~enumext:~Elements~in ~
5861 \c_backslash_str g__enumext_#1_prop~=~#2.\\
5862 *~Package~enumext:~Elements~in ~
5863 \c_backslash_str g__enumext_#1_seq~=~#3.\\
5864 *~Package~enumext:~Value~off ~
5865 \c_backslash_str g__enumext_resume_#1_int~=~#4.
5866 }
5867 \msg_new:nnn { enumext } { item-answer-hook }
5868 {
5869 *~Package~enumext:~Value~off ~
5870 \c_backslash_str g__enumext_item_number_int~=~#1.\\
5871 *~Package~enumext:~Value~off ~
5872 \c_backslash_str g__enumext_item_anskey_int~=~#2.\\
5873 *~Package~enumext:~Difference~item_number_int~-~item_anskey_int~=~#3.
5874 }

Message used by [〈key = val〉] system and \setenumext command.
5875 \msg_new:nnn { enumext } { invalid-key }
5876 {
5877 The~key~'#1'~is~not~know~the~level~#2.
5878 }
5879 \msg_new:nnn { enumext } { unknown-key-family }
5880 {
5881 Unknown~key~family~`\l_keys_key_str'~for~enumext.
5882 }

Messages used in length calculation.
5883 \msg_new:nnn { enumext } { width-negative }
5884 {
5885 Ignoring~negative~value~'#1=#2'~\msg_line_context:.\\
5886 The~key~'#1'~ accepts~values ~>=~0pt.
5887 }

Messages used by show-length key in enumext.
5888 \msg_new:nnn { enumext } { list-lengths }
5889 {
5890 ****~Lengths~used~by~'enumext'~level~'#2'~\msg_line_context:~\c_space_tl ****\\
5891 __enumext_show_length:nnn { dim } { labelsep } {#1}
5892 __enumext_show_length:nnn { dim } { labelwidth } {#1}
5893 __enumext_show_length:nnn { dim } { itemindent } {#1}
5894 __enumext_show_length:nnn { dim } { leftmargin } {#1}
5895 __enumext_show_length:nnn { dim } { rightmargin } {#1}
5896 __enumext_show_length:nnn { dim } { listparindent } {#1}
5897 __enumext_show_length:nnn { skip } { topsep } {#1}

145 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5898 __enumext_show_length:nnn { skip } { parsep } {#1}
5899 __enumext_show_length:nnn { skip } { partopsep } {#1}
5900 __enumext_show_length:nnn { skip } { itemsep } {#1}
5901 **
5902 }

Messages used by show-length key in enumext*, keyans* and keyans.
5903 \msg_new:nnn { enumext } { list-lengths-not-nested }
5904 {
5905 ****~Lengths~used~by~'#2'~environment~\msg_line_context:~\c_space_tl ****\\
5906 __enumext_show_length:nnn { dim } { labelsep } {#1}
5907 __enumext_show_length:nnn { dim } { labelwidth } {#1}
5908 __enumext_show_length:nnn { dim } { itemindent } {#1}
5909 __enumext_show_length:nnn { dim } { leftmargin } {#1}
5910 __enumext_show_length:nnn { dim } { rightmargin } {#1}
5911 __enumext_show_length:nnn { dim } { listparindent } {#1}
5912 __enumext_show_length:nnn { skip } { topsep } {#1}
5913 __enumext_show_length:nnn { skip } { parsep } {#1}
5914 __enumext_show_length:nnn { skip } { partopsep } {#1}
5915 __enumext_show_length:nnn { skip } { itemsep } {#1}
5916 **
5917 }

Messages used by ref key.
5918 \msg_new:nnn { enumext } { key-ref-empty }
5919 {
5920 Key~'ref'~need~a~value~in~'#1'~ \msg_line_context:.
5921 }

Messages used by save-ans key.
5922 \msg_new:nnn { enumext } { save-ans-empty }
5923 {
5924 Key~'save-ans'~need~a~value~in~'#1'~ \msg_line_context:.
5925 }
5926 \msg_new:nnn { enumext } { save-ans-log }
5927 {
5928 *~Package~enumext:~Start~#1\c_space_tl with~save-ans=#2~\msg_line_context:.
5929 }
5930 \msg_new:nnn { enumext } { save-ans-log-hook }
5931 {
5932 *~Package~enumext:~Stop~#1\c_space_tl with~save-ans=#2~\msg_line_context:.
5933 }

Messages used by the internal system to check answer used by check-ans key.
5934 \msg_new:nnn { enumext } { items-same-answer }
5935 {
5936 **\\
5937 *~Package~enumext:~Checking~answers~in~'#1' ~
5938 for~\c_left_brace_str #2 \c_right_brace_str\\
5939 *~started~#3~and~close~\msg_line_context: : ~
5940 'OK',~all~items~with~answer.\\
5941 **
5942 }
5943 \msg_new:nnn { enumext } { item-greater-answer }
5944 {
5945 Checking~answers~in~'#1'~for~\c_left_brace_str #2 \c_right_brace_str\\
5946 started~#3~and~close~\msg_line_context: : ~'NOT~OK'\\
5947 Items~>~Answers.
5948 }
5949 \msg_new:nnn { enumext } { item-less-answer }
5950 {
5951 Checking~answers~in~'#1'~for~\c_left_brace_str #2 \c_right_brace_str\\
5952 started~#3~and~close~\msg_line_context: : ~'NOT~OK'\\
5953 Items~<~Answers.
5954 }

Messages used by the internal system to check for “starred” \item* and \anspic* commands.
5955 \msg_new:nnn { enumext } { missing-starred }
5956 {
5957 Missing~'\c_backslash_str #1*'~#2.
5958 }
5959 \msg_new:nnn { enumext } { many-starred }
5960 {

146 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

5961 Many~'\c_backslash_str #1*'~#2.
5962 }

Messages used by \printkeyans* command.
5963 \msg_new:nnn { enumext } { print-starred }
5964 {
5965 \c_backslash_str printkeyans*:~ The~sequence~'#1'~already~contains ~
5966 #2~environment~ \msg_line_context:.
5967 }

Message for the nesting depth of the environment enumext.
5968 \msg_new:nnn { enumext } { list-too-deep }
5969 {
5970 Too~deep~nesting ~for~'enumext'~\msg_line_context:.~ \\
5971 The~maximum ~level ~of ~nesting ~is~4.
5972 }

Messages used by \anskey, anskey* and \anspic commands.
5973 \msg_new:nnn { enumext } { anskey-unnumber-item }
5974 {
5975 Can't~store~with~a~unnumbered~\c_backslash_str item~\msg_line_context:.
5976 }
5977 \msg_new:nnn { enumext } { anskey-empty-arg }
5978 {
5979 Can't~store~empty~content~\msg_line_context:.
5980 }
5981 \msg_new:nnn { enumext } { anskey-wrong-place }
5982 {
5983 Wrong~place~for~command~'\c_backslash_str #1'~\msg_line_context:.~ \\
5984 '\c_backslash_str #1'~works~in~the~environment~'#2'.
5985 }
5986 \msg_new:nnn { enumext } { anskey-nested }
5987 {
5988 The~command~\c_backslash_str anskey~ can't~be~nested~\msg_line_context:.
5989 }
5990 \msg_new:nnn { enumext } { anskey-math-mode }
5991 {
5992 #1~can't~work~in~math~mode~\msg_line_context:.
5993 }
5994 \msg_new:nnn { enumext } { anskey-env-wrong }
5995 {
5996 The~environment~anskey*~cannot~use~in~'#1'~\msg_line_context:.
5997 }
5998 \msg_new:nnn { enumext } { command-wrong-place }
5999 {
6000 Wrong~place~for~command~'\c_backslash_str #1'~\msg_line_context:.~ \\
6001 '\c_backslash_str #1'~works~outside~the~environment~'#2'.
6002 }
6003 \msg_new:nnnn { enumext } { anskey-env-key-unknown }
6004 {
6005 The~key~'#1'~is~unknown~by~environment~
6006 'anskey*'~and~is~being~ignored.
6007 }
6008 {
6009 The~environment~'anskey*'~does~not~have~a~key~called ~'#1'.\\
6010 Check~that~you~have~spelled~the~key~name~correctly.
6011 }
6012 \msg_new:nnnn { enumext } { anskey-env-key-value-unknown }
6013 {
6014 The~key~'#1=#2'~is~unknown~by~environment ~
6015 'anskey*'~and~is~being~ignored.
6016 }
6017 {
6018 The~environment~'anskey*'~does~not~have~a~key~called ~'#1'.\\
6019 Check~that~you~have~spelled~the~key~name~correctly.
6020 }
6021 \msg_new:nnnn { enumext } { anskey-cmd-key-unknown }
6022 { The~key~'#1'~is~unknown~by~'\c_backslash_str anskey'~and~is~being~ignored.}
6023 {
6024 The~command ~'\c_backslash_str anskey'~does~not~have~a~key~called ~'#1'.\\
6025 Check~that~you~have~spelled~the~key~name~correctly.
6026 }

147 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

6027 \msg_new:nnnn { enumext } { anskey-cmd-key-value-unknown }
6028 { The~key~'#1=#2'~is~unknown~by~'\c_backslash_str anskey'~and~is~being~ignored. }
6029 {
6030 The~command~'\c_backslash_str anskey'~does~not~have~a~key~called ~'#1'.\\
6031 Check~that~you~have~spelled~the~key~name~correctly.
6032 }
6033 \msg_new:nnn { enumext } { overwrite-file }
6034 {
6035 Overwriting~file~'#1'.
6036 }
6037 \msg_new:nnn { enumext } { writing-file }
6038 {
6039 Writing~file~'#1'.
6040 }
6041 \msg_new:nnn { enumext } { not-writing }
6042 {
6043 File~`#1'~already~exists.~Not~writing.
6044 }

Messages used by keyans, keyans* and keyanspic environment.
6045 \msg_new:nnn { enumext } { keyans-nested }
6046 {
6047 The~environment~'keyans'~can't~be ~nested ~\msg_line_context:.
6048 }
6049 \msg_new:nnn { enumext } { keyans-wrong-level }
6050 {
6051 Wrong~level~position~for~'keyans'~\msg_line_context:.~ \\
6052 The~environment~'keyans'~can~only~be~in~the~first~level.
6053 }
6054 \msg_new:nnn { enumext } { wrong-place }
6055 {
6056 Wrong~place~for~'#1'~environment ~\msg_line_context:.~ \\
6057 '#1'~is~only~found~with~'#2'~ in ~ 'enumext.
6058 }
6059 \msg_new:nnn { enumext } { keyanspic-nested }
6060 {
6061 The~environment~'keyanspic'~can't~be ~nested~ \msg_line_context:.~.
6062 }
6063 \msg_new:nnn { enumext } { keyanspic-wrong-level }
6064 {
6065 Wrong~level~position~for~'keyanspic'~\msg_line_context:.~ \\
6066 The~environment~'keyans'~can~only~be~in~the~first~level.
6067 }
6068 \msg_new:nnn { enumext } { keyanspic-item-cmd }
6069 {
6070 Can't~use ~\c_backslash_str item~in~keyanspic~\msg_line_context:.
6071 }
6072 \msg_new:nnnn { enumext } { keyans-unknown-key }
6073 {
6074 The~key~'#1'~is~unknown~by~environment~
6075 '\l__enumext_envir_name_tl'~and~is~being~ignored.
6076 }
6077 {
6078 The~environment~'\l__enumext_envir_name_tl'~does~not
6079 ~have~a~key~called ~'#1'.\\
6080 Check~that~you~have~spelled~the~key~name~correctly.
6081 }
6082 \msg_new:nnnn { enumext } { keyans-unknown-key-value }
6083 {
6084 The~key~'#1=#2'~is~unknown~by~environment ~
6085 '\l__enumext_envir_name_tl'~and~is~being~ignored.
6086 }
6087 {
6088 The~environment~'\l__enumext_envir_name_tl'~does~not
6089 ~have~a~key~called ~'#1'.\\
6090 Check~that~you~have~spelled~the~key~name~correctly.
6091 }

Message used by unknown 〈keys〉 in enumext*. environment.
6092 \msg_new:nnnn { enumext } { starred-unknown-key }
6093 {
6094 The~key~'#1'~is~unknown~by~environment~

148 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

6095 '\l__enumext_envir_name_tl'~and~is~being~ignored.
6096 }
6097 {
6098 The~environment~'\l__enumext_envir_name_tl'~does~not
6099 ~have~a~key~called ~'#1'.\\
6100 Check~that~you~have~spelled~the~key~name~correctly.
6101 }
6102 \msg_new:nnnn { enumext } { starred-unknown-key-value }
6103 {
6104 The~key~'#1=#2'~is~unknown~by~environment ~
6105 '\l__enumext_envir_name_tl'~and~is~being~ignored.
6106 }
6107 {
6108 The~environment~'\l__enumext_envir_name_tl'~does~not
6109 ~have~a~key~called ~'#1'.\\
6110 Check~that~you~have~spelled~the~key~name~correctly.
6111 }

Message used by unknown 〈keys〉 in enumext environment.
6112 \msg_new:nnnn { enumext } { standar-unknown-key }
6113 {
6114 The~key~'#1'~is~unknown~by~environment~'\l__enumext_envir_name_tl' \c_space_tl
6115 ~on~level~\int_use:N \l__enumext_level_int \c_space_tl and~is~being~ignored.
6116 }
6117 {
6118 The~environment~'\l__enumext_envir_name_tl'~does~not
6119 ~have~a~key~called ~'#1'~on~level~\int_use:N \l__enumext_level_int.\\
6120 Check~that~you~have~spelled~the~key~name~correctly.
6121 }
6122 \msg_new:nnnn { enumext } { standar-unknown-key-value }
6123 {
6124 The~key~'#1=#2'~is~unknown~by~environment~'\l__enumext_envir_name_tl' \c_space_tl
6125 ~on~level~\int_use:N \l__enumext_level_int \c_space_tl and~is~being~ignored.
6126 }
6127 {
6128 The~environment~'\l__enumext_envir_name_tl'~does~not
6129 ~have~a~key~called ~'#1'~on~level~\int_use:N \l__enumext_level_int.\\
6130 Check~that~you~have~spelled~the~key~name~correctly.
6131 }

Message used by unknown 〈keys〉 in \foreachkeyans.
6132 \msg_new:nnnn { enumext } { for-key-unknown }
6133 { The~key~'#1'~is~unknown~by~'\c_backslash_str foreachkeyans'~and~is~being~ignored.}
6134 {
6135 The~command~'\c_backslash_str foreachkeyans'~does~not~have~a~key~called~'#1'.\\
6136 Check~that~you~have~spelled~the~key~name~correctly.
6137 }
6138 \msg_new:nnnn { enumext } { for-key-value-unknown }
6139 { The~key~'#1=#2'~is~unknown~by~'\c_backslash_str foreachkeyans'~and~is~being~ignored. }
6140 {
6141 The~command~'\c_backslash_str foreachkeyans'~does~not~have~a~key~called~'#1'.\\
6142 Check~that~you~have~spelled~the~key~name~correctly.
6143 }

Messages used by \getkeyans command.
6144 \msg_new:nnn { enumext } { undefined-storage-anskey }
6145 {
6146 Storage~named~'#1'~is~not~defined~\msg_line_context:.
6147 }

Messages used by \miniright command.
6148 \msg_new:nnn { enumext } { missing-miniright }
6149 {
6150 Missing~'\c_backslash_str miniright'~in~\msg_line_context:.\\
6151 The~key~'mini-env'~need~'\c_backslash_str miniright'.
6152 }
6153 \msg_new:nnn { enumext } { wrong-miniright-place }
6154 {
6155 Wrong~place~for~'\c_backslash_str miniright'~\msg_line_context:.~ \\
6156 Works~in~'enumext'~and~'keyans'~with~key~'mini-env'.
6157 }
6158 \msg_new:nnn { enumext } { wrong-miniright-use }
6159 {

149 / 167©2024–2026 by Pablo González L

enumext v2.1 §.13 Implementation

6160 Wrong~use~for~'\c_backslash_str miniright'~\msg_line_context:.~ \\
6161 '\c_backslash_str miniright'~need~a~key~'mini-env'.
6162 }
6163 \msg_new:nnn { enumext } { wrong-miniright-starred }
6164 {
6165 Can't~use ~\c_backslash_str miniright~in~starred~environments~\msg_line_context:.
6166 }
6167 \msg_new:nnn { enumext } { many-miniright-used }
6168 {
6169 Can't~use ~\c_backslash_str miniright~more~than~once~ \msg_line_context:.
6170 }

