
The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Current Maintainer: Kim Dohyun

Support: https://github.com/lualatex/luamplib

2026/02/09 v2.39.0

Abstract

Package to have metapost code typeset directly in a document with LuaTEX

Contents

1 Documentation 2
1.1 TEX . 3

1.1.1 \mplibforcehmode . 3
1.1.2 \everymplib, \everyendmplib . 3
1.1.3 \mplibsetformat . 3
1.1.4 \mplibnumbersystem . 4
1.1.5 \mplibshowlog . 4
1.1.6 \mpliblegacybehavior . 4
1.1.7 \mplibtextextlabel . 5
1.1.8 \mplibcodeinherit . 6
1.1.9 \mplibglobaltextext . 6
1.1.10 Separate metapost instances . 6
1.1.11 \mplibverbatim . 7
1.1.12 \mpdim . 7
1.1.13 \mpcolor . 7
1.1.14 \mpfig, \endmpfig . 8
1.1.15 About cache files . 8
1.1.16 About figure box metric . 9
1.1.17 luamplib.cfg . 9
1.1.18 Tagged PDF . 9

1.2 MetaPost . 11
1.2.1 mplibdimen, mplibcolor . 11
1.2.2 mplibtexcolor, mplibrgbtexcolor . 11
1.2.3 withmplibcolors . 11
1.2.4 withtransparency . 12

1

https://github.com/lualatex/luamplib

1.2.5 withshadingmethod . 12
1.2.6 withfademethod . 13
1.2.7 mplibgraphictext . 14
1.2.8 mplibglyph . 15
1.2.9 mplibdrawglyph, and its friends . 15
1.2.10 mpliboutlinetext . 16
1.2.11 \mppattern, withmppattern . 16
1.2.12 asgroup . 19
1.2.13 \mplibgroup . 20
1.2.14 withmaskinggroup . 21
1.2.15 mpliblength, mplibuclength . 22
1.2.16 mplibsubstring, mplibucsubstring . 22

1.3 Lua . 22
1.3.1 runscript . 22
1.3.2 luamplib.instances . 22
1.3.3 luamplib.process_mplibcode . 23
1.3.4 luamplib.registerpattern . 24
1.3.5 luamplib.registergroup . 24

2 Implementation 24
2.1 Lua module . 24
2.2 TEXpackage . 93

3 The GNU GPL License v2 114

1 Documentation

This package aims at providing a simple way to typeset directly metapost code in a document
with LuaTEX. LuaTEX is built with the Lua mplib library, that runs metapost code. This package
is basically a wrapper for the Lua mplib functions and some TEX functions to have the output
of the mplib functions in the PDF.

Using this package is easy: in Plain, type your metapost code between the macros
\mplibcode and \endmplibcode, and in LATEX in the mplibcode environment.

The resulting metapost figures are put in a TEX hboxwith dimensions adjusted to the meta-
post code.

The code of luamplib is basically from the luatex-mplib.lua and luatex-mplib.tex files from
ConTEXt. They have been adapted to LATEX and Plain by Elie Roux and Philipp Gesang and new
functionalities have been added by Kim Dohyun. The most notable changes are:

• Possibility to use btex ... etex to typeset TEX code. textext 〈string〉 is a more versatile
macro equivalent to TEX 〈string〉 from TEX.mp. TEX is also allowed and is a synonym of
textext. The argument of mplib’s primitive maketext will also be processed by the same
routine.

2

• Possibility to use verbatimtex ... etex to run a TEX code. VerbatimTeX 〈string〉 is a more
versatile macro corresponding to verbatimtex command. Of course the behavior can-
not be the same as the stand-alone mpost, so that you cannot include \documentclass,
\usepackage etc. When these TEX commands are found in verbatimtex ... etex, the entire
code will be ignored.

The treatment of verbatimtex command has changed a lot since v2.20: see below § 1.1.6.

• In the past, the package required PDF mode in order to have some output. Starting with
v2.7 it works in DVI mode as well, though DVIPDFMx is the only DVI tool currently
supported.

It seems to be convenient to divide the explanations of some more changes and cautions
into three parts: TEX, MetaPost, and Lua interfaces.

1.1 TEX

1.1.1 \mplibforcehmode

When this macro is declared, every metapost figure box will be typeset in horizontal mode;
so \centering, \raggedleft etc. will have effects. \mplibnoforcehmode, being default, reverts this
setting.1

1.1.2 \everymplib{...}, \everyendmplib{...}

\everymplib and \everyendmplib redefine the Lua table entry containing metapost code which
will be automatically inserted at the beginning and ending of each metapost code chunk.

\everymplib{ beginfig(0); }
\everyendmplib{ endfig; }
\begin{mplibcode}
% beginfig/endfig not needed
draw fullcircle scaled 1cm;

\end{mplibcode}

1.1.3 \mplibsetformat{plain|metafun}

There are (basically) two formats for metapost: plain and metafun. By default, the plain
format is used, but you can set the format to be used by future figures at any time using
\mplibsetformat{〈format name〉}.

n.b. As metafun is such a complicated format, we cannot support all the functionalities
producing special effects provided bymetafun. At least, however, transparency (actually opac-
ity), shading (gradient colors) and transparency group are fully supported, and outlinetext is
supported by our own alternative mpliboutlinetext (see below § 1.2.10). You can try other ef-
fects as well, though we did not fully tested their proper functioning.

1Actually these commands redefine \prependtomplibbox. So you can redefine this macro with anything suitable
before a box. But see § 1.1.18 on Tagged PDF.

3

transparency (texdoc metafun § 8.2) Transparency is so simple that you can apply it to
an object, with plain format as well as metafun, just by appending withprescript
"tr_transparency=〈numeric〉" to the sentence. (0 ≤ 〈numeric〉 ≤ 1)

From v2.36, withtransparency is available with plain format as well. See below § 1.2.4.

shading (texdoc metafun § 8.3) One thing worth mentioning about shading is: when a color
expression is given in string type, it is regarded by luamplib as a color expression of
TEX side. For instance, when withshadecolors("orange", 2/3red) is given, the first color
"orange" will be interpreted as a color, xcolor or l3color’s expression.
From v2.36, shading is available with plain format as well with extended functionality.
See below § 1.2.5.

transparency group (texdoc metafun § 8.8) As for transparency group, the current metafun
document is not correct. The true syntax is:

draw <picture>|<path> asgroup <string>

where 〈string〉 should be "" (empty), "isolated", "knockout", or "isolated,knockout". Be-
ware that currently many of the PDF rendering applications, except Adobe Acrobat, can-
not properly render the isolated or knockout effect.

Transparency group is available with plain format as well with extended functionality.
See below § 1.2.12.

1.1.4 \mplibnumbersystem{scaled|double|decimal}

Users can choose numbersystem option. The default value is scaled, which can be changed by
declaring \mplibnumbersystem{double} or \mplibnumbersystem{decimal}.

1.1.5 \mplibshowlog{enable|disable}

Default: disable. When \mplibshowlog{enable}2 is declared, log messages returned by the meta-
post process will be printed to the .log file. This is the TEX side interface for luamplib.showlog.

1.1.6 \mpliblegacybehavior{enable|disable}

Legacy behavior By default, \mpliblegacybehavior{enable} is already declared for backward
compatibility, in which case TEX code in verbatimtex ... etex that comes just before beginfig()
will be inserted before the following metapost figure box. In this way, each figure box can be
freely moved horizontally or vertically. Also, a box number can be assigned to a figure box,
allowing it to be reused later.3

\mplibcode
verbatimtex \moveright 3cm etex; beginfig(0); ... endfig;

2As for user’s setting, enable, true and yes are identical; all others are identical to disable.
3But the recommended way to reuse a figure is using \mplibgroup command. See below § 1.2.13.

4

verbatimtex \leavevmode etex; beginfig(1); ... endfig;
verbatimtex \leavevmode\lower 1ex etex; beginfig(2); ... endfig;
verbatimtex \endgraf\moveright 1cm etex; beginfig(3); ... endfig;

\endmplibcode

n.b. \endgraf should be used instead of \par inside mplibcode environment.
On the other hand, TEX code in verbatimtex ... etex between beginfig() and endfig will be

inserted after flushing out the metapost figure. An example:4

\mplibcode
D := sqrt(2)**9;
beginfig(0);

draw fullcircle scaled D;

diameter: 22.62764bp.VerbatimTeX("\gdef\Dia{" & decimal D & "}");
endfig;

\endmplibcode
diameter: \Dia bp.

New and recommended way By contrast, when \mpliblegacybehavior{disable} is declared,
any verbatimtex ... etex, along with btex ... etex, will be run sequentially one by one. So,
some TEX code in verbatimtex ... etex will have effect on btex ... etex codes thereafter.

\begin{mplibcode}
beginfig(0);

draw btex ABC etex;
verbatimtex \bfseries etex; ABC DEF GHI
draw btex DEF etex shifted (1cm,0); % bold face
draw btex GHI etex shifted (2cm,0); % bold face

endfig;
\end{mplibcode}

1.1.7 \mplibtextextlabel{enable|disable}

Default: disable. \mplibtextextlabel{enable} enables the labels typeset via textext instead of
infont operator. So, label("my text", origin) thereafter is exactly the same as label(textext
"my text", origin).

n.b. In the background, luamplib redefines infont operator so that the right side argument
(the font part) is totally ignored. Therefore the left side arguemnt (the text part) will be typeset
with the current TEX font.

From v2.35, however, the redefinition of infont operator has been revised: when the char-
acter code of the text argument is less than 32 (control characters), or is equal to 35 (#), 36 ($),
37 (%), 38 (&), 92 (\), 94 (^), 95 (_), 123 ({), 125 (}), 126 (~) or 127 (DEL), the original infont
operator will be used instead of textext operator so that the font part will be honored. De-
spite the revision, please take care of char operator in the text argument, as this might bring
unpermitted characters into TEX.

4But the recommended way to access metapost variables from TEX (or Lua) side is to use Lua code via
luamplib.instances. For details see below § 1.3.2.

5

1.1.8 \mplibcodeinherit{enable|disable}

Default: disable. \mplibcodeinherit{enable} enables the inheritance of variables, constants,
and macros defined by previous metapost code chunks. On the other hand, \mplibcodeinherit
{disable} will make each code chunk being treated as an independent instance, never affected
by previous code chunks.

1.1.9 \mplibglobaltextext{enable|disable}

Default: disable. Formerly, to inherit btex ... etex boxes as well as other metapost macros,
variables and constants, it was necessary to declare \mplibglobaltextext{enable} in advance.
But from v2.27, this is implicitly enabled when \mplibcodeinherit is enabled. The command
still remains mostly for backward compatibility.

\mplibcodeinherit{enable}
%\mplibglobaltextext{enable}
\everymplib{ beginfig(0);} \everyendmplib{ endfig;}
\mplibcode
label(btex $\sqrt{2}$ etex, origin);
draw fullcircle scaled 20;

√
2

√
2picture pic; pic := currentpicture;

\endmplibcode
\mplibcode
currentpicture := pic scaled 2;

\endmplibcode

1.1.10 Separate metapost instances

luamplib v2.22 has added the support for several named metapost instances in LATEX environ-
ment mplibcode or Plain TEX commands \mplibcode ... \endmplibcode. The syntax for LATEX is:

\begin{mplibcode}[instanceName]
% some mp code

\end{mplibcode}

The behavior is as follows.

• All the variables and functions are shared only among all the environments belonging
to the same instance.

• \mplibcodeinherit only affects the environments with no instance name set (since if a
name is set, the code is intended to be reused at some point).

• btex ... etex boxes are also shared and do not require \mplibglobaltextext.

• When an instance names is set, respective \currentmpinstancename is set as well.

In parellel with this functionality, we support optional argument of instance name for
\everymplib and \everyendmplib, affecting only those mplibcode environments of the same name.

6

Unnamed \everymplib affects not only those instances with no name, but also those with name
but with no corresponding \everymplib. The syntax is:

\everymplib[instanceName]{...}
\everyendmplib[instanceName]{...}

1.1.11 \mplibverbatim{enable|disable}

Default: disable. Users can issue \mplibverbatim{enable}, after which the contents of mplibcode
environment will be read verbatim. As a result, except for \mpdim and \mpcolor (see § 1.1.12 and
§ 1.1.13), all other TEX commands outside of the btex or verbatimtex ... etex are not expanded
and will be fed literally to the mplib library.

1.1.12 \mpdim{...}

Besides other TEX commands, \mpdim is specially allowed in the mplibcode environment. This
feature is inpired by gmp package authored by Enrico Gregorio. Please refer to the manual of
gmp package for details.

draw origin--(.4\mpdim{\linewidth},0)
withpen pencircle scaled 4 dashed evenly scaled 4
withcolor \mpcolor{orange}
;

1.1.13 \mpcolor[...]{...}

With \mpcolor command, color names or expressions of color, xcolor and l3color module/pack-
ages can be used in the mplibcode environment (after withcolor command, in principle). See
the example above at § 1.1.12. The optional [...] denotes the option of xcolor’s \color com-
mand. For spot colors, l3color (in PDF/DVI mode), colorspace, spotcolor (in PDF mode) and
xespotcolor (in DVI mode) packages are supported as well.

n.b. Formerly, only the first object would have been colored as intended among multi-
ple graphical objects in a metapost image, because \mpcolor always produced withprescript
command internally. Since v2.38.1, now that \mpcolor returns a metapost color expression if
possible, users can issue the sentence as follows without worrying about the location of the
color command:

draw image (drawarrow (left--right) scaled 5)
scaled 7
withcolor \mpcolor{red!50}
;

Be aware, however, that even after v2.38.1 \mpcolor will still insert the withprescript command
when the color specified is a spot color (or named color in DVI mode). Users therefore have to
revise the code so that the color can have effect inside the image. For instance:

draw image (drawarrow (left--right) scaled 5 withcolor \mpcolor{spotA})
scaled 7
;

7

1.1.14 \mpfig ... \endmpfig

Besides the mplibcode environment (for LATEX) and \mplibcode ... \endmplibcode (for Plain), we
also provide unexpandable TEX macros \mpfig ... \endmpfig and its starred version \mpfig* ...
\endmpfig to save typing toil. The former is roughly the same as follows:

\begin{mplibcode}[@mpfig]
beginfig(0)

token list declared by \everymplib[@mpfig]
...
token list declared by \everyendmplib[@mpfig]

endfig;
\end{mplibcode}

and the starred version is roughly the same as follows:

\begin{mplibcode}[@mpfig]
...

\end{mplibcode}

In these macros \mpliblegacybehavior{disable} is forcibly declared. Again, as both share the
same instance name, metapost codes are inherited among them. A simple example:

\everymplib[@mpfig]{ drawoptions(withcolor 1/3[red,white]); }
\mpfig* input boxes \endmpfig
\mpfig Box 1
circleit.a(btex Box 1 etex); drawboxed(a);

\endmpfig

Users can change the instance name (default value: @mpfig) by redefining \mpfiginstancename,
after which a new mplib instance will start and code inheritance too will begin anew. \let
\mpfiginstancename\empty will prevent code inheritance if \mplibcodeinherit is not true.

1.1.15 About cache files

To support btex ... etex in external .mp files, luamplib inspects the content of each and every
.mp file and makes caches if nececcsary before returning their paths to the mplib library. This
could waste the compilation time, as most .mp files do not contain btex ... etex commands. So
luamplib provides macros as follows, so that users can give instructions about files that do not
require this functionality.

• \mplibmakenocache{〈filename〉[,〈filename〉,...]}

• \mplibcancelnocache{〈filename〉[,〈filename〉,...]}

where 〈filename〉 is a filename excluding .mp extension. Note that .mp files under $TEXMFMAIN/
metapost/base and $TEXMFMAIN/metapost/context/base are already registered by default.

By default, cache files will be stored in $TEXMFVAR/luamplib_cache or, if it’s not avail-
able (mostly not writable), in the directory where output files are saved: to be specific,

8

$TEXMF_OUTPUT_DIRECTORY/luamplib_cache, ./luamplib_cache, $TEXMFOUTPUT/luamplib_cache, and .,
in this order. $TEXMF_OUTPUT_DIRECTORY is normally the value of --output-directory command-
line option.

Users can change this behavior by the command \mplibcachedir{〈directory path〉}, where
tilde (~) is interpreted as the user’s home directory (on a windows machine as well). As back-
slashes (\) should be escaped by users, it would be easier to use slashes (/) instead.

1.1.16 About figure box metric

Notice that, after each figure is processed, the macro \MPwidth stores the width value of the
latest figure; \MPheight, the height value. Incidentally, also note that \MPllx, \MPlly, \MPurx, and
\MPury store the bounding box information of the latest figure without the unit bp.

1.1.17 luamplib.cfg

At the end of package loading, luamplib searches luamplib.cfg and, if found, reads the
file in automatically. Frequently used settings such as \everymplib, \mplibforcehmode or
\mplibcodeinherit are suitable for going into this file.

1.1.18 Tagged PDF

When tagpdf package is loaded and activated, mplibcode environment accepts additional options
for tagged PDF. The code related to this functionality is currently in experimental stage, not
guaranteeing backward compatibility. Available optional keys are similar to those of the LATEX’s
picture environment (texdoc latex-lab-graphic). The default tagging mode is the alt key with
Figure structure.

alt=〈text〉 starts a Figure tag by default and sets an alternate text of the figure from the 〈text〉.
BBox info will be added automatically to the PDF. This key is needed for ordinary meta-
post figures, for which, if no alt text is given, a default text will be used with a warning
issued. You can change the alternate text within metapost code as well: VerbatimTeX
"\mplibalttext{〈text〉}";

actualtext=〈text〉 starts a Span tag implicitly and sets a replacement text (a.k.a. actual text) from
the 〈text〉. If in vertical mode, horizontal mode will be forced by \noindent command.5
BBox info will not be added. This key is intended for figures which can be represented
by a character or a small sequence of characters. You can change the actual text within
metapost code as well: VerbatimTeX "\mplibactualtext{〈text〉}";

artifact starts an Artifact MC (marked content). BBox info will not be added. This key is
intended for decorative figures which have no semantic meaning.

text starts an Artifact MC but enables tagging on TEX-text boxes (such as btex ... etex, ex-
cluding pictures made by infont operator). If in vertical mode, horizontal mode will be

5It is not recommended to personally redefine \prependtomplibbox. Apart from using \mplibforcehmode or
\mplibnoforcehmode, the redefinition might be incompatible with actualtext key. See § 1.1.1 on these commands.

9

forced by \noindent command.6 BBox info will not be added. This key is intended for
figures the meaning of which is the sequence of texts in the TEX-text boxes in the order
they are drawn in the figure. Inside text-mode figures, reusing TEX-text boxes is strongly
discouraged.

Note that the text in a TEX-text box which starts with [taggingoff] will not be tagged at
all, and of course [taggingoff] and its trailing spaces will be gobbled by luamplib. For
example, the first and the third boxes in the following figure will not be tagged, and still
remain in the Artifact MC-chunks.

\begin{mplibcode}[text]
beginfig(1)

draw btex [taggingoff] $\sqrt 2$ etex ;
draw textext "$\sqrt 3$" shifted 12down ;
draw TEX "[taggingoff] $\sqrt 5$" shifted 24down ;

√
2√
3√
5√
7√
x

draw maketext "$\sqrt 7$" shifted 36down ;
draw mplibgraphictext "$\sqrt x$" shifted 48down ;

endfig;
\end{mplibcode}

off Given this key, nothing will be tagged by luamplib.

tag=〈name〉 You can choose a tag name, default value being Figure.7 For instance, you can set
‘tag=Formula, alt=〈text〉’ to get a Formula element with its alternate text.8

adjust-BBox=〈dimens〉 You can correct the BBox attribute of the figure by space-separated four
dimensional values, which will be added to the automatically calculated BBox values. To
draw the bounding box for checking with half-transparent red color, you can add debug=
BBox to the argument of \DocumentMetadata command.

tagging-setup=〈key-val list〉 This key accepts as its value the list of key-value options men-
tioned so far.

You can set these options anywhere in the document by declaring \SetKeys[luamplib/tagging]
{〈key-val list〉}, which will affect mplib figures thereafter in the scope. And the options listed
above are provided for \mpfig and \usemplibgroup (see below § 1.2.12) commands as well.

\begin{mplibcode}[myInstanceName, alt=drawing of a circle]
...

\end{mplibcode}

\mpfig[alt=drawing of a square box]
...

\endmpfig

6The key text also shares the limitation mentioned in the previous footnote.
7The option tag=false, however, is a synonym of the off key.
8Beware that this bypasses LATEX’s regular math formula tagging, for which the text key is needed.

10

\usemplibgroup[alt=drawing of a triangle]{...}

\mppattern{...} % see below
\mpfig[off] % do not tag this figure

...
\endmpfig

\endmppattern

As for the instance name of mplibcode environment, instance=〈name〉 or instancename=〈name〉
is also allowed in addition to the raw instance name as shown above.

1.2 MetaPost

1.2.1 mplibdimen ..., mplibcolor ...

These are metapost interfaces for the TEX commands \mpdim and \mpcolor (see above § 1.1.12
and § 1.1.13). For example, mplibdimen "\linewidth" is basically the same as \mpdim{\linewidth},
and mplibcolor "red!50" is basically the same as \mpcolor{red!50}. The difference is that these
metapost operators can also be used in external .mp files, which cannot have TEX commands
outside of the btex or verbatimtex ... etex.

1.2.2 mplibtexcolor ..., mplibrgbtexcolor ...

mplibtexcolor, which accepts a string argument, is a metapost operator that converts a TEX
color expression to a metapost color expression, that can be used anywhere color expression
is expected as well as after the withcolor command.9 For instance:

color col;
col := mplibtexcolor "olive!50";

But the result may vary in its color model (gray/rgb/cmyk) according to the given TEX color.
Therefore the example shown above would raise a metapost error: cmykcolor col; should have
been declared. By contrast, mplibrgbtexcolor 〈string〉 always returns rgb-model expressions.

n.b. Spot colors are forced to cmyk or rgbmodel, so these operators are not recommended
for spot colors.

1.2.3 withmplibcolors (..., ...)

Unlike the withcolor command, users can specify one color for filling and another color for
stroking using themacro withmplibcolors at the end of a sentence. The syntax is withmplibcolors
(〈fill color expr〉, 〈stroke color expr〉). When the argument is in string type, it is regarded as
the color expression of TEX side. A simple example (see also the example at § 1.2.9):

filldraw fullcircle scaled 40
withpen pencircle scaled 2
withmplibcolors ("orange!60", 2/3red)
;

9Since v2.38.1, the operation of mplibtexcolor is the same as that of mplibcolor if the color specified is not a spot
color or a named color in DVI mode.

11

The PDF file size is much smaller than issueing two sentences with different colors, though the
apparent effect is the same.

1.2.4 withtransparency (..., ...)

withtransparency(〈number〉 | 〈string〉, 〈numeric〉) is provided for plain format as well as meta-
fun. The first argument accepts a number or a name of alternative transparency methods (see
texdoc metafun § 8.2 Figure 8.1). The second argument accepts a numeric expression denoting
opacity.

\mpfig
fill unitsquare scaled 40

withcolor 1/3[blue,white]
withtransparency (1, 0.5) % or ("normal", 0.5)
;

fill fullcircle scaled 40
withcolor red
withtransparency (1, 0.5)
;

\mpfig

1.2.5 ... withshadingmethod ...