Messages used by \setenumextmeta command.
6171 \msg_new:nnn { enumext } { already-defined }
6172 {
6173 The~key~'#1'~is~already~defined~\msg_line_context:.
6174 }
6175 \msg_new:nnn { enumext } { prohibited-unknown }
6176 {
6177 The~name~'unknown'~can't~be~chosen~ for~a~meta~key~\msg_line_context:.
6178 }

Messages used by enumext* and keyans* environments.
6179 \msg_new:nnn { enumext } { nested }
6180 {
6181 The~environment~\l__enumext_envir_name_tl \c_space_tl can't~be~nested~\msg_line_context:.
6182 }
6183 \msg_new:nnn { enumext } { nested-horizontal }
6184 {
6185 The~environment~\l__enumext_envir_name_tl \c_space_tl can't~be~nested~in~'#1'~ \msg_line_context:.
6186 }
6187 \msg_new:nnn { enumext } { item-joined }
6188 {
6189 Items~joined~(#1)~>~#2 ~columns ~\msg_line_context:.
6190 }
6191 \msg_new:nnn { enumext } { item-joined-columns }
6192 {
6193 Not~space~to~join~items~(#1)~>~#2 ~\msg_line_context:.
6194 }

Messages used by resume key.
6195 \msg_new:nnn { enumext } { unknown-series-starred }
6196 {
6197 The~series~'#1'~for~the~resume~key~does~not~exist~in~the~
6198 ~enumext*~environment~ \msg_line_context:.
6199 }
6200 \msg_new:nnn { enumext } { unknown-series-standar }
6201 {
6202 The~series~'#1'~for~the~resume~key~does~not~exist~at~level~\int_use:N \l__enumext_level_int
6203 \c_space_tl of~enumext~environment~ \msg_line_context:.
6204 }
6205 \msg_new:nnnn { enumext } { out-of-range }
6206 { The~number~must~be~exactly~1,~2,~3~or~4. }
6207 { Received:~'#1'. }

13.55 Finish package
Finish package implementation.

6208 \file_input_stop:
6209 ⟨/package⟩

150 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

14 Index of Implementation
The italic numbers denote the pages where the corresponding entry is described, the numbers underlined and all others indicate
the line on which they are implemented in the package code.

Symbols
\+ . 221
\- . 221
\\ 229, 4580, 4583, 5827, 5836, 5841, 5861, 5863, 5870, 5872,

5885, 5890, 5905, 5936, 5938, 5940, 5945, 5946, 5951,
5952, 5970, 5983, 6000, 6009, 6018, 6024, 6030, 6051,
6056, 6065, 6079, 6089, 6099, 6109, 6119, 6129, 6135,
6141, 6150, 6155, 6160

A
above . 1724
above* . 1724
\addvspace 1291, 1319, 1362, 1365, 1533, 1536, 1633, 1639,

1677, 1683, 1704, 1710, 4014, 4178, 4196, 4465, 4469,
4828, 4843, 4889, 4903

after . 1121
align . 664
\Alph . 44, 48, 49
\Alph . 606, 734, 775, 835, 5516
\alph . 44, 48, 49
\alph . 607, 732, 5504
\anskey . 14, 88, 90, 3039
anskey* . 15, 3169
\anspic . 18, 116, 119, 4479
\anspic* . 81
\arabic . 44
\arabic 605, 731, 774, 5492, 5498, 5522

B
base-fix . 979
\baselineskip . 58
\baselineskip . 995, 1006
before . 1121
before* . 1121
beginpenalty . 919
below . 1724
below* . 1724
bool commands:

\bool_gset_false:N 340, 341, 342, 4845, 4849, 4905
\bool_gset_true:N 250, 260, 1224, 2472, 2478, 4814,

4846, 4878, 4906
\bool_if:NTF . 390, 400, 417, 491, 498, 507, 514, 528,

541, 1746, 1760, 1773, 1784, 1795, 1806, 1817, 1828,
1842, 1858, 1877, 1924, 1966, 2001, 2041, 2043, 2054,
2417, 2660, 2670, 2750, 2774, 2781, 2805, 2903, 2925,
2965, 2989, 2993, 3043, 3062, 3086, 3138, 3142, 3172,
3190, 3209, 3225, 3248, 3279, 3294, 3366, 3482, 3516,
3552, 3568, 3589, 3735, 3756, 3802, 3846, 3856, 3891,
3896, 3921, 3930, 3969, 3995, 4045, 4063, 4106, 4161,
4186, 4403, 4463, 4481, 4500, 4551, 4578, 4807, 4823,
4829, 4872, 4886, 4890, 4953, 4961, 4982, 4989, 4999,
5087, 5093, 5100, 5116, 5209, 5219, 5333, 5340, 5371,
5387, 5418

\bool_if:nTF 1684, 1711, 2236, 3538, 3714, 4521, 5544,
5713

\bool_if_p:N . . 269, 283, 989, 990, 1002, 1003, 1656,
1977, 1978, 1992, 1993, 2064, 2172, 2173, 2187, 2188,
2430, 2456, 2469, 2470, 2475, 2476, 2838, 2848, 2860,
2875, 2876, 2910, 2951, 2952, 3353, 3354, 3383, 3384,

3396, 3397, 3437, 3438, 3457, 3458, 3748, 3749, 3750,
3942, 3944, 3955, 5362, 5363, 5364

\bool_lazy_all:nTF 267, 281, 987, 2428, 2454, 2836,
2845, 2858, 2873, 3435, 3455, 3746, 3940, 3953, 5360

\bool_lazy_and:nnTF . . 246, 256, 1001, 1648, 1655,
1976, 1991, 2063, 2171, 2186, 2249, 2468, 2474, 2909,
2916, 2950, 3352

\bool_lazy_or:nnTF . . 2358, 2365, 3382, 3395, 5729
\bool_new:N 22, 23, 24, 25, 26, 27, 28, 47, 50, 51, 52, 62,

86, 91, 92, 97, 98, 101, 108, 123, 124, 136, 137, 144,
150, 151, 153, 157, 159, 160, 177, 189, 191

\bool_not_p:n 247, 257, 991, 1657, 2847, 2911, 2917,
3943, 3956

\bool_set_eq:NN 1848, 1861, 3491, 3695, 5040, 5284
\bool_set_false:N 397, 864, 1013, 2402, 2403, 2435,

2440, 2444, 2448, 2461, 3723, 3910, 4062, 4114, 4201,
4339, 4400, 4541, 4948, 4981, 5037, 5225, 5280, 5281,
5535, 5557, 5558

\bool_set_true:N 274, 288, 383, 386, 657, 1028, 1730,
1735, 1847, 1860, 1863, 2144, 2151, 2375, 2376, 2692,
2700, 3113, 3485, 3487, 3519, 3521, 3691, 3702, 3716,
3869, 3909, 3949, 3962, 4035, 4111, 4138, 4336, 4523,
4524, 4796, 4861, 4947, 5044, 5051, 5052, 5096, 5223,
5288, 5295, 5296, 5297, 5528, 5552, 5553

box commands:
\box_dp:N . . 1579, 1580, 1583, 1590, 1603, 1611, 1617,

1625, 4414, 4420, 4465, 4562
\box_ht:N . . 1362, 1365, 1376, 1377, 1388, 1390, 1405,

1408, 1416, 1417, 1428, 1430, 1445, 1448, 1455, 1456,
1467, 1469, 1484, 1487, 1533, 1536, 1544, 1545, 1553,
1554, 1566, 1568

\box_ht_plus_dp:N 4409, 4473, 4509
\box_new:N 59, 146, 147, 184, 190
\box_use_drop:N 4840, 4901, 5152, 5430
\box_wd:N . 613

break-col . 3009, 3095

C
\c . 870, 872, 884, 886
c@ internal commands:

\c@__enumext_resume_i_int 591
\c@__enumext_resume_ii_int 591
\c@__enumext_resume_iii_int 591
\c@__enumext_resume_iv_int 591
\c@__enumext_resume_vii_int 591

\centering 1686, 1713, 4606, 4833, 4894
check-ans . 2394
Document class:

article . 50
clist commands:

\clist_const:Nn . 196
\clist_map_function:nN 4589
\clist_map_inline:Nn . . 663, 918, 934, 1120, 1135,

1216, 1740
\clist_map_inline:nn 36, 45, 55, 67, 75, 88, 100, 139,

168, 195, 599, 641, 694, 714, 1033, 1054, 1230, 1870,
2276, 2283, 2298, 2342, 2408, 2587, 2657, 2689, 2833,
3288, 3610, 3625, 3672, 3831, 3834, 3836, 3864, 3876,
3879, 3881, 3901, 5674, 5693

\columnbreak . 88
151 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

\columnbreak . 2913
columns . 1200
columns-sep . 1200
\columnsep . 109
\columnsep . 3990, 4159
\columnseprule . 109
\columnseprule . 3993, 4160
Commands provide by enumext:

\anskey 33, 77, 78, 83–87, 89, 90, 95, 108, 109, 128, 138,
139, 147

\anspic* 33, 34, 81, 84, 95, 96, 118, 119, 138, 139
\anspic 34, 85, 116, 119, 147
\foreachkeyans 143, 149
\getkeyans . 84, 138, 149
\item* 33, 34, 81, 84, 85, 95, 96, 99, 103, 130, 135, 138, 139
\item 99, 103, 123, 129, 131, 134, 135
\miniright 32, 55, 63, 64, 110, 111, 149
\printkeyans* . 138
\printkeyans 33, 85, 138, 139
\resetenumext . 74
\setenumextmeta 142, 150
\setenumext 33, 139–142, 145

Counters defined by enumext:
enumXiii . 31, 43
enumXii . 31, 43
enumXiv . 31, 43
enumXi . 31, 43
enumXviii . 31, 43
enumXvii . 31, 43, 130
enumXvi . 31, 43
enumXv . 31, 43

\counterwithin . 2270, 2271
cs commands:

\cs_generate_variant:Nn . 201, 202, 615, 631, 876,
892, 2273, 2742, 2747, 2823, 3168, 3821, 4591, 5741

\cs_if_exist:NTF 576, 593
\cs_if_exist_p:N 3751, 5365
\cs_new:Nn . 215
\cs_new:Npn . 225, 2011, 2020, 2028, 2704, 2713, 2721,

5572, 5581, 5589
\cs_new_eq:NN . 367, 368, 373, 374, 402, 403, 406, 407
\cs_new_protected:Nn . 231, 239, 265, 296, 326, 332,

338, 344, 350, 358, 378, 425, 429, 447, 459, 477, 489,
505, 521, 534, 555, 751, 808, 855, 985, 1136, 1140,
1144, 1148, 1152, 1156, 1160, 1164, 1168, 1172, 1176,
1180, 1184, 1188, 1192, 1196, 1231, 1243, 1276, 1293,
1304, 1321, 1347, 1368, 1493, 1519, 1539, 1572, 1594,
1629, 1635, 1741, 1755, 1769, 1780, 1791, 1802, 1813,
1824, 1875, 1893, 1922, 1937, 1962, 2061, 2157, 2203,
2306, 2316, 2330, 2343, 2348, 2373, 2413, 2423, 2466,
2481, 2488, 2497, 2502, 2507, 2512, 2521, 2526, 2531,
2748, 2772, 2779, 2803, 2810, 2824, 3060, 3079, 3188,
3207, 3238, 3277, 3292, 3320, 3350, 3378, 3391, 3404,
3433, 3446, 3524, 3534, 3545, 3561, 3577, 3710, 3728,
3762, 3774, 3902, 3938, 3967, 3974, 4004, 4021, 4043,
4068, 4104, 4128, 4145, 4170, 4184, 4205, 4375, 4573,
4587, 4592, 4616, 4626, 4657, 4786, 4805, 4851, 4870,
4934, 4968, 4975, 4987, 4997, 5022, 5163, 5207, 5238,
5244, 5265, 5321, 5441

\cs_new_protected:Npn 203, 207, 211, 410, 574, 600,
610, 616, 735, 776, 840, 862, 877, 1668, 1697, 2037,
2070, 2113, 2140, 2260, 2264, 2268, 2274, 2281, 2353,
2536, 2658, 2668, 2690, 2698, 2734, 2743, 2899, 2962,
2987, 3025, 3029, 3122, 3126, 3159, 3218, 3257, 3330,
3371, 3478, 3497, 3626, 3630, 3647, 3651, 3673, 3677,

3687, 3699, 3744, 3790, 3824, 3867, 3913, 4124, 4384,
4391, 4398, 4498, 4517, 4547, 4688, 4737, 4951, 5028,
5035, 5049, 5057, 5062, 5072, 5231, 5271, 5278, 5293,
5302, 5316, 5358, 5463, 5476, 5538, 5671, 5683, 5722,
5727, 5765, 5775, 5783, 5805

\cs_new_protected_nopar:Nn . . . 4266, 4308, 4316,
4324, 5007, 5015, 5146, 5250, 5258, 5424

\cs_new_protected_nopar:Npn . . 4258, 4274, 5078,
5124, 5377, 5398

\cs_set:Npn 1964, 2159, 2205, 2318, 2834, 2871, 5469
\cs_set_eq:NN . . 3754, 4924, 4925, 5126, 5196, 5197,

5368, 5400
\cs_set_protected:Nn 1059, 1075, 1088, 1100
\cs_set_protected:Npn 32, 39, 48, 60, 68, 83, 89, 132,

164, 175, 591, 632, 642, 664, 699, 715, 758, 893, 919,
935, 1015, 1038, 1112, 1121, 1200, 1217, 1724, 1835,
2288, 2334, 2394, 2553, 2588, 2676, 2826, 3281, 3599,
3615, 3661, 3822, 3865

\cs_to_str:N . 602, 625

D
\d . 221
\DeclareDocumentEnvironment 559
dim commands:

\dim_abs:n . 3795, 3800
\dim_add:Nn 3430, 4418, 4651, 4682
\dim_compare:nNnTF . . 1061, 1077, 1090, 1102, 1380,

1392, 1420, 1432, 1459, 1471, 1548, 1556, 1670, 1699,
2967, 2975, 3425, 3792, 3797, 3803, 3809, 3811, 3813,
3979, 4026, 4132, 4149, 4393, 4628, 4644, 4659, 4675,
4788, 4853, 5329

\dim_compare:nTF 2935, 4071, 4208
\dim_eval:n 995, 4471, 4558
\dim_gset_eq:NN 4797, 4862
\dim_gzero:N 4848, 4908
\dim_new:N . 56, 63, 64, 65, 85, 128, 129, 141, 148, 149,

183, 185, 186, 192
\dim_set:Nn . 613, 1029, 2969, 2977, 3412, 3416, 3421,

3427, 3514, 3795, 3800, 3802, 3805, 3806, 3810, 3812,
3815, 3816, 3818, 3982, 4029, 4070, 4134, 4151, 4207,
4407, 4507, 4594, 4630, 4637, 4661, 4668, 4723, 4772,
4790, 4855, 5074, 5331

\dim_set_eq:NN 722, 765, 832, 3509, 3833, 3878, 3990,
4159, 4730, 4733, 4734, 4779, 4782, 4783, 5067, 5138,
5412

\dim_sub:Nn 4076, 4213, 4646, 4677
\dim_use:N . 1062, 1070, 1671, 1681, 2813, 2816, 2821,

2979, 3529, 3531, 3584, 3980, 3984, 3985, 3987, 4027,
4032, 4033, 4039, 4073, 4078

\dim_zero:N 3870, 3993, 4160, 4421
\dim_zero_new:N . 573
\c_zero_dim 1064, 1078, 1091, 1103, 1671, 1699, 2937,

2967, 2975, 3412, 3425, 3792, 3797, 3803, 3810, 3980,
4027, 4073, 4132, 4149, 4210, 4393, 4628, 4644, 4659,
4675, 4788, 4853, 5329

\dimeval . 2622

E
\end . . . 2776, 2807, 4011, 4175, 4456, 4608, 5546, 5556, 5564
end internal commands:

\end__enumext_mini_page . 1679, 1706, 4054, 4195,
4812, 4876, 4902

\endlist . 368
\endminipage . 374
endpenalty . 919
enumext . 5, 4082

152 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

enumext internal commands:
__enumext_add_pre_parsep: . 56, 1241, 1243, 1243
__enumext_after_args_exec: 54, 1136, 1148, 4095
__enumext_after_args_exec_v: 1152, 1164, 4228
__enumext_after_args_exec_vii: . . 1168, 1192
__enumext_after_args_exec_viii: 1196
__enumext_after_env:nn 94, 112, 125, 132, 207, 207,

547, 551, 4100, 4821, 4884, 5179
__enumext_after_hyperref: . . . 39, 376, 376, 378
\l__enumext_after_list_args_v_tl 1166
\l__enumext_after_list_args_vii_tl 1194, 5144
\l__enumext_after_list_args_viii_tl . . 1198,

5422
__enumext_after_list_vii: 125, 128, 4932, 4975,

4975
__enumext_after_list_viii: . . 134, 5205, 5244,

5244
__enumext_after_stop_list: 54, 111, 1136, 1144,

4059
__enumext_after_stop_list_v: 1152, 1160, 4202
\l__enumext_after_stop_list_v_tl 1162
__enumext_after_stop_list_vii: . . 128, 1168,

1184, 4978
\l__enumext_after_stop_list_vii_tl . . . 1186
__enumext_after_stop_list_viii: . 1188, 5247
\l__enumext_after_stop_list_viii_tl . . . 1190
\l__enumext_align_label_pos_v_str 3408, 3780
\l__enumext_align_label_pos_X_str 68
\l__enumext_align_label_vii_str 5113
\l__enumext_align_label_viii_str 5391
\l__enumext_align_label_X_str 175
\c__enumext_all_envs_clist . . 196, 663, 918, 934,

1120, 1135, 1216, 1740
\c__enumext_all_families_seq . . 141, 5639, 5665
__enumext_anskey_env_file_if_writable:n 92,

3136, 3136
__enumext_anskey_env_file_if_-

writable:nTF 3136, 3161
__enumext_anskey_env_file_write:nn 92, 3159,

3168, 3223
\l__enumext_anskey_env_force_eol_bool . . 94,

3109, 3225
\c__enumext_anskey_env_hidden_space_str 33,

94, 111, 3229
\l__enumext_anskey_env_overwrite_bool 3117,

3142
__enumext_anskey_env_safe_inner: . 93, 3183,

3188, 3207
__enumext_anskey_env_safe_inner:n 93
__enumext_anskey_env_safe_outer: . 93, 3171,

3188, 3188
__enumext_anskey_env_unknown:n 92, 3120, 3122,

3122
__enumext_anskey_env_unknown:nn . 3122, 3124,

3126
\l__enumext_anskey_level_int . . 16, 3081, 3082
__enumext_anskey_safe_inner: . 91, 3054, 3060,

3079
__enumext_anskey_safe_inner:n 90
__enumext_anskey_safe_outer: . 90, 3041, 3060,

3060
__enumext_anskey_show_wrap_arg:n . 89, 2962,

2962, 2991, 3006
__enumext_anskey_show_wrap_left:n 89, 2907,

2987, 2987
__enumext_anskey_unknown:n 90, 3009, 3023, 3025
__enumext_anskey_unknown:nn . 3009, 3027, 3029
__enumext_anskey_wrapper:n 2619, 2985
\l__enumext_anspic_above_int . 140, 4595, 4596,

4598
__enumext_anspic_args:nnn 119, 120, 4479, 4495,

4573
\l__enumext_anspic_args_seq 119–121, 140, 4493,

4607, 4620
\l__enumext_anspic_below_int . 140, 4595, 4596,

4599
\l__enumext_anspic_body_box . . . 140, 4506, 4509
__enumext_anspic_body_dim:n . . 119, 4479, 4498,

4550
\l__enumext_anspic_body_htdp_dim . . 119, 140,

4507, 4561
__enumext_anspic_exec: 118, 121, 4451, 4479, 4616
__enumext_anspic_label:nn 120, 4479, 4517, 4553,

4568
\l__enumext_anspic_label_above_bool . . . 140,

4336, 4339, 4403, 4463, 4500, 4551, 4578
\l__enumext_anspic_label_box . . 140, 4406, 4409
\l__enumext_anspic_label_htdp_dim . 117, 140,

4407, 4413, 4473, 4560
__enumext_anspic_label_pos:nnn . . 120, 4479,

4547, 4576
\l__enumext_anspic_label_sep_skip 4346, 4415,

4474, 4563, 4580
\l__enumext_anspic_layout_style_tl 4348, 4618,

4623
\l__enumext_anspic_mini_pos_str . . 140, 4337,

4340, 4605
\l__enumext_anspic_mini_width_dim 140, 4519,

4594, 4605
__enumext_anspic_print:n 120, 121, 4479, 4587,

4591, 4620, 4623
__enumext_anspic_row:n . . 121, 4479, 4589, 4592
__enumext_anspic_start_list_tag: 4282, 4308,

4575
__enumext_anspic_stop_list_tag: . 4282, 4324,

4585
__enumext_anspic_stop_start_list_tag: 4282,

4316, 4577
__enumext_at_begin_document:n . . 39, 203, 203,

365, 371
\l__enumext_base_line_fix_bool 51, 139, 981, 990,

1013, 5552, 5557
__enumext_before_args_exec: 54, 110, 128, 1136,

1136, 4024
__enumext_before_args_exec_v: 1152, 1152, 4131
__enumext_before_args_exec_vii: . 1168, 1168,

4972
__enumext_before_args_exec_viii: 1172, 5241
__enumext_before_env:nn 207, 211
__enumext_before_keys_exec: . . 54, 1136, 1140,

4092
__enumext_before_keys_exec_v: 1152, 1156, 4225
__enumext_before_keys_exec_vii 1168
__enumext_before_keys_exec_vii: . 1176, 4919
__enumext_before_keys_exec_viii: 1180, 5191
__enumext_before_list: . . 110, 4021, 4021, 4086
__enumext_before_list_v: . . . 4128, 4128, 4220
__enumext_before_list_vii: . . . 128, 4914, 4968,

4968
153 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

__enumext_before_list_viii: . . 133, 5187, 5238,
5238

\l__enumext_before_no_starred_key_v_tl 1158
\l__enumext_before_no_starred_key_vii_-

tl . 1178
\l__enumext_before_no_starred_key_viii_-

tl . 1182
\l__enumext_before_starred_key_v_tl . . . 1154
\l__enumext_before_starred_key_vii_tl . 1170
\l__enumext_before_starred_key_viii_tl 1174
__enumext_calc_hspace:NNNNNNN 106, 3790, 3790,

3821, 3826, 3871
__enumext_check_ans_active: 78, 110, 128, 2413,

2413, 4025, 4971
\g__enumext_check_ans_item_tl 96
\g__enumext_check_ans_key_bool 79, 80, 150, 340,

2472, 2478, 3248
\l__enumext_check_ans_key_bool 79, 2398, 2403,

2469, 2475
__enumext_check_ans_key_hook: . . 79, 111, 128,

2466, 2466, 4060, 4979
__enumext_check_ans_level: . 78, 79, 2413, 2419,

2423
__enumext_check_ans_log: 80, 94, 2512, 2512, 3252
__enumext_check_ans_log_msg_greater: 2512,

2518, 2531
__enumext_check_ans_log_msg_less: 2512, 2516,

2521
__enumext_check_ans_log_msg_same_ok: 2512,

2517, 2526
__enumext_check_ans_msg_greater: 2488, 2494,

2507
__enumext_check_ans_msg_less: 2488, 2492, 2497
__enumext_check_ans_msg_same_ok: 2488, 2493,

2502
__enumext_check_ans_show: . . 80, 94, 2488, 2488,

3250
\l__enumext_check_answers_bool 77, 78, 90, 93, 99,

150, 2376, 2402, 2417, 2750, 2774, 2781, 2805, 3043,
3172, 3366, 3482, 3516, 5093

__enumext_check_starred_cmd:n 37, 81, 96, 132,
2536, 2536, 4231, 4461, 5204

\g__enumext_check_starred_cmd_int . 103, 150,
2539, 2545, 2550, 3708, 4529, 5328

\l__enumext_check_start_line_env_tl . 37, 150,
303, 311, 319, 2542, 2548, 2551

\l__enumext_columns_sep_v_dim 4149, 4151, 4159
\l__enumext_columns_sep_vii_dim . . 4628, 4630,

4639, 4651, 4727, 5160
\l__enumext_columns_sep_viii_dim . 4659, 4661,

4670, 4682, 4776, 5438
\l__enumext_columns_v_int 1513, 1531, 1702, 4147,

4155, 4167, 4172
\l__enumext_columns_vii_int . . 4633, 4636, 4640,

4649, 4691, 4695, 4698, 4704, 4710, 4714, 5154, 5168
\l__enumext_columns_viii_int . 4664, 4667, 4671,

4680, 4740, 4744, 4747, 4753, 4759, 4763, 5432, 5447
\l__enumext_counter_i_tl 32, 583
\l__enumext_counter_ii_tl 32, 584
\l__enumext_counter_iii_tl 32, 585
\l__enumext_counter_iv_tl 32, 586
\g__enumext_counter_styles_tl . 31, 44, 56, 603,

621
\l__enumext_counter_v_tl 32, 587
\l__enumext_counter_vi_tl 32, 588

\l__enumext_counter_vii_tl 32, 589
\l__enumext_counter_viii_tl 32, 590
\l__enumext_current_widest_dim 31, 56, 627, 723,

766, 833
__enumext_default_item:n . . . 3478, 3478, 3542
__enumext_define_counter:Nn . 31, 574, 574, 583,

584, 585, 586, 587, 588, 589, 590
__enumext_endminipage: . 39, 365, 374, 568, 4842,

5148, 5426
\g__enumext_envir_name_tl 37, 22, 275, 289, 348,

2346, 2351, 2361, 2500, 2505, 2510, 2524, 2529, 2534
\l__enumext_envir_name_tl . 36, 37, 102, 22, 245,

255, 302, 310, 318, 3620, 3643, 3667, 4371, 6075, 6078,
6085, 6088, 6095, 6098, 6105, 6108, 6114, 6118, 6124,
6128, 6181, 6185

__enumext_execute_after_env: . . 38, 76, 80, 94,
3238, 3238, 4102, 5181

__enumext_fake_item_indent: . 1059, 1059, 3855
\l__enumext_fake_item_indent_v_dim 1078, 1083
\l__enumext_fake_item_indent_v_tl 1080, 3692,

3696, 3703
__enumext_fake_item_indent_vii: . 1059, 1088,

3890
\l__enumext_fake_item_indent_vii_dim . 1091,

1095
\l__enumext_fake_item_indent_vii_tl . . 1093,

5143
__enumext_fake_item_indent_viii: 1059, 1100,

3895
\l__enumext_fake_item_indent_viii_dim 1103,

1107
\l__enumext_fake_item_indent_viii_tl . 1105,

5417
\l__enumext_fake_item_indent_X_tl 89
__enumext_fake_make_label_vii:n . 130, 5078,

5078, 5135
__enumext_fake_make_label_viii:n 5358, 5377,

5409
__enumext_filter_level:n 140, 5572, 5572, 5602,

5608, 5614, 5620, 5626
__enumext_filter_level_key:n 140, 5572, 5577,

5581
__enumext_filter_level_pair:nn . . 140, 5572,

5578, 5589
__enumext_filter_save_key:n . . 84, 2665, 2673,

2696, 2702, 2704, 2704, 5489, 5495, 5501, 5507, 5513,
5519

__enumext_filter_save_key_key:n . . 84, 2704,
2709, 2713

__enumext_filter_save_key_pair:nn 84, 2704,
2710, 2721

__enumext_filter_series:n 70, 2011, 2011, 2048,
2057, 2092, 2105

__enumext_filter_series_key:n 70, 2011, 2016,
2020

__enumext_filter_series_pair:nn . . 70, 2011,
2017, 2028

__enumext_first_item_tmp_vii: 126, 129, 4924,
5007, 5007

__enumext_first_item_tmp_viii: . . 134, 5196,
5250, 5250

\g__enumext_footnote_standar_arg_seq . . 169,
442, 453, 456

\g__enumext_footnote_standar_int 169, 436, 439,
441, 444

154 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

\g__enumext_footnote_standar_int_seq . . 169,
444, 449, 452, 457

\g__enumext_footnote_starred_arg_seq . . 169,
472, 483, 486

\g__enumext_footnote_starred_int 169, 466, 469,
471, 474

\g__enumext_footnote_starred_int_seq . . 169,
474, 479, 482, 487

__enumext_footnotes_key_bool 39
\l__enumext_footnotes_key_bool 34, 39, 159, 386,

390, 397, 498, 514, 528, 541
__enumext_footnotetext:nn . . 425, 425, 454, 484
__enumext_foreach_add_body:n 144, 5742, 5802,

5805
\l__enumext_foreach_after_tl 5746, 5814
\l__enumext_foreach_before_tl 5744, 5809
\g__enumext_foreach_default_keys_tl . . . 143
\l__enumext_foreach_default_keys_tl . . . 118,

5764, 5785
__enumext_foreach_keyans:nn . 144, 5742, 5781,

5783
\l__enumext_foreach_name_prop_tl . 118, 5787,

5812
\l__enumext_foreach_print_seq 118, 5797, 5803,

5807
\l__enumext_foreach_sep_tl 5756, 5803
\l__enumext_foreach_start_int 5748, 5799
\l__enumext_foreach_step_int 5752, 5800
\l__enumext_foreach_stop_int . 5750, 5792, 5794,

5801
__enumext_foreach_wrapper:n 5754, 5810
__enumext_getkeyans:nn . . 138, 5458, 5472, 5476
__enumext_getkeyans_aux:n 138, 5458, 5460, 5463
\l__enumext_hyperref_bool 34, 39, 159, 383, 400,

417, 2952, 3354, 5087
__enumext_hypertarget:nn 39, 376, 402, 406, 422
__enumext_if_is_int:n 219
__enumext_if_is_int:nTF 219, 865, 879
__enumext_internal_mini_page: 42, 108, 127, 555,

555, 3905, 4937
__enumext_is_not_nested: . 31, 36, 108, 127, 239,

239, 3904, 4936
__enumext_is_on_first_level: . 31, 37, 108, 127,

239, 265, 3911, 4949
\g__enumext_item_anskey_int 90, 96, 150, 335, 362,

363, 2485, 2901, 3368
__enumext_item_answer_diff: 80, 94, 2481, 2481,

3245
\g__enumext_item_answer_diff_int 80, 150, 336,

2483, 2490, 2514
\l__enumext_item_column_pos_vii_int 129, 4698,

4704, 4710, 4714, 4721, 5018, 5154, 5157
\l__enumext_item_column_pos_viii_int . . 134,

4747, 4753, 4759, 4763, 4770, 5261, 5432, 5435
l__enumext_item_column_pos_X_int 175
\g__enumext_item_count_all_vii_int 129, 4722,

5019, 5168, 5176
\g__enumext_item_count_all_viii_int 134, 4771,

5262, 5446, 5455
\g__enumext_item_count_all_X_int 175
\g__enumext_item_number_bool 150
\l__enumext_item_number_bool 79, 157, 2435, 2440,

2444, 2448, 2461, 3086, 3209, 3485, 3519, 5096
\g__enumext_item_number_int . . 79, 150, 334, 361,

363, 2434, 2439, 2443, 2447, 2460, 2485, 3484, 3518,
5095

__enumext_item_peek_args_vii: 129, 5015, 5020,
5022

__enumext_item_peek_args_viii: . . 134, 5258,
5263, 5265

__enumext_item_starred_exec: . 100, 3497, 3524,
3566, 3587

__enumext_item_starred_exec:nn . . 3497, 3497,
3540

\l__enumext_item_starred_vii_bool 5037, 5051,
5100

\l__enumext_item_starred_viii_bool 5280, 5295,
5387, 5418

\l__enumext_item_starred_X_bool 175
__enumext_item_std:w . 39, 99, 103, 365, 369, 3488,