The syntax is exactly the same asmetafun’s new shadingmethod (texdoc metafun § 8.3.3), except
that the ‘shade’ contained in each and every macro name has changed to ‘shading’ in luamplib:
for instance, while withshademethod is a macro namewhich onlyworks withmetafun format, the
equivalent provided by luamplib, withshadingmethod, works with plain as well. Other differences
to the metafun’s and some cautions are:

• Textual pictures as well as paths can have shading effect. The term textual picture here
means a picture generated by btex ... etex, textext, TEX, maketext, mplibgraphictext (see
below § 1.2.7), or infont operator, though technically only the last one is a true textual
picture. Note that the picture, including transparency group, in which all the objects
are filled without color (e.g., see below § 1.2.9; see also § 1.2.12 and § 1.2.13) can also be
regarded as a textual picture.

draw btex \bfseries\TeX etex rotated 20 scaled 6
withshadingmethod "linear"
withshadingvector (0,3)
withshadingstep (

withshadingfraction 1/2
withshadingcolors (red,green) TEX)

withshadingstep (
withshadingfraction 1
withshadingcolors (green,blue)

)
;

12

• When shading a picture generated by ‘infont’ operator or that has multiple components,
the effect of withshadingvector and that of withshadingdirection will be the same, as lu-
amplib considers only the bounding box of the picture.

As shown, the syntax is 〈path〉 | 〈textual picture〉 withshadingmethod 〈string〉, where the latter
shall be either "linear" or "circular". Other macros for optional values are:

withshadingvector 〈pair〉 Starting and ending points (as time value) on the path.

withshadingdirection 〈pair〉 Starting and ending points (as time value) on the bounding box.
Default value: (0,2)

withshadingorigin 〈pair〉 The center of starting and ending circles. Default value: center p,
where p is the operand of withshadingmethod.

withshadingradius 〈pair〉 Radii of starting and ending circles. This is no-op in linear mode.
Default value: (0, abs(center p - urcorner p))

withshadingfactor 〈numeric〉 Multiplier of the radii. This is no-op in linear mode. Default
value: 1.2

withshadingcenter 〈pair〉 Values for shifting starting center. For instance, (0,0) means that the
center of starting circle is center p; (1,1) means urcorner p; (-1,-1) means llcorner p.

withshadingtransform 〈string〉 where 〈string〉 shall be "yes" (respect transform) or "no" (ignore
transform). Default value: "no" for pictures made by infont operator or having multiple
components; "yes" for all other cases.

withshadingdomain 〈pair〉 Limiting values of parametric variable that varies on the axis of color
gradient. Default value: (0,1)

withshadingstep (...) for combined shading of more than two colors.

withshadingfraction 〈numeric〉 Fractional number of each shading step. Only meaningful with
withshadingstep.

withshadingcolors (〈color expr〉, 〈color expr〉) Starting and ending colors, default value being
(white, black). String-type argument is regarded as the color expression of TEX side.

withshadingstroke 〈string〉 where 〈string〉 shall be "yes" or "no". Only meaningful when the
shading object is a 〈path〉; if "yes", we get the path stroked and then shaded. More
efficient than issueing two sentences.

1.2.6 ... withfademethod ...

This is a metapost operator which makes the color of an object gradiently transparent. The
syntax is 〈path〉 | 〈picture〉 withfademethod 〈string〉, the latter being either "linear" or "circular".
Though it is similar to the withshademethod from metafun, the differences are: (1) the operand

13

of withfademethod can be a picture as well as a path; (2) you cannot make gradient colors, but
can only make gradient opacity.

Related macros to control optional values are:

withfadeopacity (〈numeric〉, 〈numeric〉) sets the starting opacity and the ending opacity, de-
fault value being (1,0). ‘1’ denotes full color; ‘0’ full transparency.

withfadevector (〈pair〉, 〈pair〉) sets the starting and ending points. Default value in the linear
mode is (llcorner p, lrcorner p), where p is the operand, meaning that fading starts
from the left edge and ends at the right edge. Default value in the circular mode is
(center p, center p), which means centers of both starting and ending circles are the
center of the bounding box.

withfadecenter is a synonym of withfadevector.

withfaderadius (〈numeric〉, 〈numeric〉) sets the radii of starting and ending circles. This is
no-op in the linear mode. Default value is (0, abs(center p - urcorner p)), meaning
that fading starts from the center and ends at the four corners of the bounding box.

withfadebbox (〈pair〉, 〈pair〉) sets the bounding box of the fading area, default value being
(llcorner p, urcorner p). Though this option is not needed in most cases, there could
be cases when users want to explicitly control the bounding box. Particularly, see the
description below at § 1.2.12 on the analogous macro withgroupbbox.

An example:

\mpfig
picture mill;
mill = btex \includegraphics[width=100bp]{mill} etex;
draw mill

withfademethod "circular"
withfadecenter (center mill, center mill)
withfaderadius (20, 50)
withfadeopacity (1, 0)
;

\endmpfig

1.2.7 mplibgraphictext ...

mplibgraphictext 〈string〉 is a metapost operator, the effect of which is similar to that of Con-
TEXt’s graphictext or our own mpliboutlinetext (see below § 1.2.10). However the syntax is
somewhat different.

draw mplibgraphictext "\bfseries Funny"
rotated 20 scaled 3
fakebold 2.3 % fontspec option Funn

y
fillcolor "red!50" % color expression
drawcolor 2/3 blue % or strokecolor 2/3 blue
;

14

fakebold, fillcolor and drawcolor (or strokecolor) are optional; default values are 2, "white" and
"black" respectively.10 When the color expression is given in string type, it is regarded as color,
xcolor or l3color’s expression. All from mplibgraphictext to the end of sentence will compose an
anonymous picture, which can be drawn or assigned to a variable. Incidentally, withfillcolor
and withdrawcolor are synonyms of fillcolor and drawcolor, hopefully to be compatible with
graphictext.

n.b. In some cases, especially when processing complicated TEX code, mplibgraphictext
will produce better results than ConTEXt or even than our own mpliboutlinetext, not tomention
the much smaller PDF file size. There are, however, some limitations such that you can’t apply
shading (gradient colors) to the text with metafun’s withshademethod.11 Again, in DVI mode,
unicode-math package is needed for math formulae, as we cannot embolden type1 fonts in DVI
mode. But the most critical limitation is that, unlike mpliboutlinetext, you cannot manipulate
the shape of outline paths, because the returned picture is basically a btex ... etex picture.

1.2.8 mplibglyph ... of ...

From v2.30, we provide a newmetapost operator mplibglyph, which returns a metapost picture
containing outline paths of a glyph in opentype, truetype or type1 fonts. When a type1 font is
specified, metapost primitive glyph will be called.

mplibglyph 50 of \fontid\font % slot 50 of current font
mplibglyph "Q" of "TU/TeXGyrePagella(0)/m/n/10" % font csname
mplibglyph "Q" of "texgyrepagella-regular.otf" % raw filename
mplibglyph "Q" of "Times.ttc(2)" % subfont number
mplibglyph "Q" of "SourceHanSansK-VF.otf[Regular]" % instance name

Both arguments before and after “of” can be either a number or a string. Number arguments
are regarded as a glyph slot (GID) and a font id number, repectively. String argument at the
left side is regarded as a glyph name in the font or a unicode character. String argument at the
right side is regarded as a TEX font csname (without backslash) or the raw filename of a font.
When it is a font filename, a number within parentheses after the filename denotes a subfont
number (starting from zero) of a TTC font; a string within brackets denotes an instance name
of a variable font.

1.2.9 mplibdrawglyph ..., mplibstrokeglyph ..., mplibfillandstrokeglyph ...

As the structure of the picture returned by mplibglyph is quite similar to the result of glyph
primitive, metapost’s draw command will fill the inner path of the picture with the background
color. In contrast, mplibdrawglyph 〈picture〉 command fills the paths according to the nonzero
winding number rule. As a result, for instance, the area surrounded by inner path of “O” will
remain transparent.

n.b. To apply the nonzero winding number rule to a picture containing paths, luamplib
appends withpostscript "collect" to the paths except the last one in the picture. If you want the
even-odd rule instead, you can additionally declare withpostscript "evenodd" to the last path.

10Users can use the withmplibcolors macro instead of fillcolor and drawcolor options. See § 1.2.3 on this macro.
11But this limitation is now lifted by the introduction of withshadingmethod. See above § 1.2.5.

15

n.b. By the way, when you want fill-and-stroke effect, issueing filldraw command to the
last path will not always produce what youwant: in such cases, you have to issue the command
draw 〈the last path〉 withpostscript "both" (or "eoboth" to apply even-odd rule).12

As this could be somewhat annoying to users, luamplib v2.38.0 or later provides the fol-
lowing commands as well: mplibfillandstrokeglyph 〈picture〉, mplibstrokeglyph 〈picture〉, and
mplibfillglyph 〈picture〉, the last one being a synonym of mplibdrawglyph command.

An example:

mplibfillandstrokeglyph
mplibglyph "R" of \fontid\font scaled 1/12
withpen pencircle scaled 1
withmplibcolors ("orange", 2/3red)
;

1.2.10 mpliboutlinetext (...)

From v2.31, a new metapost operator mpliboutlinetext is available, which mimicks metafun’s
outlinetext. So the syntax is the same: see themetafun manual § 8.7 (texdoc metafun). A simple
example:

draw mpliboutlinetext.b ("$\sqrt{2+\alpha}$")
(withcolor \mpcolor{red!33})
(withpen pencircle scaled .2 withcolor 2/3red)
scaled 3
;

After the process, mpliboutlinepic[] and mpliboutlinenum will be preserved as global variables;
mpliboutlinepic[1] ... mpliboutlinepic[mpliboutlinenum] will be an array of images, each of
which containing outline paths of a glyph or a rule.

n.b. As Unicode grapheme cluster is not considered in the array, a unit that must be a
single cluster might be separated apart.

1.2.11 \mppattern{...} ... \endmppattern, ... withmppattern ...

TEX macros \mppattern{〈name〉} ... \endmppattern define a tiling pattern cell associated with
the 〈name〉. metapost command withmppattern, the syntax being 〈cyclic path〉 | 〈textual picture〉
withmppattern 〈string〉, will fill the given path or text with the tiling pattern cell of the 〈name〉
by replicating it horizontally and vertically.13 As said before at § 1.2.5, the textual picture here
means any text typeset by TEX, mostly the result of the btex command (and its derivatives) or
the infont operator.

12metafun provides macros nofill, eofill, fillup, eofillup etc. (seemetafun manual § 2.11), which luamplib with
plain format does not provide currently.

13withpattern is an operator virtually the same as withmppattern, but the former forces a metapost picture. There-
fore you cannot but use draw command with withpattern operator. On the other hand, if some special command is
not appended (see the example just below), 〈cyclic path〉 withmppattern 〈string〉 works as intended only with fill
or filldraw command.

16

Table 1: options for \mppattern
Key Value Type Explanation
xstep number horizontal spacing between pattern cells
ystep number vertical spacing between pattern cells
xshift number horizontal shifting of pattern cells
yshift number vertical shifting of pattern cells
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed
colored or coloured boolean false for uncolored pattern. default: true

* in string type, numbers are separated by spaces

An example:

\mppattern{mypatt} % or \begin{mppattern}{mypatt}
[% options: see below

xstep = 10,
ystep = 7,
matrix = "rotated 45", % or "0.7 0.7 -0.7 0.7" or {0.7, 0.7, -0.7, 0.7}

]
\mpfig % or any other TeX code

draw (up--down) scaled 5
withcolor 2/3[blue,white]
;

draw (left--right) scaled 5
withcolor 2/3[red,white]
;

\endmpfig
\endmppattern % or \end{mppattern}

\mpfig
draw fullcircle scaled 50

withpostscript "collect"
;

draw fullcircle scaled 120
withmppattern "mypatt"
withpen pencircle scaled 1
withcolor \mpcolor{red!50!blue!50}
withpostscript "eoboth"
;

\endmpfig

The available options, actually elements of a Lua table, are listed in Table 1. For the sake
of convenience, the width and height values of the tiling pattern cell will be written down into
the log file (depth is always zero). Users can refer to them for option setting.

As for matrix option, metapost code such as "rotated 30 slanted .2" is allowed as well as
the string or table of four numbers. You can also set xshift and yshift values by using ‘shifted’

17

operator. But when xshift or yshift option is explicitly given, they have precedence over the
effect of ‘shifted’ operator.

When you use special effect such as transparency in a pattern cell, resources option is
needed: for instance, resources="/ExtGState 1 0 R". However, as luamplib automatically in-
cludes the resources of the current page, this option is not needed in most cases.

Option colored=false (or coloured=false) will generate an uncolored pattern cell which shall
have no color at all (i.e. withoutcolor command is needed for the cells made from metapost
code). Uncolored pattern will be painted later by the color of a metapost object. An example:

\begin{mppattern}{pattnocolor}
[

colored = false,
matrix = "slanted .3 rotated 30",

]
\tiny\TeX

\end{mppattern}

\begin{mplibcode}
beginfig(1)

picture tex;
tex = mpliboutlinetext.p ("\bfseries \TeX");
for i=1 upto mpliboutlinenum:

mplibfillandstrokeglyph mpliboutlinepic[i]
scaled 8
withmppattern "pattnocolor"
withpen pencircle scaled 1/2
withcolor (i/4)[red,blue] % paints the pattern
;

endfor
endfig;

\end{mplibcode}

A much simpler and efficient way to obtain a similar result (but without colorful characters in
this example) is to give a textual picture as the operand of withmppattern:

\begin{mplibcode}
beginfig(2)

draw mplibgraphictext "\bfseries\TeX"
fakebold 1/2
rotated 15 scaled 8
withmppattern "pattnocolor" TEXwithmplibcolors (
2/3[red,white], % paints the pattern
2/3 red

)
;

endfig;
\end{mplibcode}

18

1.2.12 ... asgroup ...

As said before, transparency group is available with plain as well asmetafun format. The syntax
is exactly the same: 〈picture〉 | 〈path〉 asgroup "" | "isolated" | "knockout" | "isolated,knockout",
which will return a metapost picture. It is called Transparency Group because the objects
contained in the group are composited to produce a single object, so that outer transparency
effect, if any, will be applied to the group as a whole, not to the individual objects cumulatively.

The additional feature provided by luamplib is that you can reuse the group as many times
as you want in the TEX code or in other metapost code chunks, with infinitesimal increase in
the size of PDF file. For this functionality we provide TEX and metapost macros as follows:

withgroupname 〈string〉 associates a transparency group with the given name. When this is not
appended to the sentence with asgroup operator, the default group name ‘lastmplibgroup’
will be used.

\usemplibgroup{〈name〉} is a TEX command to reuse a transparency group of the name once
used. Note that the position of the group will be origin-based: in other words, lower-left
corner of the bounding box will be shifted to the origin.

usemplibgroup 〈string〉 is a metapost command which will add a transparency group of the
name to the currentpicture. Contrary to the TEX command just mentioned, the position
of the group is the same as the original transparency group.

withgroupbbox (〈pair〉, 〈pair〉) sets the bounding box of the transparency group, default value
being (llcorner p, urcorner p). This option might be needed especially when you draw
with a thick pen a path that touches the boundary; you would probably want to append
to the sentence ‘withgroupbbox (bot lft llcorner p, top rt urcorner p)’, supposing that the
pen was selected by the pickup command.

An example showing the difference between the TEX and metapost commands:

\mpfig
draw image(

fill fullcircle scaled 50 shifted 20right withcolor blue;
fill fullcircle scaled 50 withcolor red ;

)
asgroup ""
withgroupname "mygroup"
withtransparency (1, 1/2)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

\noindent
\clap{\vrule width 10bp height .25bp depth .25bp}%
\clap{\vrule width .5bp height 5bp depth 5bp}%
\usemplibgroup{mygroup}

19

\mpfig
usemplibgroup "mygroup"

withtransparency (1, 1/3)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

Also note that normally the transparency groups are not affected by outer color commands.
However, if you have made the original transparency group using withoutcolor command, col-
ors will have effects on the uncolored objects in the group.

1.2.13 \mplibgroup{...} ... \endmplibgroup

These TEXmacros are described here in this subsection, as they are deeply related to the asgroup
operator. Users can define a transparency group or a normal form XObject with these macros
from TEX side. The syntax is similar to the \mppattern command (see above § 1.2.11).

An example:
\mplibgroup{mygrx} % or \begin{mplibgroup}{mygrx}
[% options: see below

asgroup="",
]
\mpfig % or any other TeX code

pickup pencircle scaled 10;
draw (left--right) scaled 20 rotated 45 ;
draw (left--right) scaled 20 rotated -45 ;

\endmpfig
\endmplibgroup % or \end{mplibgroup}

\usemplibgroup{mygrx}

\mpfig
usemplibgroup "mygrx" scaled 1.5

withtransparency (1, 0.5)
;

\endmpfig

Availabe options, much fewer than those for \mppattern, are listed in Table 2. Again, the
width/height/depth values of the mplibgroup will be written down into the log file.

When asgroup option, including empty string, is not given, a normal form XObject will be
generated rather than a transparency group. Thus the individual objects, not the XObject as a
whole, will be affected by outer transparency command.

As for the option asgroup="masking", see the next subsection § 1.2.14.
As shown, you can reuse the mplibgroup using the TEX command \usemplibgroup or the

metapost command usemplibgroup. The behavior of these commands is the same as that de-
scribed above at § 1.2.12, excepting that the mplibgroup made by TEX code (not by metapost
code) respects original height and depth.

20

Table 2: options for \mplibgroup
Key Value Type Explanation
asgroup string "", "isolated", "knockout", "isolated,knockout" or "masking"
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed

* in string type, numbers are separated by spaces

1.2.14 ... withmaskinggroup ...

Using this command, the mplibgroup generated by the option asgroup="masking" (see Table 2)
can be utilized as a masking transparency group upon a picture or a path object. The syntax is
〈picture〉|〈path〉 withmaskinggroup 〈string〉, the latter being the name of a pre-defined masking
group.

The masking group should be prepared in grayscale color model: the area painted with 1
(white) will preserve the full color of the object; the area painted with 0 (black) will force full
transparency, making it invisible. By default, the background color is black.

n.b. Tiling pattern (see above § 1.2.11) is not allowed in the masking group.
An example:

\mpfig*
picture pic;
pic = image(

fill fullcircle scaled 80 withcolor 1/4[blue,white];
fill fullcircle scaled 80 shifted (40,0) withcolor 1/4[red,white];

);
\endmpfig

\mplibgroup{mymask}[asgroup="masking"]
\mpfig

fill bbox pic
withcolor 1/10 ;

label(TEX "\sffamily\bfseries\scshape\huge Meta" scaled 2, center pic)
withcolor 1 ;

\endmpfig
\endmplibgroup

\mpfig
fill bbox pic

withshadingmethod "linear"
withshadingcolors(3/4red, 3/4blue)
;

draw pic
withmaskinggroup "mymask"
;

\endmpfig

21

1.2.15 mpliblength ..., mplibuclength ...

mpliblength 〈string〉 returns the number of unicode characters in the string. This is a unicode-
aware version equivalent to the metapost primitive length, but accepts only a string-type ar-
gument. For instance, mpliblength "abçdéf" returns 6, not 8.

On the other hand, mplibuclength 〈string〉 returns the number of unicode grapheme clusters
in the string. For instance, mplibuclength "Äpfel", where Ä is encoded using two codepoints
(U+0041 and U+0308), returns 5, not 6 or 7. This operator requires lua-uni-algos package.

1.2.16 mplibsubstring ... of ..., mplibucsubstring ... of ...

mplibsubstring 〈pair〉 of 〈string〉 is a unicode-aware version equivalent to the metapost’s
substring ... of ... primitive. The syntax is the same as the latter, but the string is in-
dexed by unicode characters. For instance, mplibsubstring (2,5) of "abçdéf" returns "çdé", and
mplibsubstring (5,2) of "abçdéf" returns "édç".

On the other hand, mplibucsubstring 〈pair〉 of 〈string〉 returns the part of the string indexed
by unicode grapheme clusters. For instance, mplibucsubstring (0,1) of "Äpfel", where Ä is en-
coded using two codepoints (U+0041 and U+0308), returns "Ä", not "A". This operator requires
lua-uni-algos package.

1.3 Lua

1.3.1 runscript ...

A goodmany metapostmacros described in this documentation have been implemented using
the primitive runscript. With runscript 〈string〉, you can run a Lua code chunk from metapost
side and get some metapost code returned by Lua if you want. As the functionality is provided
by the mplib library itself, luamplib does not have much to say about it.

One thing is worthmentioning, however: if you return a Lua table to the metapost process,
it is automatically converted to a relevant metapost data type such as pair, color, cmykcolor or
transform. So users can save some extra toil of converting a table to a string, though it’s not a
big deal. For instance, runscript "return {1,0,0}" will give you the metapost color expression
(1,0,0) automatically.

1.3.2 Lua table luamplib.instances

Users can access the Lua table containing mplib instances, luamplib.instances, through which
metapost variables are also easily accessible from Lua side, as documented in LuaTEX manual
§ 11.2.8.4 (texdoc luatex). The following example will print false, 3.0, MetaPost and the knots
and the cyclicity of the path unitsquare.

\begin{mplibcode}[myinstance]
boolean b; b = 1 > 2;
numeric n; n = 3;
string s; s = "MetaPost";
path p; p = unitsquare;

22

Table 3: elements in luamplib table (partial)
Key Type Related TEX macro Cf.
codeinherit boolean \mplibcodeinherit § 1.1.8
everyendmplib table \everyendmplib § 1.1.2
everymplib table \everymplib § 1.1.2
getcachedir function (〈string〉) \mplibcachedir § 1.1.15
globaltextext boolean \mplibglobaltextext § 1.1.9
legacyverbatimtex boolean \mpliblegacybehavior § 1.1.6
noneedtoreplace table \mplibmakenocache § 1.1.15
numbersystem string \mplibnumbersystem § 1.1.4
setformat function (〈string〉) \mplibsetformat § 1.1.3
showlog boolean \mplibshowlog § 1.1.5
textextlabel boolean \mplibtextextlabel § 1.1.7
verbatiminput boolean \mplibverbatim § 1.1.11

\end{mplibcode}

\directlua{
local myinstance = luamplib.instances.myinstance
print(myinstance:get_boolean "b")
print(myinstance:get_numeric "n")
print(myinstance:get_string "s")
local t = myinstance:get_path "p"
for k,v in pairs(t) do

print(k, type(v)=='table' and table.concat(v,' ') or v)
end

}

Of course, this sort of Lua code can also be run inside metapost code using runscript command.
Again, of course you can access a metapost variable using your own TEX macro. For example:

\def\mpnumeric#1#2{\directlua{
tex.sprint(tostring(luamplib.instances["#1"]:get_numeric"#2"))

}}
\mpnumeric{myinstance}{n}\relax 3.0

1.3.3 Lua function luamplib.process_mplibcode

Users can run a metapost code chunk from Lua side by using this function:

luamplib.process_mplibcode (<string> metapost code, <string> instance name)

The second argument cannot be absent, but can be an empty string ("") which means that
it has no instance name.

Some other elements in the luamplib namespace, listed in Table 3, can affect the process of
process_mplibcode.

23

1.3.4 Lua function luamplib.registerpattern

This is the Lua interface for \mppattern ... \endmppattern described above at § 1.2.11.

luamplib.registerpattern (<number> box register, <string> pattern name, <table> options)

The first argument is the register of a box containing a pattern cell, which should be pre-
pared in advance by the user. For instance, \setbox0=\hbox{\tiny\TeX}, or corresponding Lua
code using tex.setbox function; then the argument should be 0.

As for the third argument, see above Table 1. The argument cannot be absent, but can be
an empty table, i.e. { }.

1.3.5 Lua function luamplib.registergroup

This is the Lua interface for \mplibgroup ... \endmplibgroup described above at § 1.2.13.

luamplib.registergroup (<number> box register, <string> group name, <table> options)

The first argument is the register of a box prepared in advance by the user. When the
contents of the box have been generated from TEX (not metapost) code, please make sure that
both of the TEX macros ‘MPllx’ and ‘MPlly’ are defined as ‘0’ before invoking the Lua function.

As for the third argument, see above Table 2. The argument cannot be absent, but can be
an empty table, i.e. { }.

Reusing an mplibgroup, \usemplibgroup{〈name〉}, is basically the same as running the TEX
macro ‘luamplib.group.〈name〉’. If you need the boxresource index, inspect this macro using
token.get_macro function.

2 Implementation

2.1 Lua module
1
2 luatexbase.provides_module {
3 name = "luamplib",
4 version = "2.39.0",
5 date = "2026/02/09",
6 description = "Lua package to typeset Metapost with LuaTeX's MPLib.",
7 }
8

Use the luamplib namespace, since mplib is for the metapost library itself. ConTEXt uses
metapost.

9 luamplib = luamplib or { }
10 local luamplib = luamplib
11
12 local format, abs = string.format, math.abs
13

Use our own function for warn/info/err.

24

14 local function termorlog (target, text, kind)
15 if text then
16 local mod, write, append = "luamplib", texio.write_nl, texio.write
17 kind = kind
18 or target == "term" and "Warning (more info in the log)"
19 or target == "log" and "Info"
20 or target == "term and log" and "Warning"
21 or "Error"
22 target = kind == "Error" and "term and log" or target
23 local t = text:explode"\n+"
24 write(target, format("Module %s %s:", mod, kind))
25 if #t == 1 then
26 append(target, format(" %s", t[1]))
27 else
28 for _,line in ipairs(t) do
29 write(target, line)
30 end
31 write(target, format("(%s) ", mod))
32 end
33 append(target, format(" on input line %s", tex.inputlineno))
34 write(target, "")
35 if kind == "Error" then error() end
36 end
37 end
38 local function warn (...) -- beware '%' symbol
39 termorlog("term and log", select("#",...) > 1 and format(...) or ...)
40 end
41 local function info (...)
42 termorlog("log", select("#",...) > 1 and format(...) or ...)
43 end
44 local function err (...)
45 termorlog("error", select("#",...) > 1 and format(...) or ...)
46 end
47
48 luamplib.showlog = luamplib.showlog or false
49

Provide a few “shortcuts” expected by the code.
50 local tableconcat = table.concat
51 local tableinsert = table.insert
52 local tableunpack = table.unpack
53 local texsprint = tex.sprint
54 local texgettoks = tex.gettoks
55 local texgetbox = tex.getbox
56 local texruntoks = tex.runtoks
57 if not texruntoks then
58 err("Your LuaTeX version is too old. Please upgrade it to the latest")
59 end
60 local is_defined = token.is_defined
61 local get_macro = token.get_macro

25

62 local mplib = require ('mplib')
63 local kpse = require ('kpse')
64 local lfs = require ('lfs')
65 local lfsattributes = lfs.attributes
66 local lfsisdir = lfs.isdir
67 local lfsmkdir = lfs.mkdir
68 local lfstouch = lfs.touch
69 local ioopen = io.open
70

Some helper functions, prepared for the case when l-file etc is not loaded.
71 local file = file or { }
72 local replacesuffix = file.replacesuffix or function(filename, suffix)
73 return (filename:gsub("%.[%a%d]+$","")) .. "." .. suffix
74 end
75 local is_writable = file.is_writable or function(name)
76 if lfsisdir(name) then
77 name = name .. "/_luam_plib_temp_file_"
78 local fh = ioopen(name,"w")
79 if fh then
80 fh:close(); os.remove(name)
81 return true
82 end
83 end
84 end
85 local mk_full_path = lfs.mkdirp or lfs.mkdirs or function(path)
86 local full = ""
87 for sub in path:gmatch("(/*[^\\/]+)") do
88 full = full .. sub
89 lfsmkdir(full)
90 end
91 end
92

btex ... etex in input .mp files will be replaced in finder. Because of the limitation of mplib
regarding make_text, we might have to make cache files modified from input files.

First of all, determine the directory to store cache files.
93 local outputdir, cachedir
94 if lfstouch then
95 for i,v in ipairs{'TEXMFVAR','TEXMF_OUTPUT_DIRECTORY','.','TEXMFOUTPUT'} do
96 local var = i == 3 and v or kpse.var_value(v)
97 if var and var ~= "" then
98 for _,vv in next, var:explode(os.type == "unix" and ":" or ";") do
99 local dir = format("%s/%s",vv,"luamplib_cache")

100 if not lfsisdir(dir) then
101 mk_full_path(dir)
102 end
103 if is_writable(dir) then
104 outputdir = dir
105 break

26

106 end
107 end
108 if outputdir then break end
109 end
110 end
111 end
112 outputdir = outputdir or '.'
113 function luamplib.getcachedir(dir)
114 dir = dir:gsub("##","#")
115 dir = dir:gsub("^~",
116 os.type == "windows" and os.getenv("UserProfile") or os.getenv("HOME"))
117 if lfstouch and dir then
118 if lfsisdir(dir) then
119 if is_writable(dir) then
120 cachedir = dir
121 else
122 warn("Directory '%s' is not writable!", dir)
123 end
124 else
125 warn("Directory '%s' does not exist!", dir)
126 end
127 end
128 end

Some basic metapost files not necessary to make cache files.
129 local noneedtoreplace = {
130 ["boxes.mp"] = true, -- ["format.mp"] = true,
131 ["graph.mp"] = true, ["marith.mp"] = true, ["mfplain.mp"] = true,
132 ["mpost.mp"] = true, ["plain.mp"] = true, ["rboxes.mp"] = true,
133 ["sarith.mp"] = true, ["string.mp"] = true, -- ["TEX.mp"] = true,
134 ["metafun.mp"] = true, ["metafun.mpiv"] = true, ["mp-abck.mpiv"] = true,
135 ["mp-apos.mpiv"] = true, ["mp-asnc.mpiv"] = true, ["mp-bare.mpiv"] = true,
136 ["mp-base.mpiv"] = true, ["mp-blob.mpiv"] = true, ["mp-butt.mpiv"] = true,
137 ["mp-char.mpiv"] = true, ["mp-chem.mpiv"] = true, ["mp-core.mpiv"] = true,
138 ["mp-crop.mpiv"] = true, ["mp-figs.mpiv"] = true, ["mp-form.mpiv"] = true,
139 ["mp-func.mpiv"] = true, ["mp-grap.mpiv"] = true, ["mp-grid.mpiv"] = true,
140 ["mp-grph.mpiv"] = true, ["mp-idea.mpiv"] = true, ["mp-luas.mpiv"] = true,
141 ["mp-mlib.mpiv"] = true, ["mp-node.mpiv"] = true, ["mp-page.mpiv"] = true,
142 ["mp-shap.mpiv"] = true, ["mp-step.mpiv"] = true, ["mp-text.mpiv"] = true,
143 ["mp-tool.mpiv"] = true, ["mp-cont.mpiv"] = true,
144 }
145 luamplib.noneedtoreplace = noneedtoreplace
146

Pattern formats to replace btex and verbatimtex ... etex in input files, if needed.
147 local name_b = "%f[%a_]"
148 local name_e = "%f[^%a_]"
149 local btex_etex = name_b.."btex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
150 local verbatimtex_etex = name_b.."verbatimtex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
151

27

Function luamplib.finder
152 local currenttime = os.time()
153 do
154 local luamplibtime = lfsattributes(kpse.find_file"luamplib.lua", "modification")

format.mp is much complicated, so specially treated.
155 local function replaceformatmp(file,newfile,ofmodify)
156 local fh = ioopen(file,"r")
157 if not fh then return file end
158 local data = fh:read("*all"); fh:close()
159 fh = ioopen(newfile,"w")
160 if not fh then return file end
161 fh:write(
162 "let normalinfont = infont;\n",
163 "primarydef str infont name = rawtextext(str) enddef;\n",
164 data,
165 "vardef Fmant_(expr x) = rawtextext(decimal abs x) enddef;\n",
166 "vardef Fexp_(expr x) = rawtextext(\"$^{\"&decimal x&\"}$\") enddef;\n",
167 "let infont = normalinfont;\n"
168); fh:close()
169 lfstouch(newfile,currenttime,ofmodify)
170 return newfile
171 end
172 local function replaceinputmpfile (name,file)
173 local ofmodify = lfsattributes(file,"modification")
174 if not ofmodify then return file end
175 local newfile = name:gsub("%W","_")
176 newfile = format("%s/luamplib_input_%s", cachedir or outputdir, newfile)
177 if newfile and luamplibtime then
178 local nf = lfsattributes(newfile)
179 if nf and nf.mode == "file" and
180 ofmodify == nf.modification and luamplibtime < nf.access then
181 return nf.size == 0 and file or newfile
182 end
183 end
184 if name == "format.mp" then return replaceformatmp(file,newfile,ofmodify) end
185 local fh = ioopen(file,"r")
186 if not fh then return file end
187 local data = fh:read("*all"); fh:close()

“etex” must be preceded by a space and followed by a space or semicolon as specified in LuaTEX
manual, which is not the case of standalone metapost though.
188 local count,cnt = 0,0
189 data, cnt = data:gsub(btex_etex, "btex %1 etex ") -- space
190 count = count + cnt
191 data, cnt = data:gsub(verbatimtex_etex, "verbatimtex %1 etex;") -- semicolon
192 count = count + cnt
193 if count == 0 then
194 noneedtoreplace[name] = true
195 fh = ioopen(newfile,"w");

28

196 if fh then
197 fh:close()
198 lfstouch(newfile,currenttime,ofmodify)
199 end
200 return file
201 end
202 fh = ioopen(newfile,"w")
203 if not fh then return file end
204 fh:write(data); fh:close()
205 lfstouch(newfile,currenttime,ofmodify)
206 return newfile
207 end

As the finder function for mplib, use the kpse library and make it behave like as if metapost
was used. And replace .mp files with cache files if needed. See also #74, #97.
208 local mpkpse
209 do
210 local exe = 0
211 while arg[exe-1] do
212 exe = exe-1
213 end
214 mpkpse = kpse.new(arg[exe], "mpost")
215 end
216 local special_ftype = {
217 pfb = "type1 fonts",
218 enc = "enc files",
219 }
220 function luamplib.finder (name, mode, ftype)
221 if mode == "w" then
222 if name and name ~= "mpout.log" then
223 kpse.record_output_file(name) -- recorder
224 end
225 return name
226 else
227 ftype = special_ftype[ftype] or ftype
228 local file = mpkpse:find_file(name,ftype)
229 if file then
230 if lfstouch and ftype == "mp" and not noneedtoreplace[name] then
231 file = replaceinputmpfile(name,file)
232 end
233 else
234 file = mpkpse:find_file(name, name:match("%a+$"))
235 end
236 if file then
237 kpse.record_input_file(file) -- recorder
238 end
239 return file
240 end
241 end

29

242 end
243

For the main function: process
plain or metafun, though we cannot support metafun format fully.

244 local currentformat = "plain"
245 function luamplib.setformat (name)
246 currentformat = name
247 end

v2.9 has introduced the concept of “code inherit”
248 luamplib.codeinherit = false
249 local mplibinstances = {}
250 luamplib.instances = mplibinstances
251 local has_instancename = false
252
253 local process
254 do
255 local function reporterror (result, prevlog)
256 if not result then
257 err("no result object returned")
258 else
259 local t, e, l = result.term, result.error, result.log

log has more information than term, so log first (2021/08/02)
260 local log = l or t or "no-term"
261 log = log:gsub("%(Please type a command or say `end'%)",""):gsub("\n+","\n")
262 if result.status > 0 then
263 local first = log:match"(.-\n! .-)\n! "
264 if first then
265 termorlog("term", first)
266 termorlog("log", log, "Warning")
267 else
268 warn(log)
269 end
270 if result.status > 1 then
271 err(e or "see above messages")
272 end
273 elseif prevlog then
274 log = prevlog..log

v2.6.1: now luamplib does not disregard show command, even when luamplib.showlog is false.
Incidentally, it does not raise error nor prints an info, even if output has no figure.
275 local show = log:match"\n>>? .+"
276 if show then
277 termorlog("term", show, "Info (more info in the log)")
278 info(log)
279 elseif luamplib.showlog and log:find"%g" then
280 info(log)
281 end
282 end

30

283 return log
284 end
285 end

lualibs-os.lua installs a randomseed. When this file is not loaded, we should explicitly seed a
unique integer to get random randomseed for each run.
286 if not math.initialseed then math.randomseed(currenttime) end
287 local function luamplibload (name)
288 local mpx = mplib.new {
289 ini_version = true,
290 find_file = luamplib.finder,

Make use of make_text and run_script. And we provide numbersystem option since v2.4. See
https://github.com/lualatex/luamplib/issues/21.
291 make_text = luamplib.maketext,
292 run_script = luamplib.runscript,
293 math_mode = luamplib.numbersystem,
294 job_name = tex.jobname,
295 random_seed = math.random(4095),
296 utf8_mode = true,
297 extensions = 1,
298 }

Append our own metapost preamble to the preamble loading plain/metafun format.
299 local preamble = tableconcat{
300 format(luamplib.preambles.preamble, replacesuffix(name,"mp")),
301 luamplib.preambles.mplibcode,
302 luamplib.legacyverbatimtex and luamplib.preambles.legacyverbatimtex or "",
303 luamplib.textextlabel and luamplib.preambles.textextlabel or "",
304 }
305 local result, log
306 if not mpx then
307 result = { status = 99, error = "out of memory"}
308 else
309 result = mpx:execute(preamble)
310 end
311 log = reporterror(result)
312 return mpx, result, log
313 end

Here, excute each mplibcode data, ie \begin{mplibcode} ... \end{mplibcode}.
314 function process (data, instancename)
315 local currfmt
316 if instancename and instancename ~= "" then
317 currfmt = instancename
318 has_instancename = true
319 else
320 currfmt = tableconcat{
321 currentformat,
322 luamplib.numbersystem or "scaled",
323 tostring(luamplib.textextlabel),

31

https://github.com/lualatex/luamplib/issues/21

324 tostring(luamplib.legacyverbatimtex),
325 }
326 has_instancename = false
327 end
328 local mpx = mplibinstances[currfmt]
329 local standalone = not (has_instancename or luamplib.codeinherit)
330 if mpx and standalone then
331 mpx:finish()
332 end
333 local log = ""
334 if standalone or not mpx then
335 mpx, _, log = luamplibload(currentformat)
336 mplibinstances[currfmt] = mpx
337 end
338 local converted, result = false, {}
339 if mpx and data then
340 result = mpx:execute(data)
341 local log = reporterror(result, log)
342 if log then
343 if result.fig then
344 converted = luamplib.convert(result)
345 end
346 end
347 else
348 err"Mem file unloadable. Maybe generated with a different version of mplib?"
349 end
350 return converted, result
351 end
352 end
353

dvipdfmx is supported, though nobody seems to use it.
354 local pdfmode = tex.outputmode > 0
355

make_text and some run_script uses LuaTEX’s tex.runtoks.
356 local catlatex = luatexbase.registernumber("catcodetable@latex")
357 local catat11 = luatexbase.registernumber("catcodetable@atletter")

tex.scantoks sometimes fail to read catcode properly, especially \#, \&, or \%. After some exper-
iment, we dropped using it. Instead, a function containing tex.sprint seems to work nicely.
358 local function run_tex_code (str, cat)
359 texruntoks(function() texsprint(cat or catlatex, str) end)
360 end

For conversion of sp to bp.
361 local factor = 65536*(7227/7200)
362

Prepare textext box number containers, locals and globals. localid can be any number.
They are local anyway. The number will be reset at the start of a new code chunk. Global
boxes will use \newbox command in tex.runtoks process. This is the same when codeinherit is

32

true. Boxes in instances with name will also be global, so that their tex boxes can be shared
among instances of the same name.
363 local texboxes = { globalid = 0, localid = 4096 }
364 local process_tex_text
365 do
366 local textext_fmt = 'image(addto currentpicture doublepath unitsquare \z
367 xscaled %f yscaled %f shifted (0,-%f) \z
368 withprescript "mplibtexboxid=%i:%f:%f")'
369 function process_tex_text (str, maketext)
370 if str then
371 if not maketext then str = str:gsub("\r.-$","") end
372 local global = (has_instancename or luamplib.globaltextext or luamplib.codeinherit)
373 and "\\global" or ""
374 local tex_box_id
375 if global == "" then
376 tex_box_id = texboxes.localid + 1
377 texboxes.localid = tex_box_id
378 else
379 local boxid = texboxes.globalid + 1
380 texboxes.globalid = boxid
381 run_tex_code(format([[\expandafter\newbox\csname luamplib.box.%s\endcsname]], boxid))
382 tex_box_id = tex.getcount'allocationnumber'
383 end
384 if str:find"^%[taggingoff%]" then
385 str = str:gsub("^%[taggingoff%]%s*","")
386 run_tex_code(format("\\luamplibnotagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
387 tex_box_id, global, tex_box_id, str))
388 else
389 run_tex_code(format("\\luamplibtagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
390 tex_box_id, global, tex_box_id, str))
391 end
392 local box = texgetbox(tex_box_id)
393 local wd = box.width / factor
394 local ht = box.height / factor
395 local dp = box.depth / factor
396 return textext_fmt:format(wd, ht+dp, dp, tex_box_id, wd, ht+dp)
397 end
398 return ""
399 end
400 end
401

Make color or xcolor’s color expressions usable, with \mpcolor or mplibcolor. These com-
mands should be used with graphical objects. Attempt to support l3color as well.
402 if is_defined'color_select:n' then
403 run_tex_code{
404 "\\newcatcodetable\\luamplibcctabexplat",
405 "\\begingroup",
406 "\\catcode`@=11 ",

33

407 "\\catcode`_=11 ",
408 "\\catcode`:=11 ",
409 "\\savecatcodetable\\luamplibcctabexplat",
410 "\\endgroup",
411 }
412 end
413 local ccexplat = luatexbase.registernumber"luamplibcctabexplat"
414
415 local process_color, process_mplibcolor

A common function for color functions
416 local function colorsplit (res)
417 local t, tt = { }, res:gsub("[%[%]]","",2):explode()
418 local be = tt[1]:find"^%d" and 1 or 2
419 for i=be, #tt do
420 if not tonumber(tt[i]) then break end
421 t[#t+1] = tt[i]
422 end
423 if #t == 0 then -- named color in DVI mode with no DocumentMetadata
424 run_tex_code{"\\extractcolorspecs{", tt[3], "}\\mplibtmpa\\mplibtmpb"}
425 t = get_macro"mplibtmpb":explode","
426 end
427 return t
428 end
429 do
430 local colfmt = ccexplat and "l3color" or "xcolor"
431 local mplibcolorfmt = {
432 xcolor = tableconcat{
433 [[\begingroup\let\XC@mcolor\relax]],
434 [[\def\set@color{\global\mplibtmptoks\expandafter{\current@color}}]],
435 [[\color%s\endgroup]],
436 },
437 l3color = tableconcat{
438 [[\begingroup\def__color_select:N#1{\expandafter__color_select:nn#1}]],
439 [[\def__color_backend_select:nn#1#2{\global\mplibtmptoks{#1 #2}}]],
440 [[\def__kernel_backend_literal:e#1{\global\mplibtmptoks\expandafter{\expanded{#1}}}]],
441 [[\color_select:n%s\endgroup]],
442 },
443 }
444 function process_color (str)
445 if str then
446 if not str:find("%b{}") then
447 str = format("{%s}",str)
448 end
449 local myfmt = mplibcolorfmt[colfmt]
450 if colfmt == "l3color" and is_defined"color" then
451 if str:find("%b[]") then
452 myfmt = mplibcolorfmt.xcolor
453 else
454 for _,v in ipairs(str:match"{(.+)}":explode"!") do

34

455 if not v:find("^%s*%d+%s*$") then
456 local pp = get_macro(format("l__color_named_%s_prop",v))
457 if not pp or pp == "" then
458 myfmt = mplibcolorfmt.xcolor
459 break
460 end
461 end
462 end
463 end
464 end
465 run_tex_code(myfmt:format(str), ccexplat or catat11)
466 local t = texgettoks"mplibtmptoks"
467 if not pdfmode then
468 if t:find"^hsb" or not t:find"%d" then
469 t = "color push " .. t
470 elseif not t:find"^pdf" then
471 t = t:gsub("%a+ (.+)","pdf:bc [%1]")
472 end
473 end
474 return format('1 withprescript "mpliboverridecolor=%s"', t)
475 end
476 return ""
477 end
478 function process_mplibcolor(str)
479 local res = process_color(str)
480 if res:find" cs " or res:find"@pdf.obj" or res:find"color push" then return res end
481 res = colorsplit(res:match'"mpliboverridecolor=(.+)"')
482 return format("(%s)", tableconcat(res, ","))
483 end
484 end
485

for \mpdim or mplibdimen
486 local function process_dimen (str)
487 if str then
488 str = str:gsub("{(.+)}","%1")
489 run_tex_code(format([[\mplibtmptoks\expandafter{\the\dimexpr %s\relax}]], str))
490 return format("begingroup %s endgroup", texgettoks"mplibtmptoks")
491 end
492 return ""
493 end
494

Newly introduced method of processing verbatimtex ... etex. This function is used when
\mpliblegacybehavior{false} is declared.
495 local function process_verbatimtex_text (str)
496 if str then
497 run_tex_code(str)
498 end
499 return ""

35

500 end
501

For legacy verbatimtex process. verbatimtex ... etex before beginfig() is inserted just be-
fore the mplib box. And TEX code inside beginfig() ... endfig is inserted after the mplib box.
502 local tex_code_pre_mplib = {}
503 luamplib.figid = 1
504 luamplib.in_the_fig = false
505 local function process_verbatimtex_prefig (str)
506 if str then
507 tex_code_pre_mplib[luamplib.figid] = str
508 end
509 return ""
510 end
511 local function process_verbatimtex_infig (str)
512 if str then
513 return format('special "postmplibverbtex=%s";', str)
514 end
515 return ""
516 end
517

For metafun format. see issue #79.
518 mp = mp or {}
519 local mp = mp
520 mp.mf_path_reset = mp.mf_path_reset or function() end
521 mp.mf_finish_saving_data = mp.mf_finish_saving_data or function() end
522 mp.report = mp.report or info

metafun 2021-03-09 changes crashes luamplib.
523 catcodes = catcodes or {}
524 local catcodes = catcodes
525 catcodes.numbers = catcodes.numbers or {}
526 catcodes.numbers.ctxcatcodes = catcodes.numbers.ctxcatcodes or catlatex
527 catcodes.numbers.texcatcodes = catcodes.numbers.texcatcodes or catlatex
528 catcodes.numbers.luacatcodes = catcodes.numbers.luacatcodes or catlatex
529 catcodes.numbers.notcatcodes = catcodes.numbers.notcatcodes or catlatex
530 catcodes.numbers.vrbcatcodes = catcodes.numbers.vrbcatcodes or catlatex
531 catcodes.numbers.prtcatcodes = catcodes.numbers.prtcatcodes or catlatex
532 catcodes.numbers.txtcatcodes = catcodes.numbers.txtcatcodes or catlatex
533

Now luamplib.runscript
534 do
535 local runscript_funcs = {
536 luamplibtext = process_tex_text,
537 luamplibcolor = process_mplibcolor,
538 luamplibdimen = process_dimen,
539 luamplibprefig = process_verbatimtex_prefig,
540 luamplibinfig = process_verbatimtex_infig,
541 luamplibverbtex = process_verbatimtex_text,