3494, 3522, 3692, 3696, 3703
\g__enumext_item_symbol_aux_tl . 99, 122, 3502,

3505, 3530, 3574, 3594
\g__enumext_item_symbol_aux_vii_tl 5059, 5102,

5105, 5109, 5111
\g__enumext_item_symbol_aux_X_tl 175
\l__enumext_item_symbol_sep_vii_dim . . 5067,

5074, 5108, 5110
\l__enumext_item_symbol_vii_tl 5105
\l__enumext_item_text_vii_box 5127, 5152
\l__enumext_item_text_viii_box . . . 5401, 5430
\l__enumext_item_text_X_box 175
\l__enumext_item_width_vii_dim . . . 4637, 4646,

4725, 4733, 4734
\l__enumext_item_width_viii_dim . . 4668, 4677,

4774, 4782, 4783
\l__enumext_item_width_X_dim 175
\l__enumext_item_wrap_key_bool 104, 150, 3438,

3458, 3716, 3723, 3750, 4523, 4541, 5281, 5296, 5364
\l__enumext_itemindent_X_dim 60
\l__enumext_itemsep_i_skip . . . 1374, 1381, 1384,

1386, 1393, 1397, 1400, 1402, 1542, 1549, 1551, 1552,
1557, 1561, 1563, 1564

\l__enumext_itemsep_ii_skip . . 1414, 1421, 1424,
1426, 1433, 1437, 1440, 1442

\l__enumext_itemsep_iii_skip . 1453, 1460, 1463,
1465, 1472, 1476, 1479, 1481

\l__enumext_itemsep_vii_skip 5174
\l__enumext_itemsep_viii_skip 5453
\l__enumext_joined_item_aux_vii_int . . 4719,

4720, 4721, 4722, 4728
\l__enumext_joined_item_aux_viii_int . 4768,

4769, 4770, 4771, 4777
\l__enumext_joined_item_aux_X_int 175
__enumext_joined_item_vii:w . . 129, 5015, 5025,

5026, 5028
\l__enumext_joined_item_vii_int . . 4690, 4691,

4694, 4696, 4702, 4707, 4712, 4717, 4719, 4725
__enumext_joined_item_viii:w 134, 5258, 5268,

5269, 5271
\l__enumext_joined_item_viii_int . 4739, 4740,

4743, 4745, 4751, 4756, 4761, 4766, 4768, 4774
\l__enumext_joined_item_X_int 175
\l__enumext_joined_width_vii_dim . 4723, 4730,

4733, 5129, 5137
\l__enumext_joined_width_viii_dim 4772, 4779,

4782, 5403, 5411
\l__enumext_joined_width_X_dim 175

155 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

__enumext_key_def_meta:nnn . . 143, 5685, 5725,
5727, 5741

__enumext_key_set_meta:nnn . . 143, 5685, 5716,
5717, 5719, 5722

__enumext_keyans_addto_prop:n 95, 3257, 3257,
3705, 4526

__enumext_keyans_addto_seq:n . 96, 3330, 3330,
3707, 4528

__enumext_keyans_addto_seq_link: 3330, 3348,
3350, 5327

__enumext_keyans_default_item:n . 103, 3687,
3687, 3724

\l__enumext_keyans_env_bool 22, 3943, 3956, 4111,
4201

__enumext_keyans_fake_item_indent: . . 1059,
1075, 3845

\l__enumext_keyans_level_h_int . . 133, 16, 793,
817, 3070, 3198, 3308, 4943, 5213, 5214

\l__enumext_keyans_level_int . . 16, 1662, 3066,
3194, 3303, 3448, 4110, 4115, 4489

__enumext_keyans_make_label: 104, 3728, 3728,
3843

__enumext_keyans_make_label_box: 3728, 3732,
3737, 3774

__enumext_keyans_make_label_std: 3728, 3740,
3762

__enumext_keyans_mini_right_cmd:n 64, 1664,
1697, 1697

__enumext_keyans_mini_set_vskip: 61
__enumext_keyans_minipage_add_space: 1493,

1519, 4140
__enumext_keyans_minipage_set_skip: . 1493,

1493, 1521
__enumext_keyans_multi_addvspace: 1293, 1304,

4164
__enumext_keyans_multi_set_vskip: 57, 1293,

1293, 1306
__enumext_keyans_multicols_start: 4128, 4143,

4145
__enumext_keyans_multicols_stop: 1701, 4128,

4170, 4199
__enumext_keyans_name_and_start: 31, 37, 133,

296, 296, 4112, 4382, 5218
__enumext_keyans_parse_keys:n 4124, 4124, 4219
__enumext_keyans_pic_arg_two: 117, 4375, 4398,

4429
\l__enumext_keyans_pic_level_int . . 16, 1643,

3074, 3202, 3260, 3298, 3333, 4377, 4378
__enumext_keyans_pic_parse_keys:n 4375, 4384,

4428
__enumext_keyans_pic_safe_exec: . 117, 4375,

4375, 4427
__enumext_keyans_pic_skip_abs:N . 117, 4375,

4391, 4402
__enumext_keyans_pos_mark_set: 98, 3404, 3404,

3441, 3473
__enumext_keyans_pre_itemsep_skip: . . 1493,

1512, 1539
__enumext_keyans_redefine_item: . 104, 3710,

3710, 3842
__enumext_keyans_ref: 48, 840, 855, 3844
__enumext_keyans_ref:n 48, 837, 840, 840
__enumext_keyans_safe_exec: . 4104, 4104, 4218
__enumext_keyans_save_item_opt:n . . 97, 103,

3371, 3371, 3701, 4525

__enumext_keyans_set_item_width: 113, 4205,
4205, 4227

__enumext_keyans_show_ans: 98, 3404, 3433, 3767,
3782, 4530

__enumext_keyans_show_item_opt: 97, 103, 3371,
3378, 3704, 4538

__enumext_keyans_show_item_opt_viii: . . 97,
3371, 3391, 5420

__enumext_keyans_show_pos: 98, 3404, 3446, 3768,
3783, 4531

__enumext_keyans_starred_item:n . 103, 3699,
3699, 3719

__enumext_keyans_starred_item_star: . . 135,
5293, 5321, 5389

__enumext_keyans_store_ref: . . 95, 3277, 3277,
3706, 4527, 5325

__enumext_keyans_store_ref_aux_i: 95, 3277,
3289, 3292

__enumext_keyans_store_ref_aux_ii: 96, 3277,
3318, 3320

__enumext_keyans_unknown_keys:n . 3615, 3621,
3626, 4372

__enumext_keyans_unknown_keys:nn 3615, 3628,
3630

__enumext_keyans_wraper_label:n 104
__enumext_keyans_wraper_label_viii:n 5358,

5358, 5394
__enumext_keyans_wrapper_item_v:n 3751, 3754
__enumext_keyans_wrapper_item_viii:n 5365,

5369
__enumext_keyans_wrapper_label:n 3728, 3744,

3770, 3785, 4535
__enumext_keyans_wrapper_opt_v:n 3386
__enumext_keyans_wrapper_opt_viii:n . . 3399
\l__enumext_label_copy_i_tl . . 2867, 3296, 3301,

3306, 3311
\l__enumext_label_copy_v_tl 3306
\l__enumext_label_copy_vi_tl 3301
\l__enumext_label_copy_vii_tl 2843, 2854, 2883,

3296
\l__enumext_label_copy_viii_tl 3311
\l__enumext_label_copy_X_tl 161
\l__enumext_label_fill_left_v_tl 3766
\l__enumext_label_fill_left_X_tl 89
\l__enumext_label_fill_right_v_tl 3771
\l__enumext_label_fill_right_X_tl 89
\l__enumext_label_font_style_v_tl 3769, 3784,

4534, 4542
\l__enumext_label_font_style_vii_tl . . . 5115
\l__enumext_label_font_style_viii_tl . . 5393
\l__enumext_label_i_tl 715
\l__enumext_label_ii_tl 715
\l__enumext_label_iii_tl 715
\l__enumext_label_iv_tl 715
__enumext_label_style:Nnn 31, 44, 616, 616, 631,

720, 763, 828, 830
\l__enumext_label_v_tl 96, 825, 3265, 3338, 3407,

4222, 4406
\l__enumext_label_vi_tl 96, 825, 3262, 3335, 4535,

4543
\l__enumext_label_vii_tl . 758, 5046, 5069, 5076
\l__enumext_label_viii_tl 758, 5290, 5319, 5323
\l__enumext_label_width_by_box . . 56, 612, 613
__enumext_label_width_by_box:Nn 44, 610, 610,

156 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

615, 627, 889, 3406
\l__enumext_labelsep_v_dim . . . 3427, 4154, 4418,

4537
\l__enumext_labelsep_vii_dim . 2969, 4632, 4642,

4726, 5011, 5067, 5122, 5131
\l__enumext_labelsep_viii_dim 4663, 4673, 4775,

5254, 5331, 5396, 5405
\l__enumext_labelwidth_v_dim . 833, 3417, 3422,

3443, 3475, 3780, 4154, 4418, 4532
\l__enumext_labelwidth_vii_dim . . . 2972, 4632,

4641, 4726, 5011, 5113, 5130
\l__enumext_labelwidth_viii_dim . . 4663, 4672,

4775, 5254, 5338, 5355, 5391, 5404
\l__enumext_leftmargin_tmp_v_bool . 117, 4400
\l__enumext_leftmargin_tmp_X_bool 60
\l__enumext_leftmargin_tmp_X_dim 60
\l__enumext_leftmargin_X_dim 60
__enumext_level: . 215, 215, 753, 755, 1062, 1066,

1070, 1138, 1142, 1146, 1150, 1233, 1235, 1237, 1239,
1281, 1283, 1285, 1287, 1291, 1325, 1331, 1336, 1338,
1341, 1344, 1357, 1360, 1671, 1675, 1681, 1744, 1746,
1748, 1751, 1758, 1760, 1762, 1765, 1898, 1899, 1908,
1914, 1917, 1918, 2041, 2043, 2045, 2047, 2089, 2091,
2094, 2097, 2117, 2121, 2144, 2660, 2662, 2664, 2692,
2693, 2695, 2752, 2760, 2764, 2768, 2979, 2983, 3487,
3488, 3492, 3493, 3494, 3502, 3510, 3511, 3514, 3521,
3522, 3526, 3529, 3531, 3565, 3567, 3568, 3570, 3573,
3584, 3585, 3588, 3589, 3591, 3949, 3962, 3969, 3977,
3980, 3982, 3984, 3985, 3986, 3987, 3990, 3995, 4001,
4007, 4014, 4027, 4029, 4032, 4033, 4035, 4039, 4045,
4073, 4078, 4089, 4091

\l__enumext_level_h_int 127, 16, 248, 271, 284, 779,
810, 1650, 1989, 2052, 2079, 2100, 2127, 2149, 2184,
2222, 2431, 2451, 2862, 3957, 4938, 4939

\l__enumext_level_int . 108, 16, 217, 258, 270, 285,
557, 1245, 1370, 1649, 1880, 1974, 1986, 2039, 2074,
2086, 2115, 2120, 2142, 2169, 2181, 2214, 2218, 2220,
2308, 2310, 2312, 2325, 2327, 2425, 2457, 2839, 2849,
2855, 2861, 2868, 2877, 2882, 3240, 3666, 3859, 3906,
3907, 3918, 3929, 3947, 3960, 3991, 4119, 4485, 4991,
5001, 5226, 6115, 6119, 6125, 6129, 6202

__enumext_list_arg_two_i: 3822
__enumext_list_arg_two_ii: 3822
__enumext_list_arg_two_iii: 3822
__enumext_list_arg_two_iv: 3822
__enumext_list_arg_two_v: 104, 3822, 4224, 4401
__enumext_list_arg_two_vii: 3865, 4918
__enumext_list_arg_two_viii: 3865, 5190
\l__enumext_listoffset_v_dim . 4156, 4210, 4213
\l__enumext_listparindent_vii_dim 5138, 5142
\l__enumext_listparindent_viii_dim 5412, 5416
__enumext_log_answer_vars: . 38, 350, 358, 3247
__enumext_log_global_vars: . 38, 350, 350, 3246
__enumext_make_label: . . . 100, 3545, 3545, 3853
__enumext_make_label_box: . . . 3545, 3549, 3554,

3577
__enumext_make_label_std: . . . 3545, 3557, 3561
\l__enumext_mark_answer_sym_tl 86, 2604, 2818,

2995, 3429, 5335, 5342
\l__enumext_mark_answer_sym_v_tl . 3429, 3461
\l__enumext_mark_answer_sym_viii_tl . . . 5335
\l__enumext_mark_position_str 122, 2610, 2611,

2612, 2816, 3431, 5336, 5353
\l__enumext_mark_position_v_str . . 122, 3431

\l__enumext_mark_position_viii_str 122, 5336,
5353

\l__enumext_mark_ref_sym_tl . . 2592, 2957, 3362
\l__enumext_mark_sep_tmpa_dim 122, 3407, 3417,

3422
\l__enumext_mark_sep_tmpb_dim 122, 3412, 3416,

3421, 3430
\l__enumext_mark_sym_sep_dim . 2607, 2967, 2969,

2972, 2975, 2977
\l__enumext_mark_sym_sep_v_dim . . . 3425, 3427,

3430, 3443, 3475
\l__enumext_mark_sym_sep_viii_dim 5329, 5331,

5338, 5355
\l__enumext_meta_path_str 118, 5689, 5699, 5725
__enumext_mini_addvspace_vii: 63, 1629, 1629,

4800
__enumext_mini_addvspace_viii: 63, 1629, 1635,

4865
__enumext_mini_env* 555
__enumext_mini_page 1681, 1708, 4039, 4141, 4802,

4867, 4888
__enumext_mini_right_cmd:n 64, 1666, 1668, 1668
__enumext_mini_set_vskip_vii: 62, 1572, 1572,

1631
__enumext_mini_set_vskip_viii: 62, 1572, 1594,

1637
__enumext_minipage:w 39, 365, 373, 562, 4825, 5137,

5411
\l__enumext_minipage_active_v_bool 4138, 4161,

4186
\g__enumext_minipage_active_vii_bool . . 125,

4814, 4823, 4845
\l__enumext_minipage_active_vii_bool . 4796,

4807
\g__enumext_minipage_active_viii_bool 4878,

4886, 4905
\l__enumext_minipage_active_viii_bool 4861,

4872
\g__enumext_minipage_active_X_bool . . . 175
\l__enumext_minipage_active_X_bool 76
__enumext_minipage_add_space: . 59, 110, 1321,

1347, 4037
\g__enumext_minipage_after_skip 76, 1576, 1588,

4843, 4903
\l__enumext_minipage_after_skip . . 58, 111, 76,

1334, 1374, 1376, 1381, 1384, 1388, 1393, 1397, 1400,
1404, 1416, 1421, 1424, 1428, 1433, 1437, 1440, 1444,
1455, 1460, 1463, 1467, 1472, 1476, 1479, 1483, 1495,
1509, 1542, 1544, 1549, 1551, 1553, 1557, 1561, 1563,
1565, 1596, 1609, 1623, 1677, 1704, 4196

\g__enumext_minipage_center_vii_bool . 4829,
4846

\g__enumext_minipage_center_viii_bool 4890,
4906

\g__enumext_minipage_center_X_bool . . . 175
\l__enumext_minipage_hsep_v_dim 4136
\l__enumext_minipage_hsep_vii_dim 4794
\l__enumext_minipage_hsep_viii_dim . . . 4859
\l__enumext_minipage_left_skip 76, 1496, 1574,

1579, 1583, 1597, 1601, 1615, 1633, 1639
\l__enumext_minipage_left_v_dim . . 4134, 4141
\l__enumext_minipage_left_vii_dim 4790, 4802
\l__enumext_minipage_left_viii_dim 4855, 4867
\l__enumext_minipage_left_X_dim 76
\g__enumext_minipage_right_skip 76, 1575, 1580,

157 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

1584, 4828, 4889
\l__enumext_minipage_right_skip . 58, 76, 1323,

1329, 1334, 1336, 1338, 1497, 1498, 1504, 1509, 1510,
1511, 1516, 1598, 1605, 1619, 1683, 1710

\l__enumext_minipage_right_v_dim . 1699, 1708,
4132, 4136

\g__enumext_minipage_right_vii_dim 124, 4798,
4825, 4848

\l__enumext_minipage_right_vii_dim 124, 4788,
4793, 4799

\g__enumext_minipage_right_viii_dim . . 4863,
4888, 4908

\l__enumext_minipage_right_viii_dim . . 4853,
4858, 4864

\g__enumext_minipage_right_X_dim 175
\g__enumext_minipage_right_X_skip 175
__enumext_minipage_set_skip: . 58, 1321, 1321,