36

542 }

A function from ConTEXt general.
543 local function mpprint(buffer,...)
544 for i=1,select("#",...) do
545 local value = select(i,...)
546 if value ~= nil then
547 local t = type(value)
548 if t == "number" then
549 buffer[#buffer+1] = format("%.16f",value)
550 elseif t == "string" then
551 buffer[#buffer+1] = value
552 elseif t == "table" then
553 buffer[#buffer+1] = "(" .. tableconcat(value,",") .. ")"
554 else -- boolean or whatever
555 buffer[#buffer+1] = tostring(value)
556 end
557 end
558 end
559 end
560 function luamplib.runscript (code)
561 local id, str = code:match("(.-){(.*)}")
562 if id and str then
563 local f = runscript_funcs[id]
564 if f then
565 local t = f(str)
566 if t then return t end
567 end
568 end
569 local f = loadstring(code)
570 if type(f) == "function" then
571 local buffer = {}
572 function mp.print(...)
573 mpprint(buffer,...)
574 end
575 local res = {f()}
576 buffer = tableconcat(buffer)
577 if buffer and buffer ~= "" then
578 return buffer
579 end
580 buffer = {}
581 mpprint(buffer, tableunpack(res))
582 return tableconcat(buffer)
583 end
584 return ""
585 end
586 end
587

luamplib.maketext

37

588 luamplib.legacyverbatimtex = true
589 do

make_text must be one liner, so comment sign is not allowed.
590 local function protecttexcontents (str)
591 return str:gsub("\\%%", "\0PerCent\0")
592 :gsub("%%.-\n", "")
593 :gsub("%%.-$", "")
594 :gsub("%zPerCent%z", "\\%%")
595 :gsub("\r.-$", "")
596 :gsub("%s+", " ")
597 end
598 function luamplib.maketext (str, what)
599 if str and str ~= "" then
600 str = protecttexcontents(str)
601 if what == 1 then
602 if not str:find("\\documentclass"..name_e) and
603 not str:find("\\begin%s*{document}") and
604 not str:find("\\documentstyle"..name_e) and
605 not str:find("\\usepackage"..name_e) then
606 if luamplib.legacyverbatimtex then
607 if luamplib.in_the_fig then
608 return process_verbatimtex_infig(str)
609 else
610 return process_verbatimtex_prefig(str)
611 end
612 else
613 return process_verbatimtex_text(str)
614 end
615 end
616 else
617 return process_tex_text(str, true) -- bool is for 'char13'
618 end
619 end
620 return ""
621 end
622 end
623

luamplib’s metapost color operators
624 luamplib.gettexcolor = function (str, rgb)
625 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
626 if res:find" cs " or res:find"@pdf.obj" then
627 if not rgb then
628 warn("%s is a spot color. Forced to CMYK", str)
629 end
630 run_tex_code({
631 "\\color_export:nnN{",
632 str,
633 "}{",

38

634 rgb and "space-sep-rgb" or "space-sep-cmyk",
635 "}\\mplib_@tempa",
636 },ccexplat)
637 return get_macro"mplib_@tempa":explode()
638 end
639 local t = colorsplit(res)
640 if #t == 3 or not rgb then return t end
641 if #t == 4 then
642 return { 1 - math.min(1,t[1]+t[4]), 1 - math.min(1,t[2]+t[4]), 1 - math.min(1,t[3]+t[4]) }
643 end
644 return { t[1], t[1], t[1] }
645 end
646
647 luamplib.shadecolor = function (str)
648 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
649 if res:find" cs " or res:find"@pdf.obj" then -- spot color shade: l3 only

An example of spot color shading:
\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone3005 }
{ Separation }
{

name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0, 0}

}
\color_set:nnn{spotA}{pantone3005}{1}
\color_set:nnn{spotB}{pantone3005}{0.6}

\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_set:nnn{spotC}{pantone1215}{1}

\color_model_new:nnn { pantone2040 }
{ Separation }
{

name = PANTONE~2040~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.28, 0.21, 0.04}

}
\color_set:nnn{spotD}{pantone2040}{1}

\ExplSyntaxOff
\begin{document}
\begin{mplibcode}

39

beginfig(1)
fill unitsquare xscaled \mpdim\textwidth yscaled 1cm

withshadingmethod "linear"
withshadingvector (0,1)
withshadingstep (

withshadingfraction .5
withshadingcolors ("spotB","spotC")

)
withshadingstep (

withshadingfraction 1
withshadingcolors ("spotC","spotD")

)
;

endfig;
\end{mplibcode}
\end{document}

another one: user-defined DeviceN colorspace

\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_model_new:nnn { pantone+black }
{ DeviceN }
{ names = {pantone1215,black} }

\color_set:nnn{purepantone}{pantone+black}{1,0}
\color_set:nnn{pureblack} {pantone+black}{0,1}
\ExplSyntaxOff
\begin{document}
\mpfig
fill unitsquare xscaled \mpdim{\textwidth} yscaled 30

withshadingmethod "linear"
withshadingcolors ("purepantone","pureblack")
;

\endmpfig
\end{document}

650 run_tex_code({
651 [[\color_export:nnN{]], str, [[}{backend}\mplib_@tempa]],
652 },ccexplat)
653 local name, value = get_macro'mplib_@tempa':match'{(.-)}{(.-)}'
654 local t, obj = res:explode()

40

655 if pdfmode then
656 obj = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
657 else
658 obj = t[2]
659 end
660 return format('(1) withprescript"mplib_spotcolor=%s:%s:%s"', value,obj,name)
661 end
662 return colorsplit(res)
663 end
664

luamplib.fillandstrokecolor

665 do
666 local function graphictextcolor (col, filldraw)
667 if col:find"^[%d%.:]+$" then
668 col = col:explode":"
669 for i=1,#col do
670 col[i] = format("%.3f", col[i])
671 end
672 if pdfmode then
673 local op = #col == 4 and "k" or #col == 3 and "rg" or "g"
674 col[#col+1] = filldraw == "fill" and op or op:upper()
675 return tableconcat(col," ")
676 end
677 return format("[%s]", tableconcat(col," "))
678 end
679 col = process_color(col):match'"mpliboverridecolor=(.+)"'
680 if pdfmode then
681 local t = col:explode()
682 local b = filldraw == "fill" and 1 or #t/2+1
683 local e = b == 1 and #t/2 or #t
684 return tableconcat(t," ", b, e)
685 end
686 return format("[%s]", tableconcat(colorsplit(col)," "))
687 end
688 function luamplib.fillandstrokecolor (fill, stroke)
689 fill = graphictextcolor(fill, "fill")
690 stroke = graphictextcolor(stroke, "stroke")
691 local bc = pdfmode and "" or "pdf:bc "
692 return format('withprescript "mpliboverridecolor=%s%s %s"', bc, fill, stroke)
693 end
694 end
695

Remove trailing zeros for smaller PDF
696 local decimals = "%.%d+"
697 local function rmzeros(str) return str:gsub("%.?0+$","") end
698

common function for mplibgraphictext and mpliboutlinetext

41

699 local function getrulemetric (box, curr, bp)
700 local running = -1073741824
701 local wd,ht,dp = curr.width, curr.height, curr.depth
702 wd = wd == running and box.width or wd
703 ht = ht == running and box.height or ht
704 dp = dp == running and box.depth or dp
705 if bp then
706 return wd/factor, ht/factor, dp/factor
707 end
708 return wd, ht, dp
709 end
710

luamplib’s mplibgraphictext operator

711 do
712 local emboldenfonts = { }
713 local function getemboldenwidth (curr, fakebold)
714 local width = emboldenfonts.width
715 if not width then
716 local f
717 local function getglyph(n)
718 while n do
719 if n.head then
720 getglyph(n.head)
721 elseif n.font and n.font > 0 then
722 f = n.font; break
723 end
724 n = node.getnext(n)
725 end
726 end
727 getglyph(curr)
728 width = font.getcopy(f or font.current()).size * fakebold / factor * 10
729 emboldenfonts.width = width
730 end
731 return width
732 end
733 local function getrulewhatsit (line, wd, ht, dp)
734 line, wd, ht, dp = line/1000, wd/factor, ht/factor, dp/factor
735 local pl
736 local fmt = "%f w %f %f %f %f re %s"
737 if pdfmode then
738 pl = node.new("whatsit","pdf_literal")
739 pl.mode = 0
740 else
741 fmt = "pdf:content "..fmt
742 pl = node.new("whatsit","special")
743 end
744 pl.data = fmt:format(line, 0, -dp, wd, ht+dp, "B") :gsub(decimals,rmzeros)
745 local ss = node.new"glue"

42

746 node.setglue(ss, 0, 65536, 65536, 2, 2)
747 pl.next = ss
748 return pl
749 end

copying attributes of rule/glue node to improve tagging of mplibgraphictext

750 local tag_update_attrs
751 if is_defined"ver@tagpdf.sty" then
752 tag_update_attrs = function (n, curr)
753 while n do
754 n.attr = curr.attr
755 if n.head then
756 tag_update_attrs(n.head, curr)
757 end
758 n = node.getnext(n)
759 end
760 end
761 else
762 tag_update_attrs = function() end
763 end
764 local function embolden (box, curr, fakebold)
765 local head = curr
766 while curr do
767 if curr.head then
768 curr.head = embolden(curr, curr.head, fakebold)
769 elseif curr.replace then
770 curr.replace = embolden(box, curr.replace, fakebold)
771 elseif curr.leader then
772 if curr.leader.head then
773 curr.leader.head = embolden(curr.leader, curr.leader.head, fakebold)
774 elseif curr.leader.id == node.id"rule" then
775 local glue = node.effective_glue(curr, box)
776 local line = getemboldenwidth(curr, fakebold)
777 local wd,ht,dp = getrulemetric(box, curr.leader)
778 if box.id == node.id"hlist" then
779 wd = glue
780 else
781 ht, dp = 0, glue
782 end
783 local pl = getrulewhatsit(line, wd, ht, dp)
784 local pack = box.id == node.id"hlist" and node.hpack or node.vpack
785 local list = pack(pl, glue, "exactly")
786 tag_update_attrs(list,curr)
787 head = node.insert_after(head, curr, list)
788 head, curr = node.remove(head, curr)
789 end
790 elseif curr.id == node.id"rule" and curr.subtype == 0 then
791 local line = getemboldenwidth(curr, fakebold)
792 local wd,ht,dp = getrulemetric(box, curr)

43

793 if box.id == node.id"vlist" then
794 ht, dp = 0, ht+dp
795 end
796 local pl = getrulewhatsit(line, wd, ht, dp)
797 local list
798 if box.id == node.id"hlist" then
799 list = node.hpack(pl, wd, "exactly")
800 else
801 list = node.vpack(pl, ht+dp, "exactly")
802 end
803 tag_update_attrs(list,curr)
804 head = node.insert_after(head, curr, list)
805 head, curr = node.remove(head, curr)
806 elseif curr.id == node.id"glyph" and curr.font > 0 then
807 local f = curr.font
808 local key = format("%s:%s",f,fakebold)
809 local i = emboldenfonts[key]
810 if not i then
811 local ft = font.getfont(f) or font.getcopy(f)
812 if pdfmode then
813 width = ft.size * fakebold / factor * 10
814 emboldenfonts.width = width
815 ft.mode, ft.width = 2, width
816 i = font.define(ft)
817 else
818 if ft.format ~= "opentype" and ft.format ~= "truetype" then
819 goto skip_type1
820 end
821 local name = ft.name:gsub('"',''):gsub(';$','')
822 name = format('%s;embolden=%s;',name,fakebold)
823 _, i = fonts.constructors.readanddefine(name,ft.size)
824 end
825 emboldenfonts[key] = i
826 end
827 curr.font = i
828 end
829 ::skip_type1::
830 curr = node.getnext(curr)
831 end
832 return head
833 end
834 luamplib.graphictext = function (text, fakebold, fc, dc)
835 local fmt = process_tex_text(text):sub(1,-2)
836 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
837 emboldenfonts.width = nil
838 local box = texgetbox(id)
839 box.head = embolden(box, box.head, fakebold)
840 local colors = luamplib.fillandstrokecolor(fc, dc)
841 return format('%s %s)', fmt, colors)

44

842 end
843 end
844

luamplib’s mplibglyph operator

845 do
846 local function mperr (str)
847 return format("hide(errmessage %q)", str)
848 end
849 local function getangle (a,b,c)
850 local r = math.deg(math.atan(c.y-b.y, c.x-b.x) - math.atan(b.y-a.y, b.x-a.x))
851 if r > 180 then
852 r = r - 360
853 elseif r < -180 then
854 r = r + 360
855 end
856 return r
857 end
858 local function turning (t)
859 local r, n = 0, #t
860 for i=1,2 do
861 tableinsert(t, t[i])
862 end
863 for i=1,n do
864 r = r + getangle(t[i], t[i+1], t[i+2])
865 end
866 return r/360
867 end
868 local function glyphimage(t, fmt)
869 local q,p,r = {{},{}}
870 for i,v in ipairs(t) do
871 local cmd = v[#v]
872 if cmd == "m" then
873 p = {format('(%s,%s)',v[1],v[2])}
874 r = {{x=v[1],y=v[2]}}
875 else
876 local nt = t[i+1]
877 local last = not nt or nt[#nt] == "m"
878 if cmd == "l" then
879 local pt = t[i-1]
880 local seco = pt[#pt] == "m"
881 if (last or seco) and r[1].x == v[1] and r[1].y == v[2] then
882 else
883 tableinsert(p, format('--(%s,%s)',v[1],v[2]))
884 tableinsert(r, {x=v[1],y=v[2]})
885 end
886 if last then
887 tableinsert(p, '--cycle')
888 end

45

889 elseif cmd == "c" then
890 tableinsert(p, format('..controls(%s,%s)and(%s,%s)',v[1],v[2],v[3],v[4]))
891 if last and r[1].x == v[5] and r[1].y == v[6] then
892 tableinsert(p, '..cycle')
893 else
894 tableinsert(p, format('..(%s,%s)',v[5],v[6]))
895 if last then
896 tableinsert(p, '--cycle')
897 end
898 tableinsert(r, {x=v[5],y=v[6]})
899 end
900 else
901 return mperr"unknown operator"
902 end
903 if last then
904 tableinsert(q[turning(r) > 0 and 1 or 2], tableconcat(p))
905 end
906 end
907 end
908 r = { }
909 if fmt == "opentype" then
910 for _,v in ipairs(q[1]) do
911 tableinsert(r, format('addto currentpicture contour %s;',v))
912 end
913 for _,v in ipairs(q[2]) do
914 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
915 end
916 else
917 for _,v in ipairs(q[2]) do
918 tableinsert(r, format('addto currentpicture contour %s;',v))
919 end
920 for _,v in ipairs(q[1]) do
921 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
922 end
923 end
924 return format('image(%s)', tableconcat(r))
925 end
926 if not table.tofile then require"lualibs-lpeg"; require"lualibs-table"; end
927 function luamplib.glyph (f, c)
928 local filename, subfont, instance, kind, shapedata
929 local fid = tonumber(f) or font.id(f)
930 if fid > 0 then
931 local fontdata = font.getfont(fid) or font.getcopy(fid)
932 filename, subfont, kind = fontdata.filename, fontdata.subfont, fontdata.format
933 instance = fontdata.specification and fontdata.specification.instance
934 filename = filename and filename:gsub("^harfloaded:","")
935 else
936 local name
937 f = f:match"^%s*(.+)%s*$"

46

938 name, subfont, instance = f:match"(.+)%((%d+)%)%[(.-)%]$"
939 if not name then
940 name, instance = f:match"(.+)%[(.-)%]$" -- SourceHanSansK-VF.otf[Heavy]
941 end
942 if not name then
943 name, subfont = f:match"(.+)%((%d+)%)$" -- Times.ttc(2)
944 end
945 name = name or f
946 subfont = (subfont or 0)+1
947 instance = instance and instance:lower()
948 for _,ftype in ipairs{"opentype", "truetype"} do
949 filename = kpse.find_file(name, ftype.." fonts")
950 if filename then
951 kind = ftype; break
952 end
953 end
954 end
955 if kind ~= "opentype" and kind ~= "truetype" then
956 f = fid and fid > 0 and tex.fontname(fid) or f
957 if kpse.find_file(f, "tfm") then
958 return format("glyph %s of %q", tonumber(c) or format("%q",c), f)
959 else
960 return mperr"font not found"
961 end
962 end
963 local time = lfsattributes(filename,"modification")
964 local k = format("shapes_%s(%s)[%s]", filename, subfont or "", instance or "")
965 local h = format(string.rep('%02x', 256/8), string.byte(sha2.digest256(k), 1, -1))
966 local newname = format("%s/%s.lua", cachedir or outputdir, h)
967 local newtime = lfsattributes(newname,"modification") or 0
968 if time == newtime then
969 shapedata = require(newname)
970 end
971 if not shapedata then
972 shapedata = fonts and fonts.handlers.otf.readers.loadshapes(filename,subfont,instance)
973 if not shapedata then return mperr"loadshapes() failed. luaotfload not loaded?" end
974 table.tofile(newname, shapedata, "return")
975 lfstouch(newname, time, time)
976 end
977 local gid = tonumber(c)
978 if not gid then
979 local uni = utf8.codepoint(c)
980 for i,v in pairs(shapedata.glyphs) do
981 if c == v.name or uni == v.unicode then
982 gid = i; break
983 end
984 end
985 end
986 if not gid then return mperr"cannot get GID (glyph id)" end

47

987 local fac = 1000 / (shapedata.units or 1000)
988 local t = shapedata.glyphs[gid].segments
989 if not t then return "image()" end
990 for i,v in ipairs(t) do
991 if type(v) == "table" then
992 for ii,vv in ipairs(v) do
993 if type(vv) == "number" then
994 t[i][ii] = format("%.0f", vv * fac)
995 end
996 end
997 end
998 end
999 kind = shapedata.format or kind

1000 return glyphimage(t, kind)
1001 end
1002 end
1003

mpliboutlinetext : based on mkiv’s font-mps.lua

1004 do
1005 local rulefmt = "mpliboutlinepic[%i]:=image(addto currentpicture contour \z
1006 unitsquare shifted - center unitsquare;) xscaled %f yscaled %f shifted (%f,%f);"
1007 local outline_horz, outline_vert
1008 function outline_vert (res, box, curr, xshift, yshift)
1009 local b2u = box.dir == "LTL"
1010 local dy = (b2u and -box.depth or box.height)/factor
1011 local ody = dy
1012 while curr do
1013 if curr.id == node.id"rule" then
1014 local wd, ht, dp = getrulemetric(box, curr, true)
1015 local hd = ht + dp
1016 if hd ~= 0 then
1017 dy = dy + (b2u and dp or -ht)
1018 if wd ~= 0 and curr.subtype == 0 then
1019 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+(ht-dp)/2)
1020 end
1021 dy = dy + (b2u and ht or -dp)
1022 end
1023 elseif curr.id == node.id"glue" then
1024 local vwidth = node.effective_glue(curr,box)/factor
1025 if curr.leader then
1026 local curr, kind = curr.leader, curr.subtype
1027 if curr.id == node.id"rule" then
1028 local wd = getrulemetric(box, curr, true)
1029 if wd ~= 0 then
1030 local hd = vwidth
1031 local dy = dy + (b2u and 0 or -hd)
1032 if hd ~= 0 and curr.subtype == 0 then
1033 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+hd/2)

48

1034 end
1035 end
1036 elseif curr.head then
1037 local hd = (curr.height + curr.depth)/factor
1038 if hd <= vwidth then
1039 local dy, n, iy = dy, 0, 0
1040 if kind == 100 or kind == 103 then -- todo: gleaders
1041 local ady = abs(ody - dy)
1042 local ndy = math.ceil(ady / hd) * hd
1043 local diff = ndy - ady
1044 n = math.floor((vwidth-diff) / hd)
1045 dy = dy + (b2u and diff or -diff)
1046 else
1047 n = math.floor(vwidth / hd)
1048 if kind == 101 then
1049 local side = vwidth % hd / 2
1050 dy = dy + (b2u and side or -side)
1051 elseif kind == 102 then
1052 iy = vwidth % hd / (n+1)
1053 dy = dy + (b2u and iy or -iy)
1054 end
1055 end
1056 dy = dy + (b2u and curr.depth or -curr.height)/factor
1057 hd = b2u and hd or -hd
1058 iy = b2u and iy or -iy
1059 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1060 for i=1,n do
1061 res = func(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1062 dy = dy + hd + iy
1063 end
1064 end
1065 end
1066 end
1067 dy = dy + (b2u and vwidth or -vwidth)
1068 elseif curr.id == node.id"kern" then
1069 dy = dy + curr.kern/factor * (b2u and 1 or -1)
1070 elseif curr.id == node.id"vlist" then
1071 dy = dy + (b2u and curr.depth or -curr.height)/factor
1072 res = outline_vert(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1073 dy = dy + (b2u and curr.height or -curr.depth)/factor
1074 elseif curr.id == node.id"hlist" then
1075 dy = dy + (b2u and curr.depth or -curr.height)/factor
1076 res = outline_horz(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1077 dy = dy + (b2u and curr.height or -curr.depth)/factor
1078 end
1079 curr = node.getnext(curr)
1080 end
1081 return res
1082 end

49

1083 function outline_horz (res, box, curr, xshift, yshift, discwd)
1084 local r2l = box.dir == "TRT"
1085 local dx = r2l and (discwd or box.width/factor) or 0
1086 local dirs = { { dir = r2l, dx = dx } }
1087 while curr do
1088 if curr.id == node.id"dir" then
1089 local sign, dir = curr.dir:match"(.)(...)"
1090 local level, newdir = curr.level, r2l
1091 if sign == "+" then
1092 newdir = dir == "TRT"
1093 if r2l ~= newdir then
1094 local n = node.getnext(curr)
1095 while n do
1096 if n.id == node.id"dir" and n.level+1 == level then break end
1097 n = node.getnext(n)
1098 end
1099 n = n or node.tail(curr)
1100 dx = dx + node.rangedimensions(box, curr, n)/factor * (newdir and 1 or -1)
1101 end
1102 dirs[level] = { dir = r2l, dx = dx }
1103 else
1104 local level = level + 1
1105 newdir = dirs[level].dir
1106 if r2l ~= newdir then
1107 dx = dirs[level].dx
1108 end
1109 end
1110 r2l = newdir
1111 elseif curr.char and curr.font and curr.font > 0 then
1112 local ft = font.getfont(curr.font) or font.getcopy(curr.font)
1113 local gid = ft.characters[curr.char].index or curr.char
1114 local scale = ft.size / factor / 1000
1115 local slant = (ft.slant or 0)/1000
1116 local extend = (ft.extend or 1000)/1000
1117 local squeeze = (ft.squeeze or 1000)/1000
1118 local expand = 1 + (curr.expansion_factor or 0)/1000000
1119 local xscale, yscale = scale * extend * expand, scale * squeeze
1120 dx = dx - (r2l and curr.width/factor*expand or 0)
1121 local xoff, yoff = (curr.xoffset or 0)/factor, (curr.yoffset or 0)/factor
1122 local xpos, ypos = dx + xshift + xoff, yshift + yoff
1123 local vertical = ""
1124 if ft.shared and (ft.shared.features.vert or ft.shared.features.vrt2) then
1125 if ft.shared.features.vertical then -- luatexko
1126 vertical = "rotated 90"
1127 local data = ft.characters[curr.char] or { }
1128 if ft.hb then
1129 local hoff, voff = (data.luatexko_hoff or 0)/factor, (data.luatexko_voff or 0)/factor
1130 local charraise = (ft.luatexko_charraise or 0)/factor
1131 xpos, ypos = xpos - voff + hoff - charraise, ypos + hoff + voff + charraise