1349
\g__enumext_minipage_stat_int . . 110, 76, 1688,

1715, 4036, 4047, 4052, 4139, 4188, 4193
\l__enumext_minipage_temp_skip 76, 1395, 1405,

1408, 1435, 1445, 1448, 1474, 1484, 1487, 1559, 1566,
1568

\l__enumext_miniright_code_vii_box 4836, 4840
\g__enumext_miniright_code_vii_tl 125, 4831,

4838, 4847
\l__enumext_miniright_code_viii_box . . 4897,

4901
\g__enumext_miniright_code_viii_tl 4892, 4899,

4907
\l__enumext_miniright_code_X_box 175
\l__enumext_mode_box_bool 636, 3552, 3735
__enumext_multi_addvspace: 57, 109, 1276, 1276,

3998
__enumext_multi_set_vskip: 56, 1231, 1231, 1278
\l__enumext_multicols_above_ii_skip . . . 1250
\l__enumext_multicols_above_iii_skip . . 1259
\l__enumext_multicols_above_iv_skip . . . 1268
\l__enumext_multicols_above_v_skip 1295, 1309,

1319, 1510
\l__enumext_multicols_above_X_skip 68
\l__enumext_multicols_below_ii_skip . . 1377,

1386, 1390, 1402, 1407
\l__enumext_multicols_below_iii_skip . 1417,

1426, 1430, 1442, 1447
\l__enumext_multicols_below_iv_skip . . 1456,

1465, 1469, 1481, 1486
\l__enumext_multicols_below_v_skip 1299, 1313,

1511, 1545, 1552, 1554, 1564, 1567, 4178
\l__enumext_multicols_below_X_skip 68
\g__enumext_multicols_right_X_skip 68
__enumext_multicols_start: 109, 110, 3974, 3974,

4041
__enumext_multicols_stop: 110, 1673, 4004, 4004,

4057
__enumext_nested_base_line_fix: 51, 108, 979,

985, 3925
__enumext_newlabel:nn 34, 40, 87, 410, 410, 2893,

3324
\l__enumext_newlabel_arg_one_tl 34, 40, 87, 95,

161, 2886, 2894, 2956, 3313, 3325, 3360
\l__enumext_newlabel_arg_two_tl 34, 40, 86, 161,

2842, 2852, 2865, 2880, 2895, 3300, 3305, 3310, 3326
__enumext_parse_foreach_keys:n . . 5742, 5758,

5775

__enumext_parse_foreach_keys:nn . 5742, 5765,
5777

__enumext_parse_keys:n 51, 71, 3913, 3913, 4085
__enumext_parse_keys_vii:n 71, 4913, 4951, 4951
__enumext_parse_keys_viii:n . 5186, 5231, 5231
__enumext_parse_save_key:n 84, 2685, 2690, 2690
__enumext_parse_save_key_vii:n 84, 2680, 2690,

2698
__enumext_parse_series:n 67, 71, 108, 127, 2070,

2070, 3923, 3932, 4963
__enumext_parse_store_keys:n 108
\l__enumext_parsep_i_skip 1248, 1252
\l__enumext_parsep_ii_skip 1257, 1261
\l__enumext_parsep_iii_skip 1266, 1270
\l__enumext_parsep_vii_skip 5139
\l__enumext_parsep_viii_skip 5413
\l__enumext_partopsep_v_skip . 1311, 1315, 1506,

1529
\l__enumext_partopsep_viii_skip 1607
__enumext_phantomsection: 39, 376, 403, 407, 423
__enumext_pre_itemsep_skip: 58, 59, 1339, 1368,

1368
__enumext_print_footnote: . . 425, 447, 511, 516
__enumext_print_footnote_mini: 425, 477, 538,

543
__enumext_print_footnote_standar: 489, 505,

569
__enumext_print_footnote_starred: 489, 534,

549, 553
__enumext_print_keyans_box:NN 86, 2810, 2810,

2823, 2971, 2982, 3442, 3474, 5337, 5354
\l__enumext_print_keyans_cmd_bool 122, 1842,

1858, 3921, 3930, 4063, 4961, 4982, 5528, 5535
\l__enumext_print_keyans_i_tl 5496, 5529
\l__enumext_print_keyans_ii_tl . . . 5502, 5530
\l__enumext_print_keyans_iii_tl . . 5508, 5531
\l__enumext_print_keyans_iv_tl . . . 5514, 5532
\l__enumext_print_keyans_star_bool . 51, 139,

122, 991, 1003, 5553, 5558
\l__enumext_print_keyans_starred_tl 138, 139,

122, 5490, 5551
\l__enumext_print_keyans_vii_tl 138, 5520, 5533
\l__enumext_print_keyans_X_tl 122
__enumext_printkeyans:nnn 139, 5525, 5534, 5538
__enumext_redefine_item: 100, 3534, 3534, 3852
\l__enumext_ref_key_arg_t 46
\l__enumext_ref_key_arg_tl 37, 737, 738, 747, 778,

781, 789, 795, 803, 842, 843, 851
\l__enumext_ref_the_count_tl . 46, 37, 743, 746,

786, 789, 800, 803, 848, 851
__enumext_register_default_label_wd:Nn 600,

600, 605, 606, 607, 608, 609
__enumext_remove_extra_parsep_vii: . . 4931,

5163, 5163
__enumext_remove_extra_parsep_viii: . 5203,

5441, 5441
\l__enumext_renew_counter_v_tl . 849, 857, 859
\l__enumext_renew_counter_vii_tl 787, 812, 814
\l__enumext_renew_counter_viii_tl . 801, 819,

821
\l__enumext_renew_counter_X_tl 37
__enumext_renew_footnote: . . 425, 429, 495, 500
__enumext_renew_footnote_mini: 425, 459, 525,

530
158 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

__enumext_renew_footnote_standar: 489, 489,
561

__enumext_renew_footnote_starred: 489, 521,
5133, 5407

__enumext_reset_count_resume:nn . 2234, 2262,
2266, 2268, 2273, 2278, 2285

__enumext_reset_count_resume_all:n . . 2234,
2238, 2274

__enumext_reset_count_resume_levels:n 2234,
2243, 2281

__enumext_reset_global_bool: . . 326, 329, 338
__enumext_reset_global_int: . . . 326, 328, 332
__enumext_reset_global_tl: 326, 330, 344
__enumext_reset_global_vars: . 38, 94, 326, 326,

3254
__enumext_resume:n 72, 1853, 2113, 2113
\l__enumext_resume_count_bool . . 46, 864, 1849,

1862, 2064
\l__enumext_resume_count_vii_bool 127, 2001,

4953
\l__enumext_resume_count_X_bool 46
__enumext_resume_counter: 69, 1962, 1962, 2067,

2209, 2212, 2226, 2229
__enumext_resume_integer_series: . 73, 2140,

2147, 2154, 2157
__enumext_resume_last_counter: 71, 127, 2037,

2061, 2077, 2082, 4955
\g__enumext_resume_last_keys_vii_tl . . 2056,

2057, 2224, 2230
\g__enumext_resume_last_keys_X_tl 46
__enumext_resume_save_counter: . . . 111, 128
__enumext_resume_series:n . . 72, 73, 2119, 2131,

2140, 2140
\l__enumext_resume_series_vii_bool 2054, 2151
\l__enumext_resume_series_X_bool 46
__enumext_resume_star: . . . 74, 1864, 2203, 2203
\l__enumext_resume_star_key_X_bool 46
\l__enumext_rightmargin_vii_dim . . 4644, 4648,

4653
\l__enumext_rightmargin_viii_dim . 4675, 4679,

4684
__enumext_safe_exec: . . 42, 108, 3902, 3902, 4084
__enumext_safe_exec_vii: . 42, 4912, 4934, 4934
__enumext_safe_exec_viii: 133, 5185, 5207, 5207
__enumext_save_last_keys:n 71, 2037, 2037, 2076,

2081
__enumext_second_part: . . 111, 4043, 4043, 4098
__enumext_second_part_v: . . . 4128, 4184, 4232
\l__enumext_series_name_str . 68, 108, 127, 1839,

1895, 1898, 1903, 1939, 1942, 1946, 2072, 2089, 2091,
2094, 2097, 2102, 2104, 2106, 2108, 3917, 4959

\l__enumext_series_name_tl 68, 73, 46, 1844, 1845,
1901, 1914, 1917, 1944, 1955, 1958, 2065, 2145, 2146,
2152, 2153, 2161, 2165, 2198

__enumext_set_error:nn 5644, 5681, 5683
__enumext_set_item_width: 111, 4068, 4068, 4094
__enumext_set_parse:n 5644, 5655, 5671
\l__enumext_setkey_tmpa_int . . . 113, 5648, 5652
\l__enumext_setkey_tmpa_seq . . 113, 5646, 5656,

5662, 5664, 5666, 5678
\l__enumext_setkey_tmpa_tl 113, 5654, 5658
\l__enumext_setkey_tmpb_seq . . 113, 5647, 5650,

5654, 5655
\l__enumext_setkey_tmpb_tl 113, 5673, 5675, 5676

\l__enumext_show_answer_bool . 2579, 2598, 2989,
3383, 3396, 3437, 3749, 5333, 5363

__enumext_show_length:nnn . . 53, 225, 225, 5891,
5892, 5893, 5894, 5895, 5896, 5897, 5898, 5899, 5900,
5906, 5907, 5908, 5909, 5910, 5911, 5912, 5913, 5914,
5915

\l__enumext_show_pos_tmp_int . 122, 3450, 3453,
3468

\l__enumext_show_position_bool . . . 2582, 2601,
2993, 3384, 3397, 3457, 5340

\g__enumext_standar_bool 36, 108, 22, 247, 250, 269,
341, 491, 507, 1877, 2456, 2470, 2847, 2860, 2875,
3944

\l__enumext_standar_bool 108, 111, 22, 1657, 2848,
3909, 4062, 4948

\l__enumext_standar_first_bool 37, 108, 22, 274,
1977, 2172, 2359, 2366

__enumext_standar_item_vii:w . 129, 5015, 5033,
5035

__enumext_standar_item_viii:w 134, 135, 5258,
5276, 5278

__enumext_standar_ref: 46, 735, 751, 3854
__enumext_standar_ref:nn 727, 735, 735
__enumext_standar_save_counter: . . 68, 1875,

1875, 4065
__enumext_standar_save_counter_aux: . 1875,

1879, 1890, 1893
__enumext_standar_unknown_keys:n 3661, 3668,

3673
__enumext_standar_unknown_keys:nn 3661, 3675,

3677
__enumext_standard_ref:nn 46
__enumext_standard_reset:nn . 2234, 2252, 2260
__enumext_standard_reset_key: 76, 2292, 2306,

2306
__enumext_standard_reset_key_star: 76, 2294,

2306, 2316
\g__enumext_starred_bool 36, 127, 22, 257, 260, 283,

342, 1656, 1924, 2430, 2476, 2838, 3294, 4849
\l__enumext_starred_bool 127, 128, 133, 22, 2876,

2911, 2917, 2965, 3910, 4947, 4981, 5219, 5223
__enumext_starred_columns_set_vii: . . 4626,

4626, 4922
__enumext_starred_columns_set_viii: . 4626,

4657, 5194
\l__enumext_starred_first_bool 37, 127, 22, 288,

989, 1002, 1992, 2187, 2359, 2366
__enumext_starred_item_vii:w . 129, 130, 5015,

5032, 5049
__enumext_starred_item_vii_aux_i:w . . 5015,

5054, 5057
__enumext_starred_item_vii_aux_ii:w . 5015,

5055, 5060, 5062
__enumext_starred_item_vii_aux_iii:w 5015,

5065, 5072
__enumext_starred_item_viii:w 134, 135, 5275,

5293, 5293
__enumext_starred_item_viii_aux_i:w . . 135,

5293, 5299, 5302
__enumext_starred_item_viii_aux_ii:w . 135,

5293, 5300, 5314, 5316
__enumext_starred_joined_item_vii:n 123, 129,

4688, 4688, 5030
__enumext_starred_joined_item_viii:n . 123,

134, 4688, 4737, 5273
159 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

__enumext_starred_ref: 47, 776, 808, 3887
__enumext_starred_ref:n 47, 770, 776, 776
__enumext_starred_reset:n . . . 2234, 2247, 2264
__enumext_starred_reset_key: . 76, 2301, 2303,

2306, 2330
__enumext_starred_save_counter: . . 68, 1875,

1922, 4984
__enumext_starred_save_counter_aux: . 1875,

1926, 1934, 1937
__enumext_starred_unknown_keys:n 3640, 3644,

3647
__enumext_starred_unknown_keys:nn 3640, 3649,

3651
__enumext_start_from:NNn 48, 862, 862, 876, 898,

904
\l__enumext_start_i_int 1980, 2175
__enumext_start_item_tmp_vii: 126, 4925, 5015,

5015
__enumext_start_item_tmp_viii: . . 5197, 5258,

5258
__enumext_start_item_vii:w 129, 131, 5041, 5046,

5069, 5076, 5124, 5124
__enumext_start_item_viii:w . . 135, 5285, 5290,

5319, 5398, 5398
\g__enumext_start_line_tl 37, 22, 276, 290, 347,

2500, 2505, 2510, 2524, 2529, 2534
__enumext_start_list:nn 39, 105, 365, 367, 4088,

4221, 4916, 5188
__enumext_start_list_tag:n . . 4234, 4258, 5134,

5408
__enumext_start_mini_vii: 128, 4786, 4786, 4973
__enumext_start_mini_viii: . . . 133, 4851, 4851,

5242
__enumext_start_save_ans_msg: . . 76, 77, 2343,

2343, 2368
__enumext_start_store_level: . 108, 3938, 3938,

4087
__enumext_start_store_level_vii: 128, 4915,

4987, 4987
\l__enumext_start_vii_int 1995, 2003, 2190, 2196
\l__enumext_start_X_int 89
__enumext_stop_item_tmp_vii: . . 126, 129, 131,

4924, 4930, 5017, 5126
__enumext_stop_item_tmp_viii: 134, 5196, 5202,

5260, 5400
__enumext_stop_item_vii: 131, 5124, 5126, 5146
__enumext_stop_item_viii: . . . 5398, 5400, 5424
__enumext_stop_list: 39, 125, 128, 365, 368, 4009,

4017, 4174, 4181, 4809, 4817, 4874, 4881
__enumext_stop_list_tag:n . . . 4234, 4274, 5149,

5427
__enumext_stop_mini_vii: 125, 128, 4786, 4805,

4977
__enumext_stop_mini_viii: 134, 4851, 4870, 5246
__enumext_stop_save_ans_msg: . 76, 2343, 2348,

3244
__enumext_stop_start_list_tag: . . 4234, 4266,

5136, 5410
__enumext_stop_store_level: . . 109, 110, 3967,

3967, 4010, 4018
__enumext_stop_store_level_vii: . . 125, 128,

4810, 4818, 4987, 4997
\l__enumext_store_active_bool 33, 77, 101, 1978,

1993, 2173, 2188, 2375, 3062, 3190, 3942, 3955, 4106,

4114, 4481, 4989, 4999, 5209, 5225
__enumext_store_active_keys:n . 83, 108, 2658,

2658, 3935
__enumext_store_active_keys_vii:n . 83, 127,

2658, 2668, 4965
__enumext_store_addto_prop:n 84, 95, 2734, 2734,

2742, 2902, 3275, 5324
__enumext_store_addto_seq:n 85, 96, 2743, 2743,

2747, 2754, 2768, 2776, 2785, 2799, 2807, 2960, 3365
__enumext_store_anskey_arg:n . . 88, 90, 93, 94,

2899, 2899, 3055, 3233
\l__enumext_store_anskey_arg_tl . . 33, 88, 106,

2908, 2913, 2915, 2920, 2927, 2930, 2940, 2945, 2948,
2954, 2960

__enumext_store_anskey_env:n . 94, 3184, 3188,
3218

\l__enumext_store_anskey_env_tl . . 33, 94, 106,
3220, 3222, 3224, 3227, 3235

__enumext_store_anskey_safe_outer: . . 91, 93
\l__enumext_store_columns_break_bool . 2910,

3011, 3097
\l__enumext_store_current_label_tl 33, 95, 96,

135, 101, 3259, 3262, 3265, 3271, 3273, 3275, 3332,
3335, 3338, 3344, 3346, 3356, 3365, 5304, 5309, 5310,
5323, 5324, 5326

\l__enumext_store_current_opt_arg_tl . 33, 97,
135, 101, 3375, 3380, 3387, 3393, 3400, 5312

__enumext_store_internal_ref: . . 86, 88, 2824,
2824, 2905

\l__enumext_store_item_join_int . . 2918, 2922,
3014, 3100

\l__enumext_store_item_star_bool . 2925, 3016,
3102

\l__enumext_store_item_symbol_sep_dim 2937,
2942, 3021, 3107

\l__enumext_store_item_symbol_tl . 2928, 2932,
3019, 3105

\l__enumext_store_keyans_item_opt_sep_v_-
tl 3269, 3271, 3342, 3344

\l__enumext_store_keyans_item_opt_sep_-
viii_tl . 5307, 5309

__enumext_store_level_close: . 85, 2748, 2772,
3971

__enumext_store_level_close_vii: . 85, 2779,
2803, 5003

__enumext_store_level_open: 85, 109, 2748, 2748,
3950, 3963

__enumext_store_level_open_vii: . . 85, 2779,
2779, 4993

\g__enumext_store_name_tl 33, 77, 101, 346, 353,
354, 355, 356, 2351, 2377, 2499, 2504, 2509, 2523,
2528, 2533, 3242

\l__enumext_store_name_tl 33, 77, 78, 101, 1882,
1885, 1905, 1927, 1930, 1948, 1982, 1997, 2177, 2192,
2346, 2355, 2356, 2377, 2378, 2380, 2381, 2383, 2385,
2386, 2388, 2390, 2391, 2415, 2736, 2738, 2745, 2888,
2889, 3001, 3315, 3316, 3467, 5348

\l__enumext_store_ref_key_bool 88, 2595, 2903,
2951, 3279, 3353

\l__enumext_store_save_key_vii_bool . . 2670,
2700

\l__enumext_store_save_key_vii_tl 2672, 2673,
2701, 2702, 2783, 2791, 2795, 2799

\l__enumext_store_save_key_X_bool . . 83, 122
\l__enumext_store_save_key_X_tl 83, 122

160 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

\l__enumext_store_upper_level_X_bool . . 122
__enumext_storing_exec: . . 77, 2353, 2369, 2373
__enumext_storing_set:n 76, 77, 2338, 2353, 2353
\l__enumext_the_counter_v_tl 848
\l__enumext_the_counter_vii_tl 786
\l__enumext_the_counter_viii_tl 800
\l__enumext_the_counter_X_tl 37
__enumext_tmp:n 32, 36, 39, 45, 48, 55, 60, 67, 68, 75,

83, 88, 89, 100, 132, 139, 164, 168, 175, 195, 591, 599,
632, 641, 1964, 1986, 2159, 2181, 2205, 2220, 2288,
2298, 2318, 2327, 2334, 2342, 2394, 2412, 2588, 2657,
2676, 2689, 2826, 2833, 2834, 2855, 2868, 2871, 2882,
3281, 3288, 3615, 3625, 3661, 3672, 3822, 3864, 3865,
3901

__enumext_tmp:nn 642, 663, 664, 698, 699, 714, 893,
918, 919, 934, 1015, 1037, 1038, 1058, 1112, 1120,
1121, 1135, 1200, 1216, 1217, 1230, 1724, 1740, 1835,
1874, 2553, 2587, 3599, 3614

__enumext_tmp:nnn 715, 731, 732, 733, 734, 758, 774,
775

__enumext_tmp:nnnnnn 935, 960, 963, 966, 968, 970,
973, 976

__enumext_tmp:w 5469, 5472
\l__enumext_tmpa_vii_int 4636, 4639, 4648, 4679
\l__enumext_tmpa_viii_int 4667, 4670
\l__enumext_tmpa_X_dim 175
\l__enumext_tmpa_X_int 175
\l__enumext_topsep_v_skip 1297, 1301, 1500, 4474
\l__enumext_topsep_vii_skip . . 1577, 1586, 1590
\l__enumext_topsep_viii_skip . 1599, 1621, 1625
__enumext_unskip_unkern: . . 36, 231, 231, 1350,

1522, 4012, 4013, 4053, 4176, 4177, 4194, 5140, 5141,
5414, 5415

\l__enumext_vspace_a_star_v_bool 1773
\l__enumext_vspace_a_star_vii_bool . . . 1795
\l__enumext_vspace_a_star_viii_bool . . . 1806
\l__enumext_vspace_a_star_X_bool 89
__enumext_vspace_above: 65, 110, 1741, 1741, 4023
__enumext_vspace_above_v: . 66, 1769, 1769, 4130
\l__enumext_vspace_above_v_skip . . 1771, 1775,

1777
__enumext_vspace_above_vii: 66, 128, 1791, 1791,

4970
\l__enumext_vspace_above_vii_skip 1793, 1797,

1799
__enumext_vspace_above_viii: . 66, 1791, 1802,

5240
\l__enumext_vspace_above_viii_skip 1804, 1808,

1810
\l__enumext_vspace_b_star_v_bool 1784
\l__enumext_vspace_b_star_vii_bool . . . 1817
\l__enumext_vspace_b_star_viii_bool . . . 1828
\l__enumext_vspace_b_star_X_bool 89
__enumext_vspace_below: 66, 111, 1755, 1755, 4061
__enumext_vspace_below_v: . 66, 1780, 1780, 4203
\l__enumext_vspace_below_v_skip . . 1782, 1786,

1788
__enumext_vspace_below_vii: 67, 128, 1813, 1813,

4980
\l__enumext_vspace_below_vii_skip 1815, 1819,

1821
__enumext_vspace_below_viii: . 67, 1813, 1824,

5248
\l__enumext_vspace_below_viii_skip 1826, 1830,

1832
__enumext_widest_from:nNNn . . 49, 877, 877, 892,

911
\g__enumext_widest_label_tl 31, 44, 56, 620, 624,

628
\l__enumext_wrap_label_opt_v_bool 3695
\l__enumext_wrap_label_opt_vii_bool 129, 5040
\l__enumext_wrap_label_opt_viii_bool . . 135,

5284
\l__enumext_wrap_label_opt_X_bool 89
\l__enumext_wrap_label_v_bool 3691, 3695, 3702,

3748, 3756, 4524
\l__enumext_wrap_label_vii_bool . . 129, 5040,

5044, 5052, 5116
\l__enumext_wrap_label_viii_bool . 135, 5284,

5288, 5297, 5362, 5371
\l__enumext_wrap_label_X_bool 89
__enumext_wrapper_label_v:n . 3754, 3758, 4543
__enumext_wrapper_label_vii:n 5118
__enumext_wrapper_label_viii:n . . 5369, 5373
\l__enumext_write_anskey_env_bool . . 33, 106,

3113, 3138
\l__enumext_write_anskey_env_file_iow . . 33,

106, 3163, 3164, 3165
\l__enumext_write_anskey_env_file_name_-

tl 33, 106, 3114, 3224
\l__enumext_write_aux_file_tl . 34, 87, 96, 161,

2891, 2897, 3322, 3328
enumext* . 5, 4910
enumXi . 574
enumXii . 574
enumXiii . 574
enumXiv . 574
enumXv . 574
enumXvi . 574
enumXvii . 574
enumXviii . 574
Environments provide by enumext:

anskey* 30, 33, 77, 82, 83, 87, 89, 92, 108, 109, 128, 138,
139, 145, 147

enumext* 30, 31, 35, 36, 40–44, 47, 49, 50, 52, 53, 55, 62,
63, 66–68, 71, 72, 74–79, 82–85, 87, 88, 90, 94, 95, 101,
102, 105, 107–109, 114, 122, 123, 125, 128, 130–134,
136–140, 142, 146, 148, 150

enumext . 30, 31, 35, 36, 40–44, 46–58, 61, 63–68, 71, 72,
74–79, 82–85, 87, 88, 90, 94, 95, 99–101, 103, 105, 109,
111, 112, 117, 122, 124, 127, 128, 130, 133, 138, 140,
142, 145, 147, 149

keyans* 30, 31, 33–37, 40–43, 47–50, 52, 53, 55, 62, 63, 66,
67, 77, 78, 81, 82, 84, 93, 95, 97, 102, 105, 107, 114, 122,
123, 132, 133, 146, 148, 150

keyanspic 30, 31, 33, 34, 37, 43, 48, 77, 78, 81, 84, 85, 93,
95–97, 102, 114–120, 148

keyans 30, 31, 33, 34, 36, 37, 40, 41, 43, 44, 48–50, 52, 53,
55, 57, 61, 63–66, 77, 78, 81, 82, 84, 85, 93, 95–98,
102–105, 112, 114, 116, 117, 120, 124, 134, 146, 148

Environments:
center . 122
description . 101, 122
enumerate . 122
flushleft . 122
flushright . 122
itemize . 122
list . 35, 38, 39, 50, 90, 101, 105, 110, 111, 114, 116–118,

161 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

122, 125
lrbox . 131
minipage 35, 38, 39, 41, 42, 55, 58, 59, 116, 119, 121, 122,

125, 131
multicols 56–59, 64, 109–111
quotation . 122
quote . 122
tabbing . 122
trivlist . 122
verbatim . 122
verse . 122

exp commands:
\exp_after:wN . 5472
\exp_args:Ne 1968, 2120, 2163, 2213, 3232, 3928, 5460
\exp_args:NV . . . 3027, 3124, 3628, 3649, 3675, 5777
\exp_not:N 43, 623, 746, 789, 803, 851, 1068, 1071, 1082,

1083, 1084, 1095, 1096, 1107, 1108, 2956, 2998, 2999,
3358, 3464, 3465, 5345, 5346, 5469

\exp_not:n 278, 292, 305, 313, 321, 689, 709, 746, 747,
789, 803, 851, 1069, 2026, 2035, 2566, 2615, 2719,
2732, 2894, 2922, 2932, 2942, 2956, 2957, 3325, 3360,
3362, 4343, 5587, 5595, 5809, 5814

F
\fbox . 2622
\fboxrule . 2622
\fboxsep . 2622
file commands:

\file_if_exist:nTF 3140
\file_input_stop: 6208

first . 1121
font . 642
\footnote . 40
\footnote . 40, 431, 461
\footnotemark . 441, 471
\footnotesize 2999, 3465, 5346
\footnotetext . 427
force-eol . 3095
\foreachkeyans 19, 143, 5742

G
\getkeyans . 19, 138, 5458
group commands:

\group_begin: 2997, 3042, 3463, 5344, 5527
\group_end: 3004, 3058, 3471, 5351, 5536

H
\hbadness . 5151, 5429
hbox commands:

\hbox_overlap_left:n 2814, 3530, 5109
\hbox_set:Nn 612, 4406
\hbox_set_end: 5150, 5428
\hbox_set_to_wd:Nnw 5127, 5401

\hfill 672, 677, 683, 684, 1680, 1707, 2956, 3358, 4813, 4877
hook commands:

\hook_gput_code:nnn 5, 205, 209, 213, 376
\hook_gset_rule:nnnn 377

\hyperlink . 89, 96
\hyperlink . 2956, 3358
\hypertarget . 39
\hypertarget . 402

I
\IfDocumentMetadataT 4260, 4268, 4276, 4310, 4318, 4326,

4430, 4439, 4447, 4452, 4457, 4502, 4511, 4601, 4609,
4811, 4875, 4921, 4929, 5085, 5193, 5201

\IfDocumentMetadataTF . . 493, 509, 523, 536, 3547, 3730
\IfHyperBoolean . 384
\IfPackageLoadedT . 380
\IfPackageLoadedTF . 7, 392
\ignorespaces . . 1071, 1084, 1096, 1108, 4419, 4926, 5013,

5046, 5069, 5076, 5122, 5142, 5198, 5256, 5290, 5319,
5396, 5416

\inputlineno 278, 292, 305, 313, 321
int commands:

\int_add:Nn . 4721, 4770
\int_case:nn . . . 1245, 1370, 2425, 2451, 2490, 2514
\int_case:nnTF . 233
\int_compare:nNnTF . . 557, 779, 793, 810, 817, 1340,

1359, 1513, 1531, 1643, 1662, 1674, 1702, 1880, 1974,
1989, 2039, 2052, 2074, 2079, 2086, 2100, 2115, 2127,
2142, 2149, 2169, 2184, 2218, 2222, 2308, 2325, 2538,
2544, 3066, 3070, 3074, 3082, 3194, 3198, 3202, 3240,
3260, 3298, 3303, 3308, 3333, 3448, 3907, 3918, 3947,
3960, 3976, 3991, 4006, 4047, 4115, 4119, 4147, 4172,
4188, 4378, 4485, 4489, 4691, 4701, 4717, 4740, 4750,
4766, 4939, 4943, 4991, 5001, 5153, 5165, 5214, 5226,
5431, 5443, 5652, 5792

\int_compare_p:nNn . . . 248, 258, 270, 271, 284, 285,
1649, 1650, 2250, 2251, 2431, 2457, 2839, 2849, 2861,
2862, 2877, 2918, 3957

\int_decr:N . 4720, 4769
\int_eval:n . . 363, 906, 2254, 2738, 2889, 2999, 3316,

3465, 3839, 3886, 4709, 4758, 5346
\int_from_alph:n 871, 885
\int_from_roman:n 873, 887
\int_gadd:Nn 4722, 4771
\int_gdecr:N 2434, 2439, 2443, 2447, 2460
\int_gincr:N 2901, 3368, 3484, 3518, 3708, 4036, 4139,

4529, 5019, 5095, 5262, 5328
\int_gset:Nn 439, 469, 2483
\int_gset_eq:NN . . 436, 466, 1884, 1897, 1907, 1916,

1929, 1941, 1950, 1957
\int_gzero:N . 334, 335, 336, 1688, 1715, 2312, 2322,

2332, 2550, 4052, 4193, 5176, 5455
\int_if_exist:NTF 1882, 1913, 1927, 1955, 2093, 2106,

2161, 2310, 2320, 2388
\int_incr:N 3081, 3450, 3906, 4110, 4377, 4938, 5018,

5213, 5261
\int_mod:nn . 5167, 5445
\int_new:N 16, 17, 18, 19, 20, 21, 76, 93, 115, 130, 142,

143, 154, 155, 156, 158, 169, 170, 178, 179, 180, 181,
182, 2096, 2108, 2391

\int_set:Nn 867, 871, 873, 1968, 1980, 1995, 2003, 2163,
2175, 2190, 2196, 3666, 4595, 4596, 4636, 4667, 4690,
4696, 4712, 4739, 4745, 4761, 5151, 5429, 5648, 5794

\int_set_eq:NN 3837, 3882, 4719, 4768
\int_sign:n . 2485
\int_step_function:nN 1986, 2181, 2220
\int_step_function:nnN . . 2327, 2855, 2868, 2882
\int_step_function:nnnN 5798
\int_step_inline:nn 5685, 5715
\int_step_inline:nnn 4597
\int_to_roman:n . 217, 1966, 1968, 1970, 2161, 2163,

2165, 2207, 2215, 2262, 2310, 2312, 2320, 2322, 2835,
2872

\int_use:N 356, 361, 362, 1341, 1360, 1675, 1970, 1982,
1997, 2005, 2120, 2165, 2177, 2192, 2198, 2214, 3839,
3859, 3886, 3929, 3977, 3986, 4001, 4007, 4694, 4695,
4707, 4743, 4744, 4756, 6115, 6119, 6125, 6129, 6202

\int_zero:N 3453, 5157, 5435
162 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

iow commands:
\iow_char:N . 3221, 3222
\iow_close:N . 3165
\iow_new:N . 110
\iow_now:Nn . 3164
\iow_open:Nn . 3163

\item 99, 103, 129, 131, 134, 137, 369, 2756, 2762, 2787, 2793,
2915, 3335, 3338, 3536, 3712, 4434, 4435, 4923, 4925,
5195, 5197, 5326