50

1132 else
1133 local cmds = data.commands or { {0,0}, {0,0} }
1134 local voff, hoff = -cmds[1][2]/factor, cmds[2][2]/factor
1135 xpos, ypos = xpos + hoff, ypos + voff
1136 end
1137 elseif curr ~= box.head then -- luatexja
1138 vertical = "rotated 90"
1139 local en = ft.parameters.quad/factor/2
1140 xpos, ypos = xpos - xoff - yoff + en, ypos - yoff + xoff - en
1141 end
1142 end
1143 local image
1144 if ft.format == "opentype" or ft.format == "truetype" then
1145 image = luamplib.glyph(curr.font, gid)
1146 else
1147 local name, scale = ft.name, 1
1148 local vf = font.read_vf(name, ft.size)
1149 if vf and vf.characters[gid] then
1150 local cmds = vf.characters[gid].commands or {}
1151 for _,v in ipairs(cmds) do
1152 if v[1] == "char" then
1153 gid = v[2]
1154 elseif v[1] == "font" and vf.fonts[v[2]] then
1155 name = vf.fonts[v[2]].name
1156 scale = vf.fonts[v[2]].size / ft.size
1157 end
1158 end
1159 end
1160 image = format("glyph %s of %q scaled %f", gid, name, scale)
1161 end
1162 res[#res+1] = format("mpliboutlinepic[%i]:=%s xscaled %f yscaled %f slanted %f %s shifted (%f,%f);",
1163 #res+1, image, xscale, yscale, slant, vertical, xpos, ypos)
1164 dx = dx + (r2l and 0 or curr.width/factor*expand)
1165 elseif curr.replace then
1166 local width = node.dimensions(curr.replace)/factor
1167 dx = dx - (r2l and width or 0)
1168 res = outline_horz(res, box, curr.replace, xshift+dx, yshift, width)
1169 dx = dx + (r2l and 0 or width)
1170 elseif curr.id == node.id"rule" then
1171 local wd, ht, dp = getrulemetric(box, curr, true)
1172 if wd ~= 0 then
1173 local hd = ht + dp
1174 dx = dx - (r2l and wd or 0)
1175 if hd ~= 0 and curr.subtype == 0 then
1176 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1177 end
1178 dx = dx + (r2l and 0 or wd)
1179 end
1180 elseif curr.id == node.id"glue" then

51

1181 local width = node.effective_glue(curr, box)/factor
1182 dx = dx - (r2l and width or 0)
1183 if curr.leader then
1184 local curr, kind = curr.leader, curr.subtype
1185 if curr.id == node.id"rule" then
1186 local wd, ht, dp = getrulemetric(box, curr, true)
1187 local hd = ht + dp
1188 if hd ~= 0 then
1189 wd = width
1190 if wd ~= 0 and curr.subtype == 0 then
1191 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1192 end
1193 end
1194 elseif curr.head then
1195 local wd = curr.width/factor
1196 if wd <= width then
1197 local dx = r2l and dx+width or dx
1198 local n, ix = 0, 0
1199 if kind == 100 or kind == 103 then -- todo: gleaders
1200 local adx = abs(dx-dirs[1].dx)
1201 local ndx = math.ceil(adx / wd) * wd
1202 local diff = ndx - adx
1203 n = math.floor((width-diff) / wd)
1204 dx = dx + (r2l and -diff-wd or diff)
1205 else
1206 n = math.floor(width / wd)
1207 if kind == 101 then
1208 local side = width % wd /2
1209 dx = dx + (r2l and -side-wd or side)
1210 elseif kind == 102 then
1211 ix = width % wd / (n+1)
1212 dx = dx + (r2l and -ix-wd or ix)
1213 end
1214 end
1215 wd = r2l and -wd or wd
1216 ix = r2l and -ix or ix
1217 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1218 for i=1,n do
1219 res = func(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1220 dx = dx + wd + ix
1221 end
1222 end
1223 end
1224 end
1225 dx = dx + (r2l and 0 or width)
1226 elseif curr.id == node.id"kern" then
1227 dx = dx + curr.kern/factor * (r2l and -1 or 1)
1228 elseif curr.id == node.id"math" then
1229 dx = dx + curr.surround/factor * (r2l and -1 or 1)

52

1230 elseif curr.id == node.id"vlist" then
1231 dx = dx - (r2l and curr.width/factor or 0)
1232 res = outline_vert(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1233 dx = dx + (r2l and 0 or curr.width/factor)
1234 elseif curr.id == node.id"hlist" then
1235 dx = dx - (r2l and curr.width/factor or 0)
1236 res = outline_horz(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1237 dx = dx + (r2l and 0 or curr.width/factor)
1238 end
1239 curr = node.getnext(curr)
1240 end
1241 return res
1242 end
1243 function luamplib.outlinetext (text)
1244 local fmt = process_tex_text(text)
1245 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
1246 local box = texgetbox(id)
1247 local res = outline_horz({ }, box, box.head, 0, 0)
1248 if #res == 0 then res = { "mpliboutlinepic[1]:=image();" } end
1249 return tableconcat(res) .. format("mpliboutlinenum:=%i;", #res)
1250 end
1251 end
1252

lua functions for mplib(uc)substring ... of ...

1253 function luamplib.getunicodegraphemes (s)
1254 local t = { }
1255 local graphemes = require'lua-uni-graphemes'
1256 for _, _, c in graphemes.graphemes(s) do
1257 table.insert(t, c)
1258 end
1259 return t
1260 end
1261 function luamplib.unicodesubstring (s,b,e,grph)
1262 local tt, t, step = { }
1263 if grph then
1264 t = luamplib.getunicodegraphemes(s)
1265 else
1266 t = { }
1267 for _, c in utf8.codes(s) do
1268 table.insert(t, utf8.char(c))
1269 end
1270 end
1271 if b <= e then
1272 b, step = b+1, 1
1273 else
1274 e, step = e+1, -1
1275 end
1276 for i = b, e, step do

53

1277 table.insert(tt, t[i])
1278 end
1279 s = table.concat(tt):gsub('"','"&ditto&"')
1280 return string.format('"%s"', s)
1281 end
1282

metapost preambles

1283 luamplib.preambles = {
1284 preamble = [[
1285 boolean mplib ; mplib := true ;
1286 let dump = endinput ;
1287 let normalfontsize = fontsize;
1288 input %s ;
1289]],
1290 mplibcode = [[
1291 texscriptmode := 2;
1292 def rawtextext primary t = runscript("luamplibtext{"&t&"}") enddef;
1293 def mplibcolor primary t = runscript("luamplibcolor{"&t&"}") enddef;
1294 def mplibdimen primary t = runscript("luamplibdimen{"&t&"}") enddef;
1295 def VerbatimTeX primary t = runscript("luamplibverbtex{"&t&"}") enddef;
1296 if known context_mlib:
1297 defaultfont := "cmtt10";
1298 let infont = normalinfont;
1299 let fontsize = normalfontsize;
1300 vardef thelabel@#(expr p,z) =
1301 if string p :
1302 thelabel@#(p infont defaultfont scaled defaultscale,z)
1303 else :
1304 p shifted (z + labeloffset*mfun_laboff@# -
1305 (mfun_labxf@#*lrcorner p + mfun_labyf@#*ulcorner p +
1306 (1-mfun_labxf@#-mfun_labyf@#)*llcorner p))
1307 fi
1308 enddef;
1309 else:
1310 vardef textext@# primary t = rawtextext (t) enddef;
1311 def message expr t =
1312 if string t: runscript("mp.report[=["&t&"]=]") else: errmessage "Not a string" fi
1313 enddef;
1314 def withtransparency (expr a, t) =
1315 withprescript "tr_alternative=" & if numeric a: decimal fi a
1316 withprescript "tr_transparency=" & decimal t
1317 enddef;
1318 vardef ddecimal primary p =
1319 decimal xpart p & " " & decimal ypart p
1320 enddef;
1321 vardef boundingbox primary p =
1322 if (path p) or (picture p) :
1323 llcorner p -- lrcorner p -- urcorner p -- ulcorner p

54

1324 else :
1325 origin
1326 fi -- cycle
1327 enddef;
1328 fi
1329 def resolvedcolor(expr s) =
1330 runscript("return luamplib.shadecolor('"& s &"')")
1331 enddef;
1332 def colordecimals primary c =
1333 if cmykcolor c:
1334 decimal cyanpart c & ":" & decimal magentapart c & ":" &
1335 decimal yellowpart c & ":" & decimal blackpart c
1336 elseif rgbcolor c:
1337 decimal redpart c & ":" & decimal greenpart c & ":" & decimal bluepart c
1338 elseif string c:
1339 if known graphictextpic: c else: colordecimals resolvedcolor(c) fi
1340 else:
1341 decimal c
1342 fi
1343 enddef;
1344 def externalfigure primary filename =
1345 draw rawtextext("\includegraphics{"& filename &"}")
1346 enddef;
1347 def TEX = textext enddef;
1348 def mplibtexcolor primary c =
1349 runscript("return luamplib.gettexcolor('"& c &"')")
1350 enddef;
1351 def mplibrgbtexcolor primary c =
1352 runscript("return luamplib.gettexcolor('"& c &"','rgb')")
1353 enddef;
1354 def mplibgraphictext primary t =
1355 begingroup;
1356 mplibgraphictext_ (t)
1357 enddef;
1358 def mplibgraphictext_ (expr t) text rest =
1359 save fakebold, scale, fillcolor, drawcolor, withfillcolor, withdrawcolor, strokecolor,
1360 fb, fc, dc, graphictextpic, alsoordoublepath;
1361 picture graphictextpic; graphictextpic := nullpicture;
1362 numeric fb; string fc, dc; fb:=2; fc:="white"; dc:="black";
1363 let scale = scaled;
1364 def fakebold primary c = hide(fb:=c;) enddef;
1365 def fillcolor primary c = hide(fc:=colordecimals c;) enddef;
1366 def drawcolor primary c = hide(dc:=colordecimals c;) enddef;
1367 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1368 def alsoordoublepath expr p = if picture p: also else: doublepath fi p enddef;
1369 addto graphictextpic alsoordoublepath (origin--cycle) rest; graphictextpic:=nullpicture;
1370 def fakebold primary c = enddef;
1371 let fillcolor = fakebold; let drawcolor = fakebold;
1372 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;

55

1373 image(draw runscript("return luamplib.graphictext([===["&t&"]===],"
1374 & decimal fb &",'"& fc &"','"& dc &"')") rest;)
1375 endgroup;
1376 enddef;
1377 def mplibglyph expr c of f =
1378 runscript (
1379 "return luamplib.glyph('"
1380 & if numeric f: decimal fi f
1381 & "','"
1382 & if numeric c: decimal fi c
1383 & "')"
1384)
1385 enddef;
1386 numeric luamplib_tmp_num_; luamplib_tmp_num_ = 0;
1387 def mplibdrawglyph expr g =
1388 luamplib_tmp_num_ := 0;
1389 for item within g:
1390 fill pathpart item
1391 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1392 endfor
1393 enddef;
1394 let mplibfillglyph = mplibdrawglyph;
1395 def mplibstrokeglyph expr g =
1396 luamplib_tmp_num_ := 0;
1397 for item within g:
1398 draw pathpart item
1399 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1400 endfor
1401 enddef;
1402 def mplibfillandstrokeglyph expr g =
1403 luamplib_tmp_num_ := 0;
1404 for item within g:
1405 draw pathpart item withpostscript
1406 if incr luamplib_tmp_num_ < length g: "collect"; else: "both" fi
1407 endfor
1408 enddef;
1409 def withmplibcolors (expr f, s) =
1410 runscript("return luamplib.fillandstrokecolor('" &
1411 if not string f: colordecimals fi f & "','" &
1412 if not string s: colordecimals fi s & "')")
1413 enddef;
1414 def mplib_do_outline_text_set_b (text f) (text d) text r =
1415 def mplib_do_outline_options_f = f enddef;
1416 def mplib_do_outline_options_d = d enddef;
1417 def mplib_do_outline_options_r = r enddef;
1418 enddef;
1419 def mplib_do_outline_text_set_f (text f) text r =
1420 def mplib_do_outline_options_f = f enddef;
1421 def mplib_do_outline_options_r = r enddef;

56

1422 enddef;
1423 def mplib_do_outline_text_set_u (text f) text r =
1424 def mplib_do_outline_options_f = f enddef;
1425 enddef;
1426 def mplib_do_outline_text_set_d (text d) text r =
1427 def mplib_do_outline_options_d = d enddef;
1428 def mplib_do_outline_options_r = r enddef;
1429 enddef;
1430 def mplib_do_outline_text_set_r (text d) (text f) text r =
1431 def mplib_do_outline_options_d = d enddef;
1432 def mplib_do_outline_options_f = f enddef;
1433 def mplib_do_outline_options_r = r enddef;
1434 enddef;
1435 def mplib_do_outline_text_set_n text r =
1436 def mplib_do_outline_options_r = r enddef;
1437 enddef;
1438 def mplib_do_outline_text_set_p = enddef;
1439 def mplib_fill_outline_text =
1440 for n=1 upto mpliboutlinenum:
1441 i:=0;
1442 for item within mpliboutlinepic[n]:
1443 i:=i+1;
1444 fill pathpart item mplib_do_outline_options_f withpen pencircle scaled 0
1445 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]): withpostscript "collect"; fi
1446 endfor
1447 endfor
1448 enddef;
1449 def mplib_draw_outline_text =
1450 for n=1 upto mpliboutlinenum:
1451 for item within mpliboutlinepic[n]:
1452 draw pathpart item mplib_do_outline_options_d;
1453 endfor
1454 endfor
1455 enddef;
1456 def mplib_filldraw_outline_text =
1457 for n=1 upto mpliboutlinenum:
1458 i:=0;
1459 for item within mpliboutlinepic[n]:
1460 i:=i+1;
1461 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]):
1462 fill pathpart item mplib_do_outline_options_f withpostscript "collect";
1463 else:
1464 draw pathpart item mplib_do_outline_options_f withpostscript "both";
1465 fi
1466 endfor
1467 endfor
1468 enddef;
1469 vardef mpliboutlinetext@# (expr t) text rest =
1470 save kind; string kind; kind := str @#;

57

1471 save i; numeric i;
1472 picture mpliboutlinepic[]; numeric mpliboutlinenum;
1473 def mplib_do_outline_options_d = enddef;
1474 def mplib_do_outline_options_f = enddef;
1475 def mplib_do_outline_options_r = enddef;
1476 runscript("return luamplib.outlinetext[===["&t&"]===]");
1477 image (addto currentpicture also image (
1478 if kind = "f":
1479 mplib_do_outline_text_set_f rest;
1480 mplib_fill_outline_text;
1481 elseif kind = "d":
1482 mplib_do_outline_text_set_d rest;
1483 mplib_draw_outline_text;
1484 elseif kind = "b":
1485 mplib_do_outline_text_set_b rest;
1486 mplib_fill_outline_text;
1487 mplib_draw_outline_text;
1488 elseif kind = "u":
1489 mplib_do_outline_text_set_u rest;
1490 mplib_filldraw_outline_text;
1491 elseif kind = "r":
1492 mplib_do_outline_text_set_r rest;
1493 mplib_draw_outline_text;
1494 mplib_fill_outline_text;
1495 elseif kind = "p":
1496 mplib_do_outline_text_set_p;
1497 mplib_draw_outline_text;
1498 else:
1499 mplib_do_outline_text_set_n rest;
1500 mplib_fill_outline_text;
1501 fi;
1502) mplib_do_outline_options_r;)
1503 enddef ;
1504 def withmppattern primary p =
1505 withprescript "mplibpattern=" & if numeric p: decimal fi p
1506 enddef;
1507 primarydef t withpattern p =
1508 image(
1509 if cycle t:
1510 fill
1511 else:
1512 draw
1513 fi
1514 t withprescript "mplibpattern=" & if numeric p: decimal fi p;)
1515 enddef;
1516 vardef mplibtransformmatrix (text e) =
1517 save t; transform t;
1518 t = identity e;
1519 runscript("luamplib.transformmatrix = {"

58

1520 & decimal xxpart t & ","
1521 & decimal yxpart t & ","
1522 & decimal xypart t & ","
1523 & decimal yypart t & ","
1524 & decimal xpart t & ","
1525 & decimal ypart t & ","
1526 & "}");
1527 enddef;
1528 primarydef p withmaskinggroup s =
1529 if picture p:
1530 image(
1531 draw p;
1532 draw center p withprescript "mplibfadestate=stop";
1533)
1534 else:
1535 p withprescript "mplibfadestate=stop"
1536 fi
1537 withprescript "mplibfadetype=masking"
1538 withprescript "mplibmaskname=" & s
1539 enddef;
1540 primarydef p withfademethod s =
1541 if picture p:
1542 image(
1543 draw p;
1544 draw center p withprescript "mplibfadestate=stop";
1545)
1546 else:
1547 p withprescript "mplibfadestate=stop"
1548 fi
1549 withprescript "mplibfadetype=" & s
1550 withprescript "mplibfadebbox=" &
1551 decimal (xpart llcorner p -1/4) & ":" &
1552 decimal (ypart llcorner p -1/4) & ":" &
1553 decimal (xpart urcorner p +1/4) & ":" &
1554 decimal (ypart urcorner p +1/4)
1555 enddef;
1556 def withfadeopacity (expr a,b) =
1557 withprescript "mplibfadeopacity=" &
1558 decimal a & ":" &
1559 decimal b
1560 enddef;
1561 def withfadevector (expr a,b) =
1562 withprescript "mplibfadevector=" &
1563 decimal xpart a & ":" &
1564 decimal ypart a & ":" &
1565 decimal xpart b & ":" &
1566 decimal ypart b
1567 enddef;
1568 let withfadecenter = withfadevector;

59

1569 def withfaderadius (expr a,b) =
1570 withprescript "mplibfaderadius=" &
1571 decimal a & ":" &
1572 decimal b
1573 enddef;
1574 def withfadebbox (expr a,b) =
1575 withprescript "mplibfadebbox=" &
1576 decimal xpart a & ":" &
1577 decimal ypart a & ":" &
1578 decimal xpart b & ":" &
1579 decimal ypart b
1580 enddef;
1581 primarydef p asgroup s =
1582 image(
1583 draw center p
1584 withprescript "mplibgroupbbox=" &
1585 decimal (xpart llcorner p -1/4) & ":" &
1586 decimal (ypart llcorner p -1/4) & ":" &
1587 decimal (xpart urcorner p +1/4) & ":" &
1588 decimal (ypart urcorner p +1/4)
1589 withprescript "gr_state=start"
1590 withprescript "gr_type=" & s;
1591 draw p;
1592 draw center p withprescript "gr_state=stop";
1593)
1594 enddef;
1595 def withgroupbbox (expr a,b) =
1596 withprescript "mplibgroupbbox=" &
1597 decimal xpart a & ":" &
1598 decimal ypart a & ":" &
1599 decimal xpart b & ":" &
1600 decimal ypart b
1601 enddef;
1602 def withgroupname expr s =
1603 withprescript "mplibgroupname=" & s
1604 enddef;
1605 def usemplibgroup primary s =
1606 draw maketext("\luamplibtagasgroupput{"& s &"}{\csname luamplib.group."& s &"\endcsname}")
1607 shifted runscript("return luamplib.trgroupshifts['" & s & "']")
1608 enddef;
1609 path mplib_shade_path ;
1610 numeric mplib_shade_step ; mplib_shade_step := 0 ;
1611 numeric mplib_shade_fx, mplib_shade_fy ;
1612 numeric mplib_shade_lx, mplib_shade_ly ;
1613 numeric mplib_shade_nx, mplib_shade_ny ;
1614 numeric mplib_shade_dx, mplib_shade_dy ;
1615 numeric mplib_shade_tx, mplib_shade_ty ;
1616 primarydef p withshadingmethod m =
1617 p

60

1618 if picture p :
1619 withprescript "sh_operand_type=picture"
1620 if textual p or (length p > 1):
1621 withprescript "sh_transform=no"
1622 mplib_with_shade_method (boundingbox p, m)
1623 else:
1624 withprescript "sh_transform=yes"
1625 mplib_with_shade_method (pathpart p, m)
1626 fi
1627 else :
1628 withprescript "sh_transform=yes"
1629 mplib_with_shade_method (p, m)
1630 fi
1631 enddef;
1632 def mplib_with_shade_method (expr p, m) =
1633 hide(mplib_with_shade_method_analyze(p))
1634 withprescript "sh_domain=0 1"
1635 withprescript "sh_color=into"
1636 withprescript "sh_color_a=" & colordecimals white
1637 withprescript "sh_color_b=" & colordecimals black
1638 withprescript "sh_first=" & ddecimal point 0 of p
1639 withprescript "sh_set_x=" & ddecimal (mplib_shade_nx,mplib_shade_lx)
1640 withprescript "sh_set_y=" & ddecimal (mplib_shade_ny,mplib_shade_ly)
1641 if m = "linear" :
1642 withprescript "sh_type=linear"
1643 withprescript "sh_factor=1"
1644 withprescript "sh_center_a=" & ddecimal llcorner p
1645 withprescript "sh_center_b=" & ddecimal urcorner p
1646 else :
1647 withprescript "sh_type=circular"
1648 withprescript "sh_factor=1.2"
1649 withprescript "sh_center_a=" & ddecimal center p
1650 withprescript "sh_center_b=" & ddecimal center p
1651 withprescript "sh_radius_a=" & decimal 0
1652 withprescript "sh_radius_b=" & decimal mplib_max_radius(p)
1653 fi
1654 enddef;
1655 def mplib_with_shade_method_analyze(expr p) =
1656 mplib_shade_path := p ;
1657 mplib_shade_step := 1 ;
1658 mplib_shade_fx := xpart point 0 of p ;
1659 mplib_shade_fy := ypart point 0 of p ;
1660 mplib_shade_lx := mplib_shade_fx ;
1661 mplib_shade_ly := mplib_shade_fy ;
1662 mplib_shade_nx := 0 ;
1663 mplib_shade_ny := 0 ;
1664 mplib_shade_dx := abs(mplib_shade_fx - mplib_shade_lx) ;
1665 mplib_shade_dy := abs(mplib_shade_fy - mplib_shade_ly) ;
1666 for i=1 upto length(p) :

61

1667 mplib_shade_tx := abs(mplib_shade_fx - xpart point i of p) ;
1668 mplib_shade_ty := abs(mplib_shade_fy - ypart point i of p) ;
1669 if mplib_shade_tx > mplib_shade_dx :
1670 mplib_shade_nx := i + 1 ;
1671 mplib_shade_lx := xpart point i of p ;
1672 mplib_shade_dx := mplib_shade_tx ;
1673 fi ;
1674 if mplib_shade_ty > mplib_shade_dy :
1675 mplib_shade_ny := i + 1 ;
1676 mplib_shade_ly := ypart point i of p ;
1677 mplib_shade_dy := mplib_shade_ty ;
1678 fi ;
1679 endfor ;
1680 enddef;
1681 vardef mplib_max_radius(expr p) =
1682 max (
1683 (xpart center p - xpart llcorner p) ++ (ypart center p - ypart llcorner p),
1684 (xpart center p - xpart ulcorner p) ++ (ypart ulcorner p - ypart center p),
1685 (xpart lrcorner p - xpart center p) ++ (ypart center p - ypart lrcorner p),
1686 (xpart urcorner p - xpart center p) ++ (ypart urcorner p - ypart center p)
1687)
1688 enddef;
1689 def withshadingstep (text t) =
1690 hide(mplib_shade_step := mplib_shade_step + 1 ;)
1691 withprescript "sh_step=" & decimal mplib_shade_step
1692 t
1693 enddef;
1694 def withshadingradius expr a =
1695 withprescript "sh_radius_a=" & decimal (xpart a)
1696 withprescript "sh_radius_b=" & decimal (ypart a)
1697 enddef;
1698 def withshadingorigin expr a =
1699 withprescript "sh_center_a=" & ddecimal a
1700 withprescript "sh_center_b=" & ddecimal a
1701 enddef;
1702 def withshadingvector expr a =
1703 withprescript "sh_center_a=" & ddecimal (point xpart a of mplib_shade_path)
1704 withprescript "sh_center_b=" & ddecimal (point ypart a of mplib_shade_path)
1705 enddef;
1706 def withshadingdirection expr a =
1707 withprescript "sh_center_a=" & ddecimal (point xpart a of boundingbox(mplib_shade_path))
1708 withprescript "sh_center_b=" & ddecimal (point ypart a of boundingbox(mplib_shade_path))
1709 enddef;
1710 def withshadingtransform expr a =
1711 withprescript "sh_transform=" & a
1712 enddef;
1713 def withshadingcenter expr a =
1714 withprescript "sh_center_a=" & ddecimal (
1715 center mplib_shade_path shifted (