\item* . 5, 17, 81, 3710
item-join . 3009, 3095
item-pos* . 3009, 3095, 3599
item-star . 3009, 3095
item-sym* . 3009, 3095, 3599
\itemindent . 106
\itemindent . 105
itemindent . 1015
\itemsep . 4423
\itemwidth . 573, 2622, 4070, 4076, 4207, 4213, 4730, 4734,

4779, 4783

K
keyans . 16, 4216
keyans* . 16, 5183
keyanspic . 17, 4425
Keys for \anskey provide by enumext:

break-col . 88, 90
force-eol . 91
item-join . 88, 90
item-pos* . 88, 90
item-star . 88, 90
item-sym* . 88, 90
overwrite . 91
write-env . 91

Keys for anskey* provide by enumext:
break-col . 88, 90
force-eol . 91
item-join . 88, 90
item-pos* . 88, 90
item-star . 88, 90
item-sym* . 88, 90
overwrite . 91
write-env . 91

Keys for environments provide by enumext:
above* 32, 51, 65, 66, 110, 128
above 32, 51, 65, 66, 110, 128, 133
after 53, 54, 111, 128, 134
align 32, 45, 98–100, 104, 130, 144
base-fix . 51, 70, 84, 108
before* 53, 54, 110, 128, 133
before . 53, 54
below* 32, 65–67, 111, 128
below 32, 65–67, 111, 128, 134
check-ans 34, 35, 37, 76–81, 84, 94, 96, 111, 112, 128, 132,

146
columns-sep 55, 109, 132
columns . 32, 55, 65, 109
first . 53, 54, 131
font 44, 100, 104, 120, 130
item-pos* . 99, 101
item-sym* . 33, 99, 101
itemindent 32, 52, 99, 103–105, 131
itemsep . 50, 107, 132
label-pos 116, 117, 119, 120
label-sep . 116

labelsep . 44, 106, 130
labelwidth 43, 44, 46–49, 106, 130
label 31, 43, 44, 46, 48, 49, 117, 121
layout-sep . 116
layout-sty . 116, 121
layout-top . 116
lisparindent . 107
list-indent . 32, 52, 117
list-offset 52, 111, 113
listparindent . 52, 131
mark-ans* . 81, 84, 98
mark-ans . 82, 84, 89
mark-pos* . 81, 84, 98
mark-pos . 33, 82, 84, 144
mark-ref . 82, 84, 86, 89
mark-sep* . 81, 84, 98
mark-sep . 33, 82, 84, 135
mini-env 32, 40–42, 55, 64, 65, 84, 110, 122, 124, 125, 128,

133
mini-right* 32, 35, 55, 84, 125, 128
mini-right 32, 35, 55, 63, 84, 125, 128
mini-sep . 32, 55, 84, 110
mode-box 44, 99–101, 104, 105
no-store 34, 76–78, 84, 90, 93, 99
noitemsep . 50
nosep . 50
overwrite . 33, 92
parindent . 107
parsep . 50, 107, 117, 131
partopsep . 50
ref . 31, 46–48, 105, 146
reset* 70, 75, 76, 84, 140
reset . 70, 75, 76, 84, 140
resume* . 31, 43, 67, 69–71, 74, 76, 77, 84, 111, 128, 140
resume 31, 38, 43, 49, 67–74, 76, 77, 84, 111, 127, 128, 140,

150
rightmargin . 52, 122
save-ans . . 33, 38, 68–70, 73, 76–78, 80, 83–85, 90, 91,

93–96, 103, 112, 119, 130, 133–135, 138, 140, 146
save-key 33, 70, 83, 84, 108, 127
save-pos . 84
save-ref . . . 34, 40, 82, 84, 86, 88, 89, 95, 96, 103, 135
save-sep . 81, 84, 95, 135
series 31, 67, 68, 70, 71, 73, 74, 84, 108, 111, 127, 128, 140
show-ans . . . 33, 81, 82, 84, 86, 88, 89, 97, 98, 120, 135
show-length 36, 53, 105, 145, 146
show-pos 33, 81, 82, 86, 88, 89, 97, 120, 135
start* . 32, 48, 49, 70, 71
start 32, 36, 48, 49, 70, 71
store-key . 83
topsep . 50, 51, 117
widest . 31, 36, 46, 49
wrap-ans* 34, 81, 84, 104, 120
wrap-ans 43, 82, 84, 86, 89
wrap-label* . . . 32, 44, 99, 100, 103, 104, 129, 130, 135
wrap-label 32, 44, 99, 100, 103, 104, 117, 120, 129, 130,

135
wrap-opt 81, 84, 97, 103, 120
wrap-sep . 89
write-env . 33, 92

keys commands:
\keys_define:nn 634, 644, 666, 701, 717, 760, 825, 895,

921, 937, 979, 1017, 1040, 1114, 1123, 1202, 1219,
1726, 1837, 2290, 2299, 2336, 2396, 2555, 2590, 2678,
2683, 3009, 3095, 3601, 3617, 3640, 3663, 4332, 5486,

163 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

5597, 5687, 5695, 5703, 5734, 5742
\keys_if_exist_p:nn 5730, 5731
\l_keys_key_str 90, 92, 3027, 3124, 3628, 3649, 3675,

5777, 5881
\keys_precompile:nnN . . 139, 201, 201, 5488, 5494,

5500, 5506, 5512, 5518, 5760
\keys_set:nn . 658, 996, 1008, 1225, 1731, 1736, 2120,

2132, 2213, 2230, 2626, 2627, 2631, 2632, 2636, 2637,
2641, 2642, 2646, 2647, 2651, 2652, 3047, 3176, 3920,
3928, 4126, 4350, 4352, 4354, 4356, 4358, 4360, 4362,
4364, 4366, 4368, 4388, 4960, 5235, 5600, 5606, 5612,
5618, 5624, 5629, 5630, 5631, 5632, 5633, 5634, 5635,
5636, 5668, 5724, 5786

keyval commands:
\keyval_parse:NNn 2015, 2708, 5576

L
label . 715, 758, 825
label-pos . 4332
label-sep . 4332
Labels provide by enumext:

\Alph* . 43, 44
\Roman* . 43, 44
\alph* . 43, 44
\arabic* . 43, 44
\roman* . 43, 44

labelsep . 642
\labelwidth . 44
labelwidth . 642
\lastnodetype . 233
layout-sep . 4332
layout-sty . 4332
layout-top . 4332
\leftmargin . 106
\leftmargin . 105, 4418
legacy commands:

\legacy_if:nTF 5080, 5083, 5379, 5382
\legacy_if_gset_false:n 563, 4826
\legacy_if_set_false:n 5082, 5381
\legacy_if_set_true:n 5045, 5068, 5075, 5089, 5289,

5318
\linewidth . 110
\linewidth 4031, 4070, 4136, 4207, 4594, 4639, 4670, 4792,

4857
\list . 367
list-indent . 1015
list-offset . 1015
\listparindent . 4421
listparindent . 1015

M
\makebox . 121
\makebox 2816, 3583, 3780, 4519, 4532, 5113, 5391
\makelabel . 99, 100, 104, 121
\makelabel 99, 103, 3563, 3579, 3764, 3776
mark-ans . 2588, 4332
mark-ans* . 2553, 2588
mark-pos . 2588, 4332
mark-pos* . 2553, 2588
mark-ref . 2588
mark-sep . 2588, 4332
mark-sep* . 2553, 2588
midpenalty . 919
mini-env . 1200
mini-sep . 1200

\minipage . 373
\miniright 12, 63, 1641, 1692, 1719, 4050, 4191
mode commands:

\mode_if_math:TF 3090, 3213
\mode_if_vertical:TF 1279, 1307, 1327, 1351, 1502,

1523
\mode_leave_vertical: 994, 1005, 1068, 1082, 2812,

3528, 5107
mode-box . 632
msg commands:

\msg_error:nn . . 1694, 1721, 3051, 3084, 3088, 3180,
3211, 4117, 4121, 4380, 4437, 4487, 4941, 5216, 5228,
5637, 5711

\msg_error:nnn 740, 783, 797, 845, 1645, 1652, 1659,
1690, 1717, 2124, 2136, 2254, 2361, 3033, 3092, 3130,
3192, 3196, 3200, 3204, 3215, 3634, 3655, 3681, 4945,
5221, 5474, 5483, 5569, 5732, 5769, 5790

\msg_error:nnnn 3036, 3064, 3068, 3072, 3076, 3133,
3637, 3658, 3684, 4108, 4483, 4491, 5211, 5548, 5684,
5772

\msg_error:nnnnn 688, 708, 2565, 2614, 4342
\msg_fatal:nn . 3908
\msg_fatal:nnn 577, 594
\msg_info:nnn 9, 12, 382, 394
\msg_line_context: . . 5846, 5851, 5856, 5885, 5890,

5905, 5920, 5924, 5928, 5932, 5939, 5946, 5952, 5966,
5970, 5975, 5979, 5983, 5988, 5992, 5996, 6000, 6047,
6051, 6056, 6061, 6065, 6070, 6146, 6150, 6155, 6160,
6165, 6169, 6173, 6177, 6181, 6185, 6189, 6193, 6198,
6203

\msg_log:nnn 2380, 2385, 2390
\msg_log:nnnnn 360, 2523, 2528, 2533
\msg_log:nnnnnn . 352
\msg_new:nnn 5817, 5821, 5825, 5830, 5843, 5848, 5853,

5858, 5867, 5875, 5879, 5883, 5888, 5903, 5918, 5922,
5926, 5930, 5934, 5943, 5949, 5955, 5959, 5963, 5968,
5973, 5977, 5981, 5986, 5990, 5994, 5998, 6033, 6037,
6041, 6045, 6049, 6054, 6059, 6063, 6068, 6144, 6148,
6153, 6158, 6163, 6167, 6171, 6175, 6179, 6183, 6187,
6191, 6195, 6200

\msg_new:nnnn . . 5834, 6003, 6012, 6021, 6027, 6072,
6082, 6092, 6102, 6112, 6122, 6132, 6138, 6205

\msg_term:nnnn . 2345, 2350, 3848, 3858, 3892, 3897
\msg_term:nnnnn . 2504
\msg_warning:nn 4049, 4190
\msg_warning:nnn 3144, 3148, 3153
\msg_warning:nnnn 2541, 2547, 3794, 3799, 4693, 4706,

4742, 4755
\msg_warning:nnnnn 2499, 2509

\multicolsep . 109
\multicolsep 1344, 1516, 3997, 4163

N
\NeedsTeXFormat . 3
\NewCommandCopy . 369
\newcounter . 580, 596
\NewDocumentCommand 1641, 2234, 3039, 4479, 5458, 5525,

5644, 5708, 5779
\NewDocumentEnvironment . 3169, 4082, 4216, 4425, 4910,

5183
\newlabel . 40
\newlabel . 414
no-store . 2394
\noindent 4038, 4801, 4866, 5156, 5434
\nointerlineskip 1353, 1356, 1525, 1528, 1682, 1709, 4801,

4866
164 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

noitemsep . 935
\nopagebreak 1290, 1318, 1353, 1356, 1525, 1528, 1632, 1638
\normalfont 2998, 3464, 5345
nosep . 935

O
\obeyedline . 3221, 3222
overwrite . 3095

P
Packages:

caption . 125
enumext . 30, 43, 46, 76, 81, 101, 105, 106, 116, 144, 145
enumitem . 43
expl3 . 121
footnotehyper 39, 41, 42
hyperref 34, 35, 39, 40, 89, 96, 130, 144
latex-lab-block . 39
ltcmd . 39, 91
ltsockets . 114
lua-visual-debug . 58
multicol . 30, 144
scontents . 91
shortlst . 121, 126, 131
tagpdf . 114

\par . . 1290, 1318, 1356, 1528, 1632, 1638, 1677, 1682, 1704,
1709, 2964, 4014, 4178, 4196, 4465, 4468, 4614, 4828,
4843, 4889, 4903, 5156, 5434

para commands:
\para_end: . 5173, 5452

\parbox . 2622
\parindent . 5138, 5412
\parsep . 56, 117
\parsep . 995, 3883, 4402, 4411
parsep . 935
\parskip . 5139, 5413
\partopsep . 3884, 4194, 4422
partopsep . 935
peek commands:

\peek_meaning:NTF 5024, 5038, 5053, 5064, 5267, 5282,
5298

\peek_meaning_remove:NTF 5031, 5274
\peek_remove_spaces:n 3717

\phantomsection . 39
\phantomsection . 403
prg commands:

\prg_do_nothing: 407
\prg_new_protected_conditional:Npnn 219, 3136
\prg_replicate:nn 228
\prg_return_false: 223, 3149, 3157
\prg_return_true: 222, 3145, 3154

\printkeyans . 20, 138, 5525
prop commands:

\prop_count:N 354, 2738, 2889, 3001, 3316, 3467, 5348,
5795

\prop_gput_if_not_in:Nnn 2736
\prop_if_exist:NTF 2378, 5478, 5788
\prop_item:Nn 5480, 5812
\prop_new:N . 2381

\ProvidesExplPackage . 4

R
\raggedcolumns . 4000, 4166
\raisebox . 4556
\ref . 86, 95
ref . 715, 758, 825

\refstepcounter . 5092, 5384
regex commands:

\regex_if_match:nnTF 221, 870, 872, 884, 886
\renewcommand 746, 789, 803, 851
\RenewDocumentCommand . 431, 461, 1692, 1719, 3221, 3536,

3563, 3579, 3712, 3764, 3776, 4435
\RequirePackage . 13
reset . 2288
reset* . 2288
\resetenumext . 11, 74, 2234
resume . 1835
resume* . 1835
rightmargin . 1015
\Roman . 44, 48, 49
\Roman . 608
\roman . 44, 48, 49
\roman . 609, 733, 5510

S
save-ans . 2334
save-key . 2676
save-ref . 2588
save-sep . 2553, 2588, 4332
scan commands:

\scan_stop: 4434, 4923, 5195, 5469, 5472
seq commands:

\seq_clear:N 5646, 5797
\seq_const_from_clist:Nn 5639
\seq_count:N 355, 4620, 5650
\seq_gclear:N 456, 457, 486, 487
\seq_gput_right:Nn 442, 443, 472, 473, 2745
\seq_if_empty:NTF 449, 479, 5542, 5664
\seq_if_exist:NTF 2383, 5540
\seq_if_in:NnTF . 5546
\seq_item:Nn . 4607
\seq_map_function:NN 5655
\seq_map_inline:Nn 5555, 5563, 5665, 5666
\seq_map_pairwise_function:NNN 451, 481
\seq_new:N 116, 117, 119, 140, 171, 172, 173, 174, 2386
\seq_pop_left:NN 5654
\seq_put_right:Nn 4493, 5662, 5678, 5807
\seq_set_from_clist:Nn 5647
\seq_set_map_e:NNn 5656
\seq_use:Nn 201, 202, 5803

series . 1835
\setcounter 881, 885, 887, 3839, 3886, 4462
\setenumext . 6, 140, 5644
\setenumextmeta 6, 142, 5685
show-ans . 2553, 2588, 4332
show-length . 1112
show-pos . 2553, 2588, 4332
skip commands:

\skip_add:Nn 1250, 1259, 1268, 1281, 1285, 1309, 1313,
1329, 1387, 1389, 1403, 1406, 1427, 1429, 1443, 1446,
1466, 1468, 1482, 1485, 1504, 1553, 1554, 1565, 1567,
4411, 4420

\skip_gset:Nn 1580, 1584, 1588
\skip_gzero_new:N 1575, 1576
\skip_horizontal:N . . 1083, 1095, 1107, 5110, 5122,

5160, 5396, 5438
\skip_horizontal:n . . 1069, 2813, 2821, 3529, 3531,

4537, 5009, 5108, 5142, 5252, 5416
\skip_if_eq:nnTF 1248, 1257, 1266, 1373, 1413, 1453,

1541, 1577, 1599, 1743, 1757, 1771, 1782, 1793, 1804,
1815, 1826

165 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

\skip_new:N . . . 70, 71, 72, 77, 78, 79, 80, 81, 82, 193
\skip_set:Nn 1233, 1237, 1295, 1299, 1323, 1376, 1377,

1395, 1416, 1417, 1435, 1455, 1456, 1474, 1498, 1544,
1545, 1559, 1579, 1583, 1601, 1605, 1609, 1615, 1619,
1623, 4395