62

1716 xpart a * xpart (lrcorner mplib_shade_path - llcorner mplib_shade_path)/2,
1717 ypart a * ypart (urcorner mplib_shade_path - lrcorner mplib_shade_path)/2
1718)
1719)
1720 enddef;
1721 def withshadingdomain expr d =
1722 withprescript "sh_domain=" & ddecimal d
1723 enddef;
1724 def withshadingfactor expr f =
1725 withprescript "sh_factor=" & decimal f
1726 enddef;
1727 def withshadingfraction expr a =
1728 if mplib_shade_step > 0 :
1729 withprescript "sh_fraction_" & decimal mplib_shade_step & "=" & decimal a
1730 fi
1731 enddef;
1732 def withshadingcolors (expr a, b) =
1733 if mplib_shade_step > 0 :
1734 withprescript "sh_color=into"
1735 withprescript "sh_color_a_" & decimal mplib_shade_step & "=" & colordecimals a
1736 withprescript "sh_color_b_" & decimal mplib_shade_step & "=" & colordecimals b
1737 else :
1738 withprescript "sh_color=into"
1739 withprescript "sh_color_a=" & colordecimals a
1740 withprescript "sh_color_b=" & colordecimals b
1741 fi
1742 enddef;
1743 def withshadingstroke expr a =
1744 withprescript "sh_stroking=" & a
1745 enddef;
1746 def mpliblength primary t =
1747 runscript("return utf8.len[===[" & t & "]===]")
1748 enddef;
1749 def mplibsubstring expr p of t =
1750 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1751 & decimal xpart p & ","
1752 & decimal ypart p & ")")
1753 enddef;
1754 def mplibuclength primary t =
1755 runscript("return #luamplib.getunicodegraphemes[===[" & t & "]===]")
1756 enddef;
1757 def mplibucsubstring expr p of t =
1758 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1759 & decimal xpart p & ","
1760 & decimal ypart p & ",true)")
1761 enddef;
1762]],
1763 legacyverbatimtex = [[
1764 def specialVerbatimTeX (text t) = runscript("luamplibprefig{"&t&"}") enddef;

63

1765 def normalVerbatimTeX (text t) = runscript("luamplibinfig{"&t&"}") enddef;
1766 let VerbatimTeX = specialVerbatimTeX;
1767 extra_beginfig := extra_beginfig & " let VerbatimTeX = normalVerbatimTeX;"&
1768 "runscript(" &ditto& "luamplib.in_the_fig=true" &ditto& ");";
1769 extra_endfig := extra_endfig & " let VerbatimTeX = specialVerbatimTeX;"&
1770 "runscript(" &ditto&
1771 "if luamplib.in_the_fig then luamplib.figid=luamplib.figid+1 end "&
1772 "luamplib.in_the_fig=false" &ditto& ");";
1773]],
1774 textextlabel = [[
1775 let luampliboriginalinfont = infont;
1776 primarydef s infont f =
1777 if (s < char 32)
1778 or (s = char 35) % #
1779 or (s = char 36) % $
1780 or (s = char 37) % %
1781 or (s = char 38) % &
1782 or (s = char 92) % \
1783 or (s = char 94) % ^
1784 or (s = char 95) % _
1785 or (s = char 123) % {
1786 or (s = char 125) % }
1787 or (s = char 126) % ~
1788 or (s = char 127) :
1789 s luampliboriginalinfont f
1790 else :
1791 rawtextext(s)
1792 fi
1793 enddef;
1794 def fontsize expr f =
1795 begingroup
1796 save size; numeric size;
1797 size := mplibdimen("1em");
1798 if size = 0: 10pt else: size fi
1799 endgroup
1800 enddef;
1801]],
1802 }
1803

process_mplibcode
When \mplibverbatim is enabled, do not expand mplibcode data.

1804 luamplib.verbatiminput = false
1805 luamplib.everymplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1806 luamplib.everyendmplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1807 function luamplib.process_mplibcode (data, instancename)
1808 texboxes.localid = 4096

This is needed for legacy behavior
1809 if luamplib.legacyverbatimtex then

64

1810 luamplib.figid, tex_code_pre_mplib = 1, {}
1811 end
1812 local everymplib = luamplib.everymplib[instancename]
1813 local everyendmplib = luamplib.everyendmplib[instancename]
1814 data = format("\n%s\n%s\n%s\n",everymplib, data, everyendmplib)
1815 :gsub("\r","\n")

These five lines are needed for mplibverbatim mode.
1816 if luamplib.verbatiminput then
1817 data = data:gsub("\\mpcolor%s+(.-%b{})","mplibcolor(\"%1\")")
1818 :gsub("\\mpdim%s+(%b{})", "mplibdimen(\"%1\")")
1819 :gsub("\\mpdim%s+(\\%a+)","mplibdimen(\"%1\")")
1820 :gsub(btex_etex, "btex %1 etex ")
1821 :gsub(verbatimtex_etex, "verbatimtex %1 etex;")
1822 else

If not mplibverbatim, expand mplibcode data, so that users can use TEX codes in it. It has turned
out that no comment sign is allowed. However, we do not expand btex ... etex, verbatimtex
... etex, and string expressions.
1823 local t = { } -- to store btex, verbatimtex, string
1824 data = data:gsub(btex_etex, function(str)
1825 t[#t+1] = str
1826 return format("btex \\unexpanded{!l!u!a!%s!m!p!l!} etex ", #t) -- space
1827 end)
1828 :gsub(verbatimtex_etex, function(str)
1829 t[#t+1] = str
1830 return format("verbatimtex \\unexpanded{!l!u!a!%s!m!p!l!} etex;", #t) -- semicolon
1831 end)
1832 :gsub('"(.-)"', function(str)
1833 t[#t+1] = str
1834 return format('"\\unexpanded{!l!u!a!%s!m!p!l!}"', #t)
1835 end)
1836 :gsub("\\%%", "\0PerCent\0")
1837 :gsub("%%.-\n","\n")
1838 :gsub("%zPerCent%z", "\\%%")
1839 run_tex_code(format("\\mplibtmptoks\\expandafter{\\expanded{%s}}",data))
1840 data = texgettoks"mplibtmptoks"

Next line to address issue #55
1841 :gsub("##", "#")
1842 :gsub("!l!u!a!(%d+)!m!p!l!", function(str) return t[tonumber(str)] or str end)
1843 end
1844 process(data, instancename)
1845 end
1846

pdfliterals will be stored in figcontents table, and written to pdf in one go at the end of the
flushing figure. Subtable post is for the legacy behavior.
1847 local figcontents = { post = { } }
1848 local function put2output(a,...)

65

1849 figcontents[#figcontents+1] = type(a) == "string" and format(a,...) or a
1850 end
1851 local function pdf_startfigure(n,llx,lly,urx,ury)
1852 put2output("\\mplibstarttoPDF{%f}{%f}{%f}{%f}",llx,lly,urx,ury)
1853 end
1854 local function pdf_stopfigure()
1855 put2output("\\mplibstoptoPDF")
1856 end

tex.sprint with catcode regime -2, as sometimes # gets doubled in the argument of pdfliteral.
1857 local function pdf_literalcode (...)
1858 put2output{ -2, (format(...) :gsub(decimals,rmzeros)) }
1859 end
1860 local start_pdf_code = pdfmode
1861 and function() pdf_literalcode"q" end
1862 or function() put2output"\\special{pdf:bcontent}" end
1863 local stop_pdf_code = pdfmode
1864 and function() pdf_literalcode"Q" end
1865 or function() put2output"\\special{pdf:econtent}" end
1866

Now we process hboxes created from btex ... etex or textext(...) or TEX(...) etc.
1867 local function put_tex_boxes (object,prescript)
1868 local box = prescript.mplibtexboxid:explode":"
1869 local n,tw,th = box[1],tonumber(box[2]),tonumber(box[3])
1870 if n and tw and th then
1871 local op = object.path
1872 local first, second, fourth = op[1], op[2], op[4]
1873 local tx, ty = first.x_coord, first.y_coord
1874 local sx, rx, ry, sy = 1, 0, 0, 1
1875 if tw ~= 0 then
1876 sx = (second.x_coord - tx)/tw
1877 rx = (second.y_coord - ty)/tw
1878 if sx == 0 then sx = 0.00001 end
1879 end
1880 if th ~= 0 then
1881 sy = (fourth.y_coord - ty)/th
1882 ry = (fourth.x_coord - tx)/th
1883 if sy == 0 then sy = 0.00001 end
1884 end
1885 start_pdf_code()
1886 pdf_literalcode("%f %f %f %f %f %f cm",sx,rx,ry,sy,tx,ty)
1887 put2output("\\mplibputtextbox{%i}",n)
1888 stop_pdf_code()
1889 end
1890 end
1891

Colors
1892 local do_preobj_CR

66

1893 do
1894 local prev_override_color
1895 function do_preobj_CR(object,prescript)
1896 if object.postscript == "collect" then return end
1897 local override = prescript and prescript.mpliboverridecolor
1898 if override then
1899 if pdfmode then
1900 pdf_literalcode(override)
1901 override = nil
1902 else
1903 put2output("\\special{%s}",override)
1904 prev_override_color = override
1905 end
1906 else
1907 local cs = object.color
1908 if cs and #cs > 0 then
1909 pdf_literalcode(luamplib.colorconverter(cs))
1910 prev_override_color = nil
1911 elseif not pdfmode then
1912 override = prev_override_color
1913 if override then
1914 put2output("\\special{%s}",override)
1915 end
1916 end
1917 end
1918 return override
1919 end
1920 end
1921

For transparency, shading, fading, and pattern

1922 local pdfmanagement = is_defined'pdfmanagement_add:nnn'
1923 local pdfobjs, pdfetcs = {}, {}
1924 pdfetcs.pgfextgs = "pgf@sys@addpdfresource@extgs@plain"
1925 pdfetcs.pgfpattern = "pgf@sys@addpdfresource@patterns@plain"
1926 pdfetcs.pgfcolorspace = "pgf@sys@addpdfresource@colorspaces@plain"
1927 local function update_pdfobjs (os, stream)
1928 local key = os
1929 if stream then key = key..stream end
1930 local on = key and pdfobjs[key]
1931 if on then
1932 return on,false
1933 end
1934 if pdfmode then
1935 if stream then
1936 on = pdf.immediateobj("stream",stream,os)
1937 elseif os then
1938 on = pdf.immediateobj(os)
1939 else

67

1940 on = pdf.reserveobj()
1941 end
1942 else
1943 on = pdfetcs.cnt or 1
1944 if stream then
1945 texsprint(format("\\special{pdf:stream @mplibpdfobj%s (%s) <<%s>>}",on,stream,os))
1946 elseif os then
1947 texsprint(format("\\special{pdf:obj @mplibpdfobj%s %s}",on,os))
1948 else
1949 texsprint(format("\\special{pdf:obj @mplibpdfobj%s <<>>}",on))
1950 end
1951 pdfetcs.cnt = on + 1
1952 end
1953 if key then
1954 pdfobjs[key] = on
1955 end
1956 return on,true
1957 end
1958 pdfetcs.resfmt = pdfmode and "%s 0 R" or "@mplibpdfobj%s"
1959 if pdfmode then
1960 pdfetcs.getpageres = pdf.getpageresources or function() return pdf.pageresources end
1961 local getpageres = pdfetcs.getpageres
1962 local setpageres = pdf.setpageresources or function(s) pdf.pageresources = s end
1963 local initialize_resources = function (name)
1964 local tabname = format("%s_res",name)
1965 pdfetcs[tabname] = { }
1966 if luatexbase.callbacktypes.finish_pdffile then -- ltluatex
1967 local obj = pdf.reserveobj()
1968 setpageres(format("%s/%s %i 0 R", getpageres() or "", name, obj))
1969 luatexbase.add_to_callback("finish_pdffile", function()
1970 pdf.immediateobj(obj, format("<<%s>>", tableconcat(pdfetcs[tabname])))
1971 end,
1972 format("luamplib.%s.finish_pdffile",name))
1973 end
1974 end
1975 pdfetcs.fallback_update_resources = function (name, res)
1976 local tabname = format("%s_res",name)
1977 if not pdfetcs[tabname] then
1978 initialize_resources(name)
1979 end
1980 if luatexbase.callbacktypes.finish_pdffile then
1981 local t = pdfetcs[tabname]
1982 t[#t+1] = res
1983 else
1984 local tpr, n = getpageres() or "", 0
1985 tpr, n = tpr:gsub(format("/%s<<",name), "%1"..res)
1986 if n == 0 then
1987 tpr = format("%s/%s<<%s>>", tpr, name, res)
1988 end

68

1989 setpageres(tpr)
1990 end
1991 end
1992 else
1993 texsprint {
1994 "\\luamplibatfirstshipout{",
1995 "\\special{pdf:obj @MPlibTr<<>>}",
1996 "\\special{pdf:obj @MPlibSh<<>>}",
1997 "\\special{pdf:obj @MPlibCS<<>>}",
1998 "\\special{pdf:obj @MPlibPt<<>>}}",
1999 }
2000 pdfetcs.resadded = { }
2001 pdfetcs.fallback_update_resources = function (name,res,obj)
2002 texsprint{"\\special{pdf:put ", obj, " <<", res, ">>}"}
2003 if not pdfetcs.resadded[name] then
2004 texsprint{"\\luamplibateveryshipout{\\special{pdf:put @resources <</", name, " ", obj, ">>}}"}
2005 pdfetcs.resadded[name] = obj
2006 end
2007 end
2008 end
2009

Transparency

2010 local function add_extgs_resources (on, new)
2011 local key = format("MPlibTr%s", on)
2012 if new then
2013 local val = format(pdfetcs.resfmt, on)
2014 if pdfmanagement then
2015 texsprint {
2016 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ExtGState}{", key, "}{", val, "}"
2017 }
2018 else
2019 local tr = format("/%s %s", key, val)
2020 if is_defined(pdfetcs.pgfextgs) then
2021 texsprint { "\\csname ", pdfetcs.pgfextgs, "\\endcsname{", tr, "}" }
2022 elseif is_defined"TRP@list" then
2023 texsprint(catat11,{
2024 [[\if@filesw\immediate\write\@auxout{]],
2025 [[\string\g@addto@macro\string\TRP@list{]],
2026 tr,
2027 [[}}\fi]],
2028 })
2029 if not get_macro"TRP@list":find(tr) then
2030 texsprint(catat11,[[\global\TRP@reruntrue]])
2031 end
2032 else
2033 pdfetcs.fallback_update_resources("ExtGState",tr,"@MPlibTr")
2034 end
2035 end

69

2036 end
2037 return key
2038 end
2039
2040 local do_preobj_TR
2041 do
2042 local transparancy_modes = {
2043 [0] = "Normal",
2044 "Normal", "Multiply", "Screen", "Overlay",
2045 "SoftLight", "HardLight", "ColorDodge", "ColorBurn",
2046 "Darken", "Lighten", "Difference", "Exclusion",
2047 "Hue", "Saturation", "Color", "Luminosity",
2048 "Compatible",
2049 normal = "Normal", multiply = "Multiply", screen = "Screen",
2050 overlay = "Overlay", softlight = "SoftLight", hardlight = "HardLight",
2051 colordodge = "ColorDodge", colorburn = "ColorBurn", darken = "Darken",
2052 lighten = "Lighten", difference = "Difference", exclusion = "Exclusion",
2053 hue = "Hue", saturation = "Saturation", color = "Color",
2054 luminosity = "Luminosity", compatible = "Compatible",
2055 }
2056 function do_preobj_TR(object,prescript)
2057 if object.postscript == "collect" then return end
2058 local opaq = prescript and prescript.tr_transparency
2059 if opaq then
2060 local key, on, os, new
2061 local mode = prescript.tr_alternative or 1
2062 mode = transparancy_modes[tonumber(mode) or mode:lower()]
2063 if not mode then
2064 mode = prescript.tr_alternative
2065 warn("unsupported blend mode: '%s'", mode)
2066 end
2067 opaq = format("%.3f", opaq) :gsub(decimals,rmzeros)
2068 for i,v in ipairs{ {mode,opaq},{"Normal",1} } do
2069 os = format("<</BM/%s/ca %s/CA %s/AIS false>>",v[1],v[2],v[2])
2070 on, new = update_pdfobjs(os)
2071 key = add_extgs_resources(on,new)
2072 if i == 1 then
2073 pdf_literalcode("/%s gs",key)
2074 else
2075 return format("/%s gs",key)
2076 end
2077 end
2078 end
2079 end
2080 end
2081

Shading with metafun format.

2082 local function sh_pdfpageresources(shtype,domain,colorspace,ca,cb,coordinates,steps,fractions)

70

2083 for _,v in ipairs{ca,cb} do
2084 for i,vv in ipairs(v) do
2085 for ii,vvv in ipairs(vv) do
2086 v[i][ii] = tonumber(vvv) and format("%.3f",vvv) or vvv
2087 end
2088 end
2089 end
2090 local fun2fmt,os = "<</FunctionType 2/Domain[%s]/C0[%s]/C1[%s]/N 1>>"
2091 if steps > 1 then
2092 local list,bounds,encode = { },{ },{ }
2093 for i=1,steps do
2094 if i < steps then
2095 bounds[i] = format("%.3f", fractions[i] or 1)
2096 end
2097 encode[2*i-1] = 0
2098 encode[2*i] = 1
2099 os = fun2fmt:format(domain,tableconcat(ca[i],' '),tableconcat(cb[i],' '))
2100 :gsub(decimals,rmzeros)
2101 list[i] = format(pdfetcs.resfmt, update_pdfobjs(os))
2102 end
2103 os = tableconcat {
2104 "<</FunctionType 3",
2105 format("/Bounds[%s]", tableconcat(bounds,' ')),
2106 format("/Encode[%s]", tableconcat(encode,' ')),
2107 format("/Functions[%s]", tableconcat(list, ' ')),
2108 format("/Domain[%s]>>", domain),
2109 } :gsub(decimals,rmzeros)
2110 else
2111 os = fun2fmt:format(domain,tableconcat(ca[1],' '),tableconcat(cb[1],' '))
2112 :gsub(decimals,rmzeros)
2113 end
2114 local objref = format(pdfetcs.resfmt, update_pdfobjs(os))
2115 os = tableconcat {
2116 format("<</ShadingType %i", shtype),
2117 format("/ColorSpace %s", colorspace),
2118 format("/Function %s", objref),
2119 format("/Coords[%s]", coordinates),
2120 "/Extend[true true]/AntiAlias true>>",
2121 } :gsub(decimals,rmzeros)
2122 local on, new = update_pdfobjs(os)
2123 if new then
2124 local key, val = format("MPlibSh%s", on), format(pdfetcs.resfmt, on)
2125 if pdfmanagement then
2126 texsprint {
2127 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Shading}{", key, "}{", val, "}"
2128 }
2129 else
2130 local res = format("/%s %s", key, val)
2131 pdfetcs.fallback_update_resources("Shading",res,"@MPlibSh")

71

2132 end
2133 end
2134 return on
2135 end
2136
2137 local do_preobj_SH
2138 do
2139 pdfetcs.clrspcs = setmetatable({ }, { __index = function(t,names)
2140 run_tex_code({
2141 [[\color_model_new:nnn]],
2142 format("{mplibcolorspace_%s}", names:gsub(",","_")),
2143 format("{DeviceN}{names={%s}}", names),
2144 [[\edef\mplib_@tempa{\pdf_object_ref_last:}]],
2145 }, ccexplat)
2146 local colorspace = get_macro'mplib_@tempa'
2147 t[names] = colorspace
2148 return colorspace
2149 end })
2150 local function color_normalize(ca,cb)
2151 if #cb == 1 then
2152 if #ca == 4 then
2153 cb[1], cb[2], cb[3], cb[4] = 0, 0, 0, 1-cb[1]
2154 else -- #ca = 3
2155 cb[1], cb[2], cb[3] = cb[1], cb[1], cb[1]
2156 end
2157 elseif #cb == 3 then -- #ca == 4
2158 cb[1], cb[2], cb[3], cb[4] = 1-cb[1], 1-cb[2], 1-cb[3], 0
2159 end
2160 end
2161 function do_preobj_SH(object, prescript)
2162 local shade_no
2163 local sh_type = prescript and prescript.sh_type
2164 if not sh_type then
2165 return
2166 else
2167 local domain = prescript.sh_domain or "0 1"
2168 local centera = (prescript.sh_center_a or "0 0"):explode()
2169 local centerb = (prescript.sh_center_b or "0 0"):explode()
2170 local transform = prescript.sh_transform == "yes"
2171 local sx,sy,sr,dx,dy = 1,1,1,0,0
2172 if transform then
2173 local first = (prescript.sh_first or "0 0"):explode()
2174 local setx = (prescript.sh_set_x or "0 0"):explode()
2175 local sety = (prescript.sh_set_y or "0 0"):explode()
2176 local x,y = tonumber(setx[1]) or 0, tonumber(sety[1]) or 0
2177 if x ~= 0 and y ~= 0 then
2178 local path = object.path
2179 local path1x = path[1].x_coord
2180 local path1y = path[1].y_coord

72

2181 local path2x = path[x].x_coord
2182 local path2y = path[y].y_coord
2183 local dxa = path2x - path1x
2184 local dya = path2y - path1y
2185 local dxb = setx[2] - first[1]
2186 local dyb = sety[2] - first[2]
2187 if dxa ~= 0 and dya ~= 0 and dxb ~= 0 and dyb ~= 0 then
2188 sx = dxa / dxb ; if sx < 0 then sx = - sx end
2189 sy = dya / dyb ; if sy < 0 then sy = - sy end
2190 sr = math.sqrt(sx^2 + sy^2)
2191 dx = path1x - sx*first[1]
2192 dy = path1y - sy*first[2]
2193 end
2194 end
2195 end
2196 local ca, cb, colorspace, steps, fractions
2197 ca = { (prescript.sh_color_a_1 or prescript.sh_color_a or "0"):explode":" }
2198 cb = { (prescript.sh_color_b_1 or prescript.sh_color_b or "1"):explode":" }
2199 steps = tonumber(prescript.sh_step) or 1
2200 if steps > 1 then
2201 fractions = { prescript.sh_fraction_1 or 0 }
2202 for i=2,steps do
2203 fractions[i] = prescript[format("sh_fraction_%i",i)] or (i/steps)
2204 ca[i] = (prescript[format("sh_color_a_%i",i)] or "0"):explode":"
2205 cb[i] = (prescript[format("sh_color_b_%i",i)] or "1"):explode":"
2206 end
2207 end
2208 if prescript.mplib_spotcolor then
2209 ca, cb = { }, { }
2210 local names, pos, objref = { }, -1, ""
2211 local script = object.prescript:explode"\13+"
2212 for i=#script,1,-1 do
2213 if script[i]:find"mplib_spotcolor" then
2214 local t, name, value = script[i]:explode"="[2]:explode":"
2215 value, objref, name = t[1], t[2], t[3]
2216 if not names[name] then
2217 pos = pos+1
2218 names[name] = pos
2219 names[#names+1] = name
2220 end
2221 t = { }
2222 for j=1,names[name] do t[#t+1] = 0 end
2223 t[#t+1] = value
2224 tableinsert(#ca == #cb and ca or cb, t)
2225 end
2226 end
2227 for _,t in ipairs{ca,cb} do
2228 for _,tt in ipairs(t) do
2229 for i=1,#names-#tt do tt[#tt+1] = 0 end

73

2230 end
2231 end
2232 if #names == 1 then
2233 colorspace = objref
2234 else
2235 colorspace = pdfetcs.clrspcs[tableconcat(names,",")]
2236 end
2237 else
2238 local model = 0
2239 for _,t in ipairs{ca,cb} do
2240 for _,tt in ipairs(t) do
2241 model = model > #tt and model or #tt
2242 end
2243 end
2244 for _,t in ipairs{ca,cb} do
2245 for _,tt in ipairs(t) do
2246 if #tt < model then
2247 color_normalize(model == 4 and {1,1,1,1} or {1,1,1},tt)
2248 end
2249 end
2250 end
2251 colorspace = model == 4 and "/DeviceCMYK"
2252 or model == 3 and "/DeviceRGB"
2253 or model == 1 and "/DeviceGray"
2254 or err"unknown color model"
2255 end
2256 if sh_type == "linear" then
2257 local coordinates = format("%f %f %f %f",
2258 dx + sx*centera[1], dy + sy*centera[2],
2259 dx + sx*centerb[1], dy + sy*centerb[2])
2260 shade_no = sh_pdfpageresources(2,domain,colorspace,ca,cb,coordinates,steps,fractions)
2261 elseif sh_type == "circular" then
2262 local factor = prescript.sh_factor or 1
2263 local radiusa = factor * prescript.sh_radius_a
2264 local radiusb = factor * prescript.sh_radius_b
2265 local coordinates = format("%f %f %f %f %f %f",
2266 dx + sx*centera[1], dy + sy*centera[2], sr*radiusa,
2267 dx + sx*centerb[1], dy + sy*centerb[2], sr*radiusb)
2268 shade_no = sh_pdfpageresources(3,domain,colorspace,ca,cb,coordinates,steps,fractions)
2269 else
2270 err"unknown shading type"
2271 end
2272 end
2273 return shade_no, prescript.sh_stroking == "yes"
2274 end
2275 end
2276

Shading Patterns: we can apply shading to textual pictures as well as paths.