\skip_set_eq:NN 1334, 1335, 1337, 1344, 1509, 1510,
1511, 1516, 3835, 3880, 3883, 5139, 5413

\skip_sub:Nn 1383, 1385, 1399, 1401, 1423, 1425, 1439,
1441, 1462, 1464, 1478, 1480, 1551, 1552, 1563, 1564

\skip_use:N 1235, 1239, 1283, 1287, 1291, 1311, 1315,
1325, 1331, 1744, 1748, 1751, 1758, 1762, 1765, 4014

\skip_vertical:N . 564, 567, 1007, 4827, 4841, 5175,
5454

\skip_vertical:n 1006, 5174, 5453
\skip_zero:N 1343, 1357, 1495, 1496, 1497, 1515, 1529,

3884, 3997, 4163, 4422, 4423
\skip_zero_new:N 1574, 1596, 1597, 1598
\c_zero_skip . 564, 567, 1007, 1248, 1257, 1266, 1414,

1453, 1577, 1599, 1744, 1758, 1771, 1782, 1793, 1804,
1815, 1826, 4827, 4841, 5175, 5454

\small 5493, 5499, 5505, 5511, 5517, 5523
\smash . 3581, 3778
socket commands:

\socket_assign_plug:nn . . 4262, 4270, 4278, 4312,
4320, 4328

\socket_new:nn 4234, 4282
\socket_new_plug:nnn 4235, 4242, 4250, 4283, 4290,

4299
\socket_use:n 4313, 4321, 4329
\socket_use:nn 4263, 4271, 4279

start . 893
start* . 893
start-list-tags . 4234, 4282
\stepcounter 435, 465, 4405, 4549
stop-list-tags . 4234, 4282
stop-start-tags . 4234, 4282
str commands:

\c_backslash_str 3092, 5846, 5851, 5856, 5861, 5863,
5865, 5870, 5872, 5957, 5961, 5965, 5975, 5983, 5984,
5988, 6000, 6001, 6022, 6024, 6028, 6030, 6070, 6133,
6135, 6139, 6141, 6150, 6151, 6155, 6160, 6161, 6165,
6169

\c_circumflex_str 112
\c_colon_str 2888, 3315, 5469
\c_left_brace_str 5938, 5945, 5951
\c_percent_str . 112
\c_right_brace_str 5938, 5945, 5951
\str_case:nn 241, 298, 3408
\str_case:nnTF . 2022, 2030, 2715, 2723, 5583, 5591
\str_clear:N 3917, 4959
\str_const:Nn . 111
\str_count:n . 228
\str_if_empty:NTF . . 1895, 1903, 1939, 1946, 2072
\str_if_eq:nnTF 2246, 3840, 3888, 5710
\str_if_in:nnTF . 5465
\str_new:N 73, 118, 125, 126, 127, 145, 188
\str_set:Nn . 673, 679, 685, 704, 705, 706, 2561, 2562,

2563, 2610, 2611, 2612, 4337, 4340, 5689, 5699
\str_set_eq:NN 3431, 5336, 5353
\str_use:N . 3585

\strut . 3581, 3778
\strutbox . 1362, 1365, 1376, 1377, 1388, 1390, 1405, 1408,

1416, 1417, 1428, 1430, 1445, 1448, 1455, 1456, 1467,
1469, 1484, 1487, 1533, 1536, 1544, 1545, 1553, 1554,
1566, 1568, 1579, 1580, 1583, 1590, 1603, 1611, 1617,

1625, 4414, 4420, 4465, 4473, 4562

T
tag commands:

\tag_mc_begin:n 4240, 4288, 4297
\tag_mc_end: 4244, 4292, 4301
\tag_resume:n . . 4237, 4285, 4441, 4449, 4513, 4611,

4811, 4875
\tag_struct_begin:n . 4238, 4239, 4246, 4247, 4248,

4286, 4287, 4294, 4295, 4296
\tag_struct_end:n 4245, 4252, 4253, 4254, 4255, 4293,

4302, 4303, 4304, 4305, 4459, 4929, 5201
\tag_suspend:n . 4256, 4306, 4432, 4443, 4454, 4504,

4603, 4921, 5193
\tag_tool:n . 4442

TEX and LATEX 2𝜀 commands:
\@auxout . 412
\@currenvir . 241, 298
\protected@write 412

text commands:
\text_expand:n . 5461

\textasteriskcentered 2558, 2605
\textborn . 3605
\textreferencemark . 2593
\thepage . 418
tl commands:

\c_space_tl 3387, 3400, 5890, 5905, 5928, 5932, 6114,
6115, 6124, 6125, 6181, 6185, 6203

\tl_clear:N . . 671, 678, 2145, 2152, 2551, 2662, 2672,
2693, 2701, 2908, 3259, 3332, 5304

\tl_clear_new:N . 618
\tl_const:Nn . 602
\tl_gclear:N . 346, 347, 348, 2045, 2056, 3574, 3594,

4847, 4907, 5111
\tl_gclear_new:N 2088, 2102
\tl_gput_right:Nn 603
\tl_greplace_all:Nnn 624
\tl_gset:Nn 275, 276, 289, 290, 2046, 2057, 2090, 2103,

2377, 3505, 5059
\tl_gset_eq:NN 620, 3501, 5104
\tl_if_blank:nTF 3031, 3049, 3128, 3178, 3632, 3653,

3679, 5102, 5767
\tl_if_empty:NTF . 738, 753, 781, 795, 812, 819, 843,

857, 1845, 1901, 1905, 1944, 1948, 2207, 2224, 2356,
2415, 2752, 2783, 2928, 3242, 3269, 3342, 3380, 3393,
3526, 4618, 5307, 5676

\tl_if_empty_p:N 2065
\tl_if_exist:NTF 2117, 2129
\tl_if_novalue:nTF 433, 463, 2241, 3045, 3174, 3267,

3340, 3373, 3480, 3499, 3507, 3689, 3915, 4386, 4957,
5233, 5305

\tl_map_inline:Nn 621
\tl_new:N 29, 30, 31, 34, 37, 38, 41, 42, 46, 53, 57, 58, 94,

95, 96, 102, 103, 104, 105, 106, 107, 109, 113, 114, 120,
121, 122, 131, 134, 135, 152, 161, 162, 163, 166, 187

\tl_put_left:Nn 2760, 2791, 2913, 4831, 4892, 5323,
5326

\tl_put_right:Nn . 619, 849, 2764, 2795, 2842, 2852,
2865, 2880, 2886, 2891, 2915, 2920, 2927, 2930, 2940,
2945, 2948, 2954, 3227, 3262, 3265, 3271, 3273, 3300,
3305, 3310, 3313, 3322, 3335, 3338, 3344, 3346, 3356,
5309, 5310

\tl_remove_all:Nn 5675
\tl_remove_once:Nn 2830, 3285
\tl_replace_all:Nnn 623, 3222
\tl_retokenize:n 3235

166 / 167©2024–2026 by Pablo González L

enumext v2.1 §.14 Index of Implementation

\tl_reverse:N 2829, 2831, 3284, 3286
\tl_set:Nn . 43, 245, 255, 302, 303, 310, 311, 318, 319,

579, 672, 677, 683, 684, 737, 744, 778, 787, 801, 842,
1066, 1080, 1093, 1105, 1844, 2146, 2153, 2355, 2663,
2673, 2694, 2702, 2995, 3114, 3220, 3375, 3461, 3620,
3643, 3667, 4371, 5312, 5342, 5673, 5787

\tl_set_eq:NN . . 629, 743, 786, 800, 848, 2828, 3283,
3296, 3429, 5335

\tl_to_str:n 2117, 2121, 2129, 2133, 5461
\tl_trim_spaces:n . . . 619, 5662, 5673, 5679, 5710
\tl_use:N 625, 628, 755, 814, 821, 859, 1138, 1142, 1146,

1150, 1154, 1158, 1162, 1166, 1170, 1174, 1178, 1182,
1186, 1190, 1194, 1198, 2818, 2835, 2843, 2854, 2867,
2872, 2883, 3488, 3494, 3522, 3565, 3567, 3573, 3588,
3692, 3696, 3703, 3766, 3769, 3771, 3784, 4089, 4222,
4534, 4542, 4838, 4899, 5115, 5143, 5144, 5393, 5417,
5422, 5529, 5530, 5531, 5532, 5533, 5551, 5658, 5785

token commands:
\token_to_str:N . 414

\topsep . 4194, 4420
topsep . 935
\topskip . 1343, 1515

U
\unkern . 236

unknown 3009, 3095, 3615, 3640, 3661
\unskip . 235
use commands:

\use:N 229, 3570, 3591, 4091
\use:n 2013, 2706, 5467, 5574
\use_none:nn . 406

\usecounter . 3838, 3885

V
\value . 1885, 1930, 1942, 1958
vbox commands:

\vbox_set:Nn . 4506
\vbox_set_top:Nn 4836, 4897

\vspace 995, 1748, 1751, 1762, 1765, 1775, 1777, 1786, 1788,
1797, 1799, 1808, 1810, 1819, 1821, 1830, 1832

W
widest . 893
wrap-ans . 2588
wrap-ans* . 2553, 2588, 4332
wrap-label . 642
wrap-label* . 642
wrap-opt . 2553, 2588, 4332
write-env . 3095

167 / 167©2024–2026 by Pablo González L

	1 Introduction
	1.1 Description and usage
	1.2 The concept of left margin
	1.3 User interface
	1.3.1 Public counters
	1.3.2 Public dimension
	1.3.3 Support for multicol
	1.3.4 Support for minipage
	1.3.5 The \label and \ref system
	1.3.6 Support for \footnote

	2 The environments provided
	2.1 The environment enumext
	2.2 The environment enumext*
	2.3 The command \item*
	2.3.1 Keys for \item*

	2.4 The command \item in enumext*

	3 The command \setenumext
	4 The command \setenumextmeta
	5 The keyval system
	5.1 Keys for label and ref
	5.2 Keys for penalties
	5.3 Keys for spaces
	5.3.1 Vertical spaces
	5.3.2 Horizontal spaces

	5.4 Keys for add code
	5.5 Keys for start, series and resume
	5.6 Keys for reset
	5.6.1 The command \resetenumext

	5.7 Keys for multicols
	5.8 Keys for minipage
	5.8.1 The command \miniright
	5.8.2 The key mini-right

	6 The storage system
	6.1 Keys for storage system
	6.1.1 Keys for label and ref
	6.1.2 Keys for wrap and marks
	6.1.3 Keys for debug and checking

	6.2 The command \anskey
	6.2.1 Keys for \anskey

	6.3 The environment anskey*
	6.3.1 Keys for anskey*

	6.4 The environment keyans
	6.4.1 The \item* in keyans

	6.5 The environment keyanspic
	6.5.1 Keys for keyanspic
	6.5.2 The command \anspic

	6.6 Printing stored content
	6.6.1 The command \getkeyans
	6.6.2 The command \foreachkeyans
	6.6.3 The command \printkeyans

	7 Full examples
	8 Tagged PDF examples
	9 The way of non-enumerated lists
	References
	11 Change history
	12 Index of Documentation
	13 Implementation
	13.1 General conventions
	13.2 Initial set up
	13.3 Declaration of the package
	13.4 Definition of variables
	13.5 Some utility functions
	13.5.1 Utilities for environments and levels
	13.5.2 Utilities for log and terminal

	13.6 Copying list and minipage environments
	13.7 Compatibility with hyperref and footnotehyper
	13.8 Internal redefining \footnote command
	13.9 The internal minipage environment
	13.10 Definition of public dimension
	13.11 Definition of counters
	13.12 Definition of labels
	13.13 Setting keys associated with label
	13.14 Setting label and ref keys
	13.14.1 Define and set label and ref keys for enumext environment
	13.14.2 Define and set label and ref keys for enumext* and keyans* environments
	13.14.3 Define and set label and ref keys for keyans and keyanspic environments

	13.15 Setting start, start* and widest keys
	13.16 Setting keys for penaltys
	13.17 Setting keys for vertical spaces
	13.18 Setting base-fix key
	13.19 Setting keys for horizontal spaces
	13.19.1 Functions for setting the fake itemindent

	13.20 Setting show-length key
	13.21 Setting before, after and first keys
	13.21.1 Functions for before, after and first keys in enumext
	13.21.2 Functions for before, after and first keys in keyans
	13.21.3 Functions for before, after and first keys in enumext* and keyans*

	13.22 Setting keys for multicols and minipage
	13.23 Adjustment of vertical spaces for multicols
	13.23.1 Adjustment of vertical spaces for multicols in enumext
	13.23.2 Adjustment of vertical spaces for multicols in keyans

	13.24 Adjustment of vertical spaces for minipage
	13.24.1 Adjustment of vertical spaces for minipage in enumext
	13.24.2 Adjustment of vertical spaces for minipage in keyans
	13.24.3 Adjustment of vertical spaces for minipage in enumext* and keyans*
	13.24.4 The command \miniright

	13.25 Setting above and below keys
	13.25.1 Functions for above and below keys in enumext
	13.25.2 Functions for above and below keys in keyans
	13.25.3 Functions for above and below keys in enumext* keyans*

	13.26 Setting series, resume and resume* keys
	13.26.1 Internal function to save counter and integer values
	13.26.2 Internal function for resume counters
	13.26.3 Internal functions for series key
	13.26.4 Internal functions for resume key with value
	13.26.5 Internal function for resume* key

	13.27 The \resetenumext command
	13.28 The reset and reset* keys
	13.28.1 Internal functions for reset and reset* keys

	13.29 Setting save-ans, check-ans and no-store keys
	13.29.1 Setting save-ans key
	13.29.2 Internal functions for save-ans key
	13.29.3 The check answer mechanism
	13.29.4 Setting check-ans and no-store keys
	13.29.5 Set-up check answer mechanism
	13.29.6 Check for \item* and \anspic* commands

	13.30 Keys and functions associated with storage
	13.30.1 Keys for marks, wrap and show
	13.30.2 Storing structure of the environments
	13.30.3 Setting save-key key
	13.30.4 Internal functions to store optional arguments
	13.30.5 Function for storing content in prop list
	13.30.6 Function for storing content in sequence
	13.30.7 Functions for storing structure in the sequence
	13.30.8 Function for show marks and position

	13.31 The internal label and ref
	13.32 Common functions for \anskey and anskey* environment
	13.33 The command \anskey
	13.33.1 Internal functions for the command

	13.34 The environment anskey*
	13.34.1 Internal functions for the environment

	13.35 Executing check-ans system and write .log
	13.36 Common functions for keyans, keyans* and keyanspic
	13.36.1 Storing content in prop list
	13.36.2 The save-ref key for keyans, keyans* and keyanspic
	13.36.3 Storing content in sequence
	13.36.4 The show-ans and show-pos keys for keyans and keyanspic

	13.37 Redefining \item and \makelabel in enumext
	13.38 Setting item-sym* and item-pos* keys
	13.39 Handling unknown keys
	13.39.1 Handling unknown keys for keyans, keyans* and keyanspic
	13.39.2 Handling unknown keys for enumext*
	13.39.3 Handling unknown keys for enumext

	13.40 Redefining \item and \makelabel in keyans
	13.41 Second argument of the lists
	13.41.1 Calculation of \leftmargin and \itemindent
	13.41.2 Setting second argument of the lists

	13.42 The environment enumext
	13.43 The environment keyans
	13.44 Tagging PDF support for non-standart list environments
	13.44.1 Socket for tagging support in enumext* and keyans*
	13.44.2 Socket for tagging support in keyanspic

	13.45 The environment keyanspic and \anspic
	13.45.1 The environment keyanspic
	13.45.2 The command \anspic

	13.46 The horizontal environments
	13.46.1 Functions for item box width
	13.46.2 Functions for join item columns
	13.46.3 Functions for mini-env, mini-right and mini-right* keys

	13.47 The environment enumext*
	13.47.1 The command \item in enumext*
	13.47.2 Real definition of \item in enumext*

	13.48 The environment keyans*
	13.48.1 The command \item in keyans*
	13.48.2 Real definition of \item in keyans*

	13.49 The command \getkeyans
	13.50 The command \printkeyans
	13.51 The command \setenumext
	13.52 The command \setenumextmeta
	13.53 The command \foreachkeyans
	13.54 Messages
	13.55 Finish package

	14 Index of Implementation