74

2277 if not pdfmode then
2278 pdfetcs.patternresources = {}
2279 end
2280 local function add_pattern_resources (key, val)
2281 if pdfmanagement then
2282 texsprint {
2283 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Pattern}{", key, "}{", val, "}"
2284 }
2285 else
2286 local res = format("/%s %s", key, val)
2287 if is_defined(pdfetcs.pgfpattern) then
2288 texsprint { "\\csname ", pdfetcs.pgfpattern, "\\endcsname{", res, "}" }
2289 else
2290 pdfetcs.fallback_update_resources("Pattern",res,"@MPlibPt")
2291 if not pdfmode then
2292 tableinsert(pdfetcs.patternresources, res) -- for gather_resources()
2293 end
2294 end
2295 end
2296 end
2297 function luamplib.dolatelua (on, os)
2298 local h, v = pdf.getpos()
2299 h = format("%f", h/factor) :gsub(decimals,rmzeros)
2300 v = format("%f", v/factor) :gsub(decimals,rmzeros)
2301 if pdfmode then
2302 pdf.obj(on, format("<<%s/Matrix[1 0 0 1 %s %s]>>", os, h, v))
2303 pdf.refobj(on)
2304 else
2305 local shift = os:explode()
2306 if tonumber(h) ~= tonumber(shift[1]) or tonumber(v) ~= tonumber(shift[2]) then
2307 warn([[Add 'withprescript "sh_matrixshift=%s %s"' to the picture shading]], h, v)
2308 end
2309 end
2310 end
2311 local function do_preobj_shading (object, prescript)
2312 if not prescript or not prescript.sh_operand_type then return end
2313 local on = do_preobj_SH(object, prescript)
2314 local os = format("/PatternType 2/Shading %s", format(pdfetcs.resfmt, on))
2315 on = update_pdfobjs()
2316 if pdfmode then
2317 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",os,"]]) }" })
2318 else

Why @xpos @ypos do not work properly⁇?
Anyway, this seems to be needed for proper functioning:

\pagewidth=\paperwidth
\pageheight=\paperheight
\special{papersize=\the\paperwidth,\the\paperheight}

75

2319 if is_defined"RecordProperties" then
2320 put2output(tableconcat{
2321 "\\csname tex_savepos:D\\endcsname\\RecordProperties{luamplib/getpos/",on,"}{xpos,ypos}\z
2322 \\special{pdf:put ",format(pdfetcs.resfmt, on)," <<",os,"/Matrix[1 0 0 1 \z
2323 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{xpos}sp} \z
2324 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{ypos}sp}\z
2325]>>}"
2326 })
2327 else
2328 local shift = prescript.sh_matrixshift or "0 0"
2329 texsprint{ "\\special{pdf:put ",format(pdfetcs.resfmt, on)," <<",os,"/Matrix[1 0 0 1 ",shift,"]>>}" }
2330 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",shift,"]]) }" })
2331 end
2332 end
2333 local key, val = format("MPlibPt%s", on), format(pdfetcs.resfmt, on)
2334 add_pattern_resources(key,val)
2335 pdf_literalcode("/Pattern cs/%s scn", key)

To avoid possible double execution, once by Pattern gs, once by Sh operator.
2336 prescript.sh_type = nil
2337 end
2338

Tiling Patterns
2339 pdfetcs.patterns = { _luamplib_pattern_resources_ = { } }
2340 local function gather_resources (optres, is_mask)
2341 local t, do_pattern = { }, not optres
2342 local names = {"ExtGState","ColorSpace","Shading"}
2343 if do_pattern then
2344 names[#names+1] = "Pattern"
2345 end
2346 if pdfmode then
2347 if pdfmanagement then
2348 for _,v in ipairs(names) do
2349 if ltx.__pdf.Page.Resources[v] then
2350 t[#t+1] = format("/%s %s 0 R", v, ltx.pdf.object_id("__pdf/Page/Resources/"..v))
2351 end
2352 end
2353 else
2354 local res = pdfetcs.getpageres() or ""
2355 run_tex_code[[\mplibtmptoks\expandafter{\the\pdfvariable pageresources}]]
2356 res = res .. texgettoks'mplibtmptoks'
2357 if do_pattern then return res end
2358 res = res:explode"/+"
2359 for _,v in ipairs(res) do
2360 v = v:match"^%s*(.-)%s*$"
2361 if not v:find"Pattern" and not optres:find(v) then
2362 t[#t+1] = "/" .. v
2363 end
2364 end

76

2365 end
2366 else
2367 if pdfmanagement then
2368 for _,v in ipairs(names) do
2369 run_tex_code ({
2370 "\\mplibtmptoks\\expanded{{",
2371 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/", v, "}",
2372 "{/", v, " \\pdf_object_ref:n{__pdf/Page/Resources/", v, "}}}}",
2373 },ccexplat)
2374 t[#t+1] = texgettoks'mplibtmptoks'
2375 end
2376 elseif is_defined(pdfetcs.pgfextgs) then
2377 run_tex_code ({
2378 "\\mplibtmptoks\\expanded{{",
2379 "\\ifpgf@sys@pdf@extgs@exists /ExtGState @pgfextgs\\fi",
2380 "\\ifpgf@sys@pdf@colorspaces@exists /ColorSpace @pgfcolorspaces\\fi",
2381 do_pattern and "\\ifpgf@sys@pdf@patterns@exists /Pattern @pgfpatterns \\fi" or "",
2382 "}}",
2383 }, catat11)
2384 t[#t+1] = texgettoks'mplibtmptoks'
2385 if pdfetcs.resadded.Shading then
2386 t[#t+1] = format("/Shading %s", pdfetcs.resadded.Shading)
2387 end
2388 else
2389 for _,v in ipairs(names) do
2390 local vv = pdfetcs.resadded[v]
2391 if vv then
2392 t[#t+1] = format("/%s %s", v, vv)
2393 end
2394 end
2395 end
2396 end
2397 if do_pattern then return tableconcat(t) end
2398 -- get pattern resources
2399 local mytoks
2400 if pdfmanagement then
2401 run_tex_code ({
2402 "\\mplibtmptoks\\expanded{{",
2403 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/Pattern}",
2404 "{\\pdfdict_use:n{g__pdf_Core/Page/Resources/Pattern}}", "}}",
2405 },ccexplat)
2406 mytoks = texgettoks"mplibtmptoks"
2407 if not pdfmode then
2408 mytoks = mytoks:gsub("\\str_convert_pdfname:n%s*{(.-)}","%1") -- why not expanded?
2409 end
2410 elseif is_defined(pdfetcs.pgfextgs) then
2411 if pdfmode then
2412 mytoks = get_macro"pgf@sys@pgf@resource@list@patterns"
2413 else

77

2414 local tt, abc = {}, get_macro"pgfutil@abc" or ""
2415 for v in abc:gmatch"@pgfpatterns%s*<<(.-)>>" do
2416 tt[#tt+1] = v
2417 end
2418 mytoks = tableconcat(tt)
2419 end
2420 else
2421 local tt = pdfmode and pdfetcs.Pattern_res or pdfetcs.patternresources
2422 mytoks = tt and tableconcat(tt)
2423 end
2424 if mytoks and mytoks ~= "" then
2425 if is_mask then -- glitch with acrobat
2426 local res, tt = pdfetcs.patterns._luamplib_pattern_resources_, { }
2427 for _,item in ipairs(mytoks:explode"/") do
2428 if not res[item:match"^%s*(.-)%s*$"] then
2429 tt[#tt+1] = item
2430 end
2431 end
2432 mytoks = tableconcat(tt,"/")
2433 end
2434 t[#t+1] = format("/Pattern<<%s>>",mytoks)
2435 end
2436 return tableconcat(t)
2437 end
2438 function luamplib.registerpattern (boxid, name, opts)
2439 local box = texgetbox(boxid)
2440 local wd = format("%.3f",box.width/factor)
2441 local hd = format("%.3f",(box.height+box.depth)/factor)
2442 info("w/h/d of pattern '%s': %s 0", name, format("%s %s",wd, hd):gsub(decimals,rmzeros))
2443 if opts.xstep == 0 then opts.xstep = nil end
2444 if opts.ystep == 0 then opts.ystep = nil end
2445 if opts.colored == nil then
2446 opts.colored = opts.coloured
2447 if opts.colored == nil then
2448 opts.colored = true
2449 end
2450 end
2451 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2452 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2453 if opts.matrix and opts.matrix:find"%a" then
2454 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2455 process(data,"@mplibtransformmatrix")
2456 local t = luamplib.transformmatrix
2457 opts.matrix = format("%f %f %f %f", t[1], t[2], t[3], t[4])
2458 opts.xshift = opts.xshift or format("%f",t[5])
2459 opts.yshift = opts.yshift or format("%f",t[6])
2460 end
2461 local attr = {
2462 "/Type/Pattern",

78

2463 "/PatternType 1",
2464 format("/PaintType %i", opts.colored and 1 or 2),
2465 "/TilingType 2",
2466 format("/XStep %s", opts.xstep or wd),
2467 format("/YStep %s", opts.ystep or hd),
2468 format("/Matrix[%s %s %s]", opts.matrix or "1 0 0 1", opts.xshift or 0, opts.yshift or 0),
2469 }
2470 local optres = opts.resources or ""
2471 optres = optres .. gather_resources(optres)
2472 local patterns = pdfetcs.patterns
2473 if pdfmode then
2474 if opts.bbox then
2475 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2476 end
2477 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2478 local index = tex.saveboxresource(boxid, attr, optres, true, opts.bbox and 4 or 1)
2479 patterns[name] = { id = index, colored = opts.colored }
2480 else
2481 local cnt = #patterns + 1
2482 local objname = "@mplibpattern" .. cnt
2483 local metric = format("bbox %s", opts.bbox or format("0 0 %s %s",wd,hd))
2484 texsprint {
2485 "\\expandafter\\newbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2486 "\\global\\setbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2487 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2488 "\\special{pdf:bcontent}",
2489 "\\special{pdf:bxobj ", objname, " ", metric, "}",
2490 "\\raise\\dp\\csname luamplib.patternbox.", cnt, "\\endcsname",
2491 "\\box\\csname luamplib.patternbox.", cnt, "\\endcsname",
2492 "\\special{pdf:put @resources <<", optres, ">>}",
2493 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2494 "\\special{pdf:econtent}}",
2495 }
2496 patterns[cnt] = objname
2497 patterns[name] = { id = cnt, colored = opts.colored }
2498 end
2499 end
2500
2501 local do_preobj_PAT
2502 do
2503 local function pattern_colorspace (cs)
2504 local on, new = update_pdfobjs(format("[/Pattern %s]", cs))
2505 if new then
2506 local key, val = format("MPlibCS%i",on), format(pdfetcs.resfmt,on)
2507 if pdfmanagement then
2508 texsprint {
2509 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ColorSpace}{", key, "}{", val, "}"
2510 }
2511 else

79

2512 local res = format("/%s %s", key, val)
2513 if is_defined(pdfetcs.pgfcolorspace) then
2514 texsprint { "\\csname ", pdfetcs.pgfcolorspace, "\\endcsname{", res, "}" }
2515 else
2516 pdfetcs.fallback_update_resources("ColorSpace",res,"@MPlibCS")
2517 end
2518 end
2519 end
2520 return on
2521 end
2522 function do_preobj_PAT(object, prescript)
2523 local name = prescript and prescript.mplibpattern
2524 if not name then return end
2525 local patterns = pdfetcs.patterns
2526 local patt = patterns[name]
2527 local index = patt and patt.id or err("cannot get pattern object '%s'", name)
2528 local key = format("MPlibPt%s",index)
2529 if patt.colored then
2530 pdf_literalcode("/Pattern cs /%s scn", key)
2531 else
2532 local color = prescript.mpliboverridecolor
2533 if not color then
2534 local t = object.color
2535 color = t and #t>0 and luamplib.colorconverter(t)
2536 end
2537 if not color then return end
2538 local cs
2539 if color:find" cs " or color:find"@pdf.obj" then
2540 local t = color:explode()
2541 if pdfmode then
2542 cs = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
2543 color = t[3]
2544 else
2545 cs = t[2]
2546 color = t[3]:match"%[(.+)%]"
2547 end
2548 else
2549 local t = colorsplit(color)
2550 cs = #t == 4 and "/DeviceCMYK" or #t == 3 and "/DeviceRGB" or "/DeviceGray"
2551 color = tableconcat(t," ")
2552 end
2553 pdf_literalcode("/MPlibCS%i cs %s /%s scn", pattern_colorspace(cs), color, key)
2554 end
2555 if not patt.done then
2556 local val = pdfmode and format("%s 0 R",index) or patterns[index]
2557 add_pattern_resources(key,val)
2558 patterns._luamplib_pattern_resources_[format("%s %s",key,val)] = true -- glitch with acrobat
2559 end
2560 patt.done = true

80

2561 end
2562 end
2563

Fading

2564 pdfetcs.fading = { }
2565 local function do_preobj_FADE (object, prescript)
2566 local fd_type = prescript and prescript.mplibfadetype
2567 local fd_stop = prescript and prescript.mplibfadestate
2568 if not fd_type then
2569 return fd_stop -- returns "stop" (if picture) or nil
2570 end
2571 local on, os, new
2572 if fd_type == "masking" then
2573 local mac = get_macro("luamplib.group."..prescript.mplibmaskname)
2574 on = mac:match(pdfmode and "%d+" or "{pdf:uxobj (.-)}")
2575 os = format("<</SMask<</S/Luminosity/G %s>>>>", pdfmode and format(pdfetcs.resfmt, on) or on)
2576 else
2577 local bbox = prescript.mplibfadebbox:explode":"
2578 local dx, dy = -bbox[1], -bbox[2]
2579 local vec = prescript.mplibfadevector; vec = vec and vec:explode":"
2580 if not vec then
2581 if fd_type == "linear" then
2582 vec = {bbox[1], bbox[2], bbox[3], bbox[2]} -- left to right
2583 else
2584 local centerx, centery = (bbox[1]+bbox[3])/2, (bbox[2]+bbox[4])/2
2585 vec = {centerx, centery, centerx, centery} -- center for both circles
2586 end
2587 end
2588 local coords = { vec[1]+dx, vec[2]+dy, vec[3]+dx, vec[4]+dy }
2589 if fd_type == "linear" then
2590 coords = format("%f %f %f %f", tableunpack(coords))
2591 elseif fd_type == "circular" then
2592 local width, height = bbox[3]-bbox[1], bbox[4]-bbox[2]
2593 local radius = (prescript.mplibfaderadius or "0:"..math.sqrt(width^2+height^2)/2):explode":"
2594 tableinsert(coords, 3, radius[1])
2595 tableinsert(coords, radius[2])
2596 coords = format("%f %f %f %f %f %f", tableunpack(coords))
2597 else
2598 err("unknown fading method '%s'", fd_type)
2599 end
2600 fd_type = fd_type == "linear" and 2 or 3
2601 local opaq = (prescript.mplibfadeopacity or "1:0"):explode":"
2602 on = sh_pdfpageresources(fd_type, "0 1", "/DeviceGray", {{opaq[1]}}, {{opaq[2]}}, coords, 1)
2603 os = format("<</PatternType 2/Shading %s>>", format(pdfetcs.resfmt, on))
2604 on = update_pdfobjs(os)
2605 bbox = format("0 0 %f %f", bbox[3]+dx, bbox[4]+dy)
2606 local streamtext = format("q /Pattern cs/MPlibFd%s scn %s re f Q", on, bbox)
2607 :gsub(decimals,rmzeros)

81

2608 os = format("<</Pattern<</MPlibFd%s %s>>>>", on, format(pdfetcs.resfmt, on))
2609 on = update_pdfobjs(os)
2610 local resources = format(pdfetcs.resfmt, on)
2611 on = update_pdfobjs"<</S/Transparency/CS/DeviceGray>>"
2612 local attr = tableconcat{
2613 "/Subtype/Form",
2614 "/BBox[", bbox, "]",
2615 "/Matrix[1 0 0 1 ", format("%f %f", -dx,-dy), "]",
2616 "/Resources ", resources,
2617 "/Group ", format(pdfetcs.resfmt, on),
2618 } :gsub(decimals,rmzeros)
2619 on = update_pdfobjs(attr, streamtext)
2620 os = format("<</SMask<</S/Luminosity/G %s>>>>", format(pdfetcs.resfmt, on))
2621 end
2622 on, new = update_pdfobjs(os)
2623 local key = add_extgs_resources(on,new)
2624 start_pdf_code()
2625 pdf_literalcode("/%s gs", key)
2626 if fd_stop then return "standalone" end
2627 return "start"
2628 end
2629

Transparency Group

2630 pdfetcs.tr_group = { shifts = { } }
2631 luamplib.trgroupshifts = pdfetcs.tr_group.shifts
2632 local function do_preobj_GRP (object, prescript)
2633 local grstate = prescript and prescript.gr_state
2634 if not grstate then return end
2635 local trgroup = pdfetcs.tr_group
2636 if grstate == "start" then
2637 trgroup.name = prescript.mplibgroupname or "lastmplibgroup"
2638 trgroup.isolated, trgroup.knockout = false, false
2639 for _,v in ipairs(prescript.gr_type:explode",+") do
2640 trgroup[v] = true
2641 end
2642 trgroup.bbox = prescript.mplibgroupbbox:explode":"
2643 put2output[[\begingroup\setbox\mplibscratchbox\hbox\bgroup\luamplibtagasgroupset]]
2644 elseif grstate == "stop" then
2645 local llx,lly,urx,ury = tableunpack(trgroup.bbox)
2646 put2output(tableconcat{
2647 "\\egroup",
2648 format("\\wd\\mplibscratchbox %fbp", urx-llx),
2649 format("\\ht\\mplibscratchbox %fbp", ury-lly),
2650 "\\dp\\mplibscratchbox 0pt",
2651 })
2652 local on = update_pdfobjs(format("<</S/Transparency/I %s/K %s>>",trgroup.isolated,trgroup.knockout))
2653 local grattr = format("/Group %s", pdfetcs.resfmt:format(on))
2654 local res = gather_resources()

82

2655 local bbox = format("%f %f %f %f", llx,lly,urx,ury) :gsub(decimals,rmzeros)
2656 if pdfmode then
2657 put2output(tableconcat{
2658 "\\saveboxresource type 2 attr{/Type/XObject/Subtype/Form/FormType 1",
2659 "/BBox[", bbox, "]", grattr, "} resources{", res, "}\\mplibscratchbox",
2660 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2661 [[\setbox\mplibscratchbox\hbox{\useboxresource\lastsavedboxresourceindex}]],
2662 [[\wd\mplibscratchbox 0pt\ht\mplibscratchbox 0pt\dp\mplibscratchbox 0pt]],
2663 [[\box\mplibscratchbox]],
2664 "}\\endgroup",
2665 "\\expandafter\\xdef\\csname luamplib.group.", trgroup.name, "\\endcsname{",
2666 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2667 "\\useboxresource \\the\\lastsavedboxresourceindex",
2668 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2669 "\\box\\mplibscratchbox}",
2670 })
2671 else
2672 trgroup.cnt = (trgroup.cnt or 0) + 1
2673 local objname = format("@mplibtrgr%s", trgroup.cnt)
2674 put2output(tableconcat{
2675 "\\special{pdf:bxobj ", objname, " bbox ", bbox, "}",
2676 "\\unhbox\\mplibscratchbox",
2677 "\\special{pdf:put @resources <<", res, ">>}",
2678 "\\special{pdf:exobj <<", grattr, ">>}",
2679 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2680 "\\special{pdf:uxobj ", objname, "}",
2681 "}\\endgroup",
2682 })
2683 token.set_macro("luamplib.group."..trgroup.name, tableconcat{
2684 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2685 "\\special{pdf:uxobj ", objname, "}",
2686 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2687 "\\box\\mplibscratchbox",
2688 }, "global")
2689 end
2690 trgroup.shifts[trgroup.name] = { llx, lly }
2691 end
2692 return grstate
2693 end
2694 function luamplib.registergroup (boxid, name, opts)
2695 local box = texgetbox(boxid)
2696 local wd, ht, dp = node.getwhd(box)
2697 local is_mask = opts.asgroup and opts.asgroup:find"masking"
2698 local res = opts.resources or ""
2699 res = res .. gather_resources(res, is_mask) -- glitch on masking with acrobat
2700 local attr = { "/Type/XObject/Subtype/Form/FormType 1" }
2701 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2702 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2703 if opts.matrix and opts.matrix:find"%a" then

83

2704 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2705 process(data,"@mplibtransformmatrix")
2706 opts.matrix = format("%f %f %f %f %f %f",tableunpack(luamplib.transformmatrix))
2707 end
2708 local grtype = 3
2709 if opts.bbox then
2710 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2711 grtype = 2
2712 end
2713 local mpllx, mplly = get_macro'MPllx', get_macro'MPlly'
2714 if is_mask then
2715 local t = opts.matrix and opts.matrix:explode() or {1, 0, 0, 1, 0, 0}
2716 t[5], t[6] = t[5]+mpllx, t[6]+mplly
2717 opts.matrix = format("%f %f %f %f %f %f",tableunpack(t))
2718 mpllx, mplly = 0, 0
2719 end
2720 if opts.matrix then
2721 attr[#attr+1] = format("/Matrix[%s]", opts.matrix)
2722 grtype = opts.bbox and 4 or 1
2723 end
2724 if opts.asgroup then
2725 local t = { isolated = false, knockout = false, masking = false }
2726 for _,v in ipairs(opts.asgroup:explode",+") do t[v] = true end
2727 local on
2728 if t.masking then
2729 on = update_pdfobjs"<</S/Transparency/CS/DeviceGray>>"
2730 else
2731 on = update_pdfobjs(format("<</S/Transparency/I %s/K %s>>", t.isolated, t.knockout))
2732 end
2733 attr[#attr+1] = format("/Group %s", pdfetcs.resfmt:format(on))
2734 end
2735 local trgroup = pdfetcs.tr_group
2736 trgroup.shifts[name] = { mpllx, mplly }
2737 local whd
2738 if pdfmode then
2739 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2740 local index = tex.saveboxresource(boxid, attr, res, true, grtype)
2741 token.set_macro("luamplib.group."..name, tableconcat{
2742 "\\useboxresource ", index,
2743 }, "global")
2744 whd = format("%.3f %.3f 0", wd/factor, (ht+dp)/factor) :gsub(decimals,rmzeros)
2745 else
2746 trgroup.cnt = (trgroup.cnt or 0) + 1
2747 local objname = format("@mplibtrgr%s", trgroup.cnt)
2748 texsprint {
2749 "\\expandafter\\newbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2750 "\\global\\setbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2751 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2752 "\\special{pdf:bcontent}",

84

2753 "\\special{pdf:bxobj ", objname, " width ", wd, "sp height ", ht, "sp depth ", dp, "sp}",
2754 "\\unhbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2755 "\\special{pdf:put @resources <<", res, ">>}",
2756 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2757 "\\special{pdf:econtent}}",
2758 }
2759 token.set_macro("luamplib.group."..name, tableconcat{
2760 "\\setbox\\mplibscratchbox\\hbox{\\special{pdf:uxobj ", objname, "}}",
2761 "\\wd\\mplibscratchbox ", wd, "sp",
2762 "\\ht\\mplibscratchbox ", ht, "sp",
2763 "\\dp\\mplibscratchbox ", dp, "sp",
2764 "\\box\\mplibscratchbox",
2765 }, "global")
2766 whd = format("%.3f %.3f %.3f", wd/factor, ht/factor, dp/factor) :gsub(decimals,rmzeros)
2767 end
2768 info("w/h/d of group '%s': %s", name, whd)
2769 end
2770

luamplib.convert: flushing figures
2771 do
2772 local function stop_special_effects(fade,opaq,over)
2773 if fade then -- fading
2774 stop_pdf_code()
2775 end
2776 if opaq then -- opacity
2777 pdf_literalcode(opaq)
2778 end
2779 if over then -- color
2780 if over:find"pdf:bc" then
2781 put2output"\\special{pdf:ec}"
2782 else
2783 put2output"\\special{color pop}"
2784 end
2785 end
2786 end
2787

For parsing prescript materials.
2788 local function script2table(s)
2789 local t = {}
2790 for _,i in ipairs(s:explode("\13+")) do
2791 local k,v = i:match("(.-)=(.*)") -- v may contain = or empty.
2792 if k and v and k ~= "" and not t[k] then
2793 t[k] = v
2794 end
2795 end
2796 return t
2797 end
2798

85

Codes below to insert PDF lieterals are mostly from ConTEXt general, with small changes when
needed.
2799 local function pdf_textfigure(font,size,text,width,height,depth)
2800 text = text:gsub(".",function(c)
2801 return format("\\hbox{\\char%i}",string.byte(c)) -- kerning happens in metapost : false
2802 end)
2803 put2output("\\mplibtextext{%s}{%f}{%s}{%s}{%s}",font,size,text,0,0)
2804 end
2805
2806 local bend_tolerance = 131/65536
2807
2808 local rx, sx, sy, ry, tx, ty, divider = 1, 0, 0, 1, 0, 0, 1
2809
2810 local function pen_characteristics(object)
2811 local t = mplib.pen_info(object)
2812 rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty
2813 divider = sx*sy - rx*ry
2814 return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width
2815 end
2816
2817 local function concat(px, py) -- no tx, ty here
2818 return (sy*px-ry*py)/divider,(sx*py-rx*px)/divider
2819 end
2820
2821 local function curved(ith,pth)
2822 local d = pth.left_x - ith.right_x
2823 if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and
2824 abs(pth.x_coord - pth.left_x - d) <= bend_tolerance then
2825 d = pth.left_y - ith.right_y
2826 if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and
2827 abs(pth.y_coord - pth.left_y - d) <= bend_tolerance then
2828 return false
2829 end
2830 end
2831 return true
2832 end
2833
2834 local function flushnormalpath(path,open)
2835 local pth, ith
2836 for i=1,#path do
2837 pth = path[i]
2838 if not ith then
2839 pdf_literalcode("%f %f m",pth.x_coord,pth.y_coord)
2840 elseif curved(ith,pth) then
2841 pdf_literalcode("%f %f %f %f %f %f c",
2842 ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)
2843 else
2844 pdf_literalcode("%f %f l",pth.x_coord,pth.y_coord)
2845 end

86

2846 ith = pth
2847 end
2848 if not open then
2849 local one = path[1]
2850 if curved(pth,one) then
2851 pdf_literalcode("%f %f %f %f %f %f c",
2852 pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)
2853 else
2854 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2855 end
2856 elseif #path == 1 then -- special case .. draw point
2857 local one = path[1]
2858 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2859 end
2860 end
2861
2862 local function flushconcatpath(path,open)
2863 pdf_literalcode("%f %f %f %f %f %f cm", sx, rx, ry, sy, tx ,ty)
2864 local pth, ith
2865 for i=1,#path do
2866 pth = path[i]
2867 if not ith then
2868 pdf_literalcode("%f %f m",concat(pth.x_coord,pth.y_coord))
2869 elseif curved(ith,pth) then
2870 local a, b = concat(ith.right_x,ith.right_y)
2871 local c, d = concat(pth.left_x,pth.left_y)
2872 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(pth.x_coord, pth.y_coord))
2873 else
2874 pdf_literalcode("%f %f l",concat(pth.x_coord, pth.y_coord))
2875 end
2876 ith = pth
2877 end
2878 if not open then
2879 local one = path[1]
2880 if curved(pth,one) then
2881 local a, b = concat(pth.right_x,pth.right_y)
2882 local c, d = concat(one.left_x,one.left_y)
2883 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(one.x_coord, one.y_coord))
2884 else
2885 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2886 end
2887 elseif #path == 1 then -- special case .. draw point
2888 local one = path[1]
2889 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2890 end
2891 end
2892

Finally, flush figures by inserting PDF literals.

87

2893 local function flush (result,flusher)
2894 if result then
2895 local figures = result.fig
2896 if figures then
2897 for f=1, #figures do
2898 info("flushing figure %s",f)
2899 local figure = figures[f]
2900 local objects = figure:objects()
2901 local fignum = tonumber(figure:filename():match("([%d]+)$") or figure:charcode() or 0)
2902 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2903 local bbox = figure:boundingbox()
2904 local llx, lly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than unpack
2905 if urx < llx then

luamplib silently ignores this invalid figure for those that do not contain beginfig ... endfig.
(issue #70) Original code of ConTEXt general was:

-- invalid
pdf_startfigure(fignum,0,0,0,0)
pdf_stopfigure()

2906 else

For legacy behavior, insert ‘pre-fig’ TEX code here.
2907 if tex_code_pre_mplib[f] then
2908 put2output(tex_code_pre_mplib[f])
2909 end
2910 pdf_startfigure(fignum,llx,lly,urx,ury)
2911 start_pdf_code()
2912 if objects then
2913 local savedpath = nil
2914 local savedhtap = nil
2915 for o=1,#objects do
2916 local object = objects[o]
2917 local objecttype = object.type

The following 10 lines are part of btex...etex patch. Again, colors are processed at this stage.
2918 local prescript = object.prescript
2919 prescript = prescript and script2table(prescript) -- prescript is now a table
2920 local cr_over = do_preobj_CR(object,prescript) -- color
2921 local tr_opaq = do_preobj_TR(object,prescript) -- opacity
2922 local fading_ = do_preobj_FADE(object,prescript) -- fading
2923 local trgroup = do_preobj_GRP(object,prescript) -- transparency group
2924 local pattern_ = do_preobj_PAT(object,prescript) -- tiling pattern
2925 local shading_ = do_preobj_shading(object,prescript) -- shading pattern
2926 if prescript and prescript.mplibtexboxid then
2927 put_tex_boxes(object,prescript)
2928 elseif objecttype == "start_bounds" or objecttype == "stop_bounds" then --skip
2929 elseif objecttype == "start_clip" then
2930 local evenodd = not object.istext and object.postscript == "evenodd"
2931 start_pdf_code()

88

2932 flushnormalpath(object.path,false)
2933 pdf_literalcode(evenodd and "W* n" or "W n")
2934 elseif objecttype == "stop_clip" then
2935 stop_pdf_code()
2936 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2937 elseif objecttype == "special" then

Collect TEX codes that will be executed after flushing. Legacy behavior.
2938 if prescript and prescript.postmplibverbtex then
2939 figcontents.post[#figcontents.post+1] = prescript.postmplibverbtex
2940 end
2941 elseif objecttype == "text" then
2942 local ot = object.transform -- 3,4,5,6,1,2
2943 start_pdf_code()
2944 pdf_literalcode("%f %f %f %f %f %f cm",ot[3],ot[4],ot[5],ot[6],ot[1],ot[2])
2945 pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)
2946 stop_pdf_code()
2947 elseif not trgroup and fading_ ~= "stop" then
2948 local evenodd, collect, both = false, false, false
2949 local postscript = object.postscript
2950 if not object.istext then
2951 if postscript == "evenodd" then
2952 evenodd = true
2953 elseif postscript == "collect" then
2954 collect = true
2955 elseif postscript == "both" then
2956 both = true
2957 elseif postscript == "eoboth" then
2958 evenodd = true
2959 both = true
2960 end
2961 end
2962 if collect then
2963 if not savedpath then
2964 savedpath = { object.path or false }
2965 savedhtap = { object.htap or false }
2966 else
2967 savedpath[#savedpath+1] = object.path or false
2968 savedhtap[#savedhtap+1] = object.htap or false
2969 end
2970 else

Removed from ConTEXt general: color stuff.
2971 local ml = object.miterlimit
2972 if ml and ml ~= miterlimit then
2973 miterlimit = ml
2974 pdf_literalcode("%f M",ml)
2975 end
2976 local lj = object.linejoin
2977 if lj and lj ~= linejoin then

89

2978 linejoin = lj
2979 pdf_literalcode("%i j",lj)
2980 end
2981 local lc = object.linecap
2982 if lc and lc ~= linecap then
2983 linecap = lc
2984 pdf_literalcode("%i J",lc)
2985 end
2986 local dl = object.dash
2987 if dl then
2988 local d = format("[%s] %f d",tableconcat(dl.dashes or {}," "),dl.offset)
2989 if d ~= dashed then
2990 dashed = d
2991 pdf_literalcode(dashed)
2992 end
2993 elseif dashed then
2994 pdf_literalcode("[] 0 d")
2995 dashed = false
2996 end
2997 local path = object.path
2998 local transformed, penwidth = false, 1
2999 local open = path and path[1].left_type and path[#path].right_type
3000 local pen = object.pen
3001 if pen then
3002 if pen.type == 'elliptical' then
3003 transformed, penwidth = pen_characteristics(object) -- boolean, value
3004 pdf_literalcode("%f w",penwidth)
3005 if objecttype == 'fill' then
3006 objecttype = 'both'
3007 end
3008 else -- calculated by mplib itself
3009 objecttype = 'fill'
3010 end
3011 end

Added : shading

3012 local shade_no, shade_stroking = do_preobj_SH(object,prescript) -- shading
3013 if shade_no then
3014 pdf_literalcode"q /Pattern cs"
3015 objecttype = false
3016 end
3017 if transformed then
3018 start_pdf_code()
3019 end
3020 if path then
3021 if savedpath then
3022 for i=1,#savedpath do
3023 local path = savedpath[i]
3024 if transformed then

90

3025 flushconcatpath(path,open)
3026 else
3027 flushnormalpath(path,open)
3028 end
3029 end
3030 savedpath = nil
3031 end
3032 if transformed then
3033 flushconcatpath(path,open)
3034 else
3035 flushnormalpath(path,open)
3036 end
3037 if objecttype == "fill" then
3038 pdf_literalcode(evenodd and "h f*" or "h f")
3039 elseif objecttype == "outline" then
3040 if both then
3041 pdf_literalcode(evenodd and "h B*" or "h B")
3042 else
3043 pdf_literalcode(open and "S" or "h S")
3044 end
3045 elseif objecttype == "both" then
3046 pdf_literalcode(evenodd and "h B*" or "h B")
3047 end
3048 end
3049 if transformed then
3050 stop_pdf_code()
3051 end
3052 local path = object.htap

How can we generate an htap object? Please let us know if you have succeeded.

3053 if path then
3054 if transformed then
3055 start_pdf_code()
3056 end
3057 if savedhtap then
3058 for i=1,#savedhtap do
3059 local path = savedhtap[i]
3060 if transformed then
3061 flushconcatpath(path,open)
3062 else
3063 flushnormalpath(path,open)
3064 end
3065 end
3066 savedhtap = nil
3067 evenodd = true
3068 end
3069 if transformed then
3070 flushconcatpath(path,open)
3071 else

91

3072 flushnormalpath(path,open)
3073 end
3074 if objecttype == "fill" then
3075 pdf_literalcode(evenodd and "h f*" or "h f")
3076 elseif objecttype == "outline" then
3077 pdf_literalcode(open and "S" or "h S")
3078 elseif objecttype == "both" then
3079 pdf_literalcode(evenodd and "h B*" or "h B")
3080 end
3081 if transformed then
3082 stop_pdf_code()
3083 end
3084 end

Added to ConTEXt general: post-object colors and shading stuff. Beware q ... Q scope.
3085 if shade_no then -- shading
3086 pdf_literalcode("W%s %s /MPlibSh%s sh Q",
3087 evenodd and "*" or "", shade_stroking and "s" or "n", shade_no)
3088 end
3089 end
3090 end
3091 if fading_ == "start" then
3092 pdfetcs.fading.specialeffects = {fading_, tr_opaq, cr_over}
3093 elseif trgroup == "start" then
3094 pdfetcs.tr_group.specialeffects = {fading_, tr_opaq, cr_over}
3095 elseif fading_ == "stop" then
3096 local se = pdfetcs.fading.specialeffects
3097 if se then stop_special_effects(se[1], se[2], se[3]) end
3098 elseif trgroup == "stop" then
3099 local se = pdfetcs.tr_group.specialeffects
3100 if se then stop_special_effects(se[1], se[2], se[3]) end
3101 else
3102 stop_special_effects(fading_, tr_opaq, cr_over)
3103 end
3104 if fading_ or trgroup then -- extgs resetted
3105 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
3106 end
3107 end
3108 end
3109 stop_pdf_code()
3110 pdf_stopfigure()

output collected materials to PDF, plus legacy verbatimtex code.
3111 for _,v in ipairs(figcontents) do
3112 if type(v) == "table" then
3113 texsprint"\\mplibtoPDF{"; texsprint(v[1], v[2]); texsprint"}"
3114 else
3115 texsprint(v)
3116 end
3117 end

92

3118 if #figcontents.post > 0 then texsprint(figcontents.post) end
3119 figcontents = { post = { } }
3120 end
3121 end
3122 end
3123 end
3124 end
3125
3126 function luamplib.convert (result, flusher)
3127 flush(result, flusher)
3128 return true -- done
3129 end
3130 end
3131
3132 function luamplib.colorconverter (cr)
3133 local n = #cr
3134 if n == 4 then
3135 local c, m, y, k = cr[1], cr[2], cr[3], cr[4]
3136 return format("%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K",c,m,y,k,c,m,y,k), "0 g 0 G"
3137 elseif n == 3 then
3138 local r, g, b = cr[1], cr[2], cr[3]
3139 return format("%.3f %.3f %.3f rg %.3f %.3f %.3f RG",r,g,b,r,g,b), "0 g 0 G"
3140 else
3141 local s = cr[1]
3142 return format("%.3f g %.3f G",s,s), "0 g 0 G"
3143 end
3144 end

2.2 TEX package

First we need to load some packages.
3145 \ifcsname ProvidesPackage\endcsname

We need LATEX 2024-06-01 as we use ltx.pdf.object_id when pdfmanagement is loaded. But as
fp package does not accept an option, we do not append the date option.
3146 \NeedsTeXFormat{LaTeX2e}
3147 \ProvidesPackage{luamplib}
3148 [2026/02/09 v2.39.0 mplib package for LuaTeX]
3149 \fi
3150 \ifdefined\newluafunction\else
3151 \input ltluatex
3152 \fi

In DVI mode, a new XObject (mppattern, mplibgroup) must be encapsulated in an \hbox.
But this should not affect typesetting. So we use Hook mechanism provided by LATEX kernel.
In Plain, atbegshi.sty is loaded.
3153 \ifnum\outputmode=0
3154 \ifdefined\AddToHookNext
3155 \def\luamplibatnextshipout{\AddToHookNext{shipout/background}}

93

3156 \def\luamplibatfirstshipout{\AddToHook{shipout/firstpage}}
3157 \def\luamplibateveryshipout{\AddToHook{shipout/background}}
3158 \else
3159 \input atbegshi.sty
3160 \def\luamplibatnextshipout#1{\AtBeginShipoutNext{\AtBeginShipoutAddToBox{#1}}}
3161 \let\luamplibatfirstshipout\AtBeginShipoutFirst
3162 \def\luamplibateveryshipout#1{\AtBeginShipout{\AtBeginShipoutAddToBox{#1}}}
3163 \fi
3164 \fi

Loading of lua code.
3165 \directlua{require("luamplib")}

legacy commands. Seems we don’t need it, but no harm.
3166 \ifx\pdfoutput\undefined
3167 \let\pdfoutput\outputmode
3168 \fi
3169 \ifx\pdfliteral\undefined
3170 \protected\def\pdfliteral{\pdfextension literal}
3171 \fi

Set the format for metapost.
3172 \def\mplibsetformat#1{\directlua{luamplib.setformat("#1")}}

luamplib works in both PDF and DVI mode, but only DVIPDFMx is supported currently
among a number of DVI tools. So we output a info.
3173 \ifnum\pdfoutput>0
3174 \let\mplibtoPDF\pdfliteral
3175 \else
3176 \def\mplibtoPDF#1{\special{pdf:literal direct #1}}
3177 \ifcsname PackageInfo\endcsname
3178 \PackageInfo{luamplib}{only dvipdfmx is supported currently}
3179 \else
3180 \immediate\write-1{luamplib Info: only dvipdfmx is supported currently}
3181 \fi
3182 \fi

To make mplibcode typeset always in horizontal mode.
3183 \def\mplibforcehmode{\let\prependtomplibbox\leavevmode}
3184 \def\mplibnoforcehmode{\let\prependtomplibbox\relax}
3185 \mplibnoforcehmode

Catcode. We want to allow comment sign in mplibcode.
3186 \def\mplibsetupcatcodes{%
3187 %catcode`\{=12 %catcode`\}=12
3188 \catcode`\#=12 \catcode`\^=12 \catcode`\~=12 \catcode`_=12
3189 \catcode`\&=12 \catcode`\$=12 \catcode`\%=12 \catcode`\^^M=12
3190 }

Make btex...etex box zero-metric.
3191 \def\mplibputtextbox#1{\vbox to 0pt{\vss\hbox to 0pt{\raise\dp#1\copy#1\hss}}}

94

use Transparency Group
3192 \protected\def\usemplibgroup#1#{\usemplibgroupmain}
3193 \def\usemplibgroupmain#1{%
3194 \prependtomplibbox\hbox dir TLT\bgroup
3195 \csname luamplib.group.#1\endcsname
3196 \egroup
3197 }
3198 \protected\def\mplibgroup#1{%
3199 \begingroup
3200 \def\MPllx{0}\def\MPlly{0}%
3201 \def\mplibgroupname{#1}%
3202 \mplibgroupgetnexttok
3203 }
3204 \def\mplibgroupgetnexttok{\futurelet\nexttok\mplibgroupbranch}
3205 \def\mplibgroupskipspace{\afterassignment\mplibgroupgetnexttok\let\nexttok= }
3206 \def\mplibgroupbranch{%
3207 \ifx [\nexttok
3208 \expandafter\mplibgroupopts
3209 \else
3210 \ifx\mplibsptoken\nexttok
3211 \expandafter\expandafter\expandafter\mplibgroupskipspace
3212 \else
3213 \let\mplibgroupoptions\empty
3214 \expandafter\expandafter\expandafter\mplibgroupmain
3215 \fi
3216 \fi
3217 }
3218 \def\mplibgroupopts[#1]{\def\mplibgroupoptions{#1}\mplibgroupmain}
3219 \def\mplibgroupmain{\setbox\mplibscratchbox\hbox\bgroup\ignorespaces}
3220 \protected\def\endmplibgroup{\egroup
3221 \directlua{ luamplib.registergroup(
3222 \the\mplibscratchbox, '\mplibgroupname', {\mplibgroupoptions}
3223)}%
3224 \endgroup
3225 }

Patterns
3226 {\def\:{\global\let\mplibsptoken= } \: }
3227 \protected\def\mppattern#1{%
3228 \begingroup
3229 \def\mplibpatternname{#1}%
3230 \mplibpatterngetnexttok
3231 }
3232 \def\mplibpatterngetnexttok{\futurelet\nexttok\mplibpatternbranch}
3233 \def\mplibpatternskipspace{\afterassignment\mplibpatterngetnexttok\let\nexttok= }
3234 \def\mplibpatternbranch{%
3235 \ifx [\nexttok
3236 \expandafter\mplibpatternopts
3237 \else

95

3238 \ifx\mplibsptoken\nexttok
3239 \expandafter\expandafter\expandafter\mplibpatternskipspace
3240 \else
3241 \let\mplibpatternoptions\empty
3242 \expandafter\expandafter\expandafter\mplibpatternmain
3243 \fi
3244 \fi
3245 }
3246 \def\mplibpatternopts[#1]{%
3247 \def\mplibpatternoptions{#1}%
3248 \mplibpatternmain
3249 }
3250 \def\mplibpatternmain{%
3251 \setbox\mplibscratchbox\hbox\bgroup\ignorespaces
3252 }
3253 \protected\def\endmppattern{%
3254 \egroup
3255 \directlua{ luamplib.registerpattern(
3256 \the\mplibscratchbox, '\mplibpatternname', {\mplibpatternoptions}
3257)}%
3258 \endgroup
3259 }

simple way to use mplib: \mpfig draw fullcircle scaled 10; \endmpfig

3260 \def\mpfiginstancename{@mpfig}
3261 \protected\def\mpfig{%
3262 \begingroup
3263 \futurelet\nexttok\mplibmpfigbranch
3264 }
3265 \def\mplibmpfigbranch{%
3266 \ifx *\nexttok
3267 \expandafter\mplibprempfig
3268 \else
3269 \ifx [\nexttok
3270 \expandafter\expandafter\expandafter\mplibgobbleoptsmpfig
3271 \else
3272 \expandafter\expandafter\expandafter\mplibmainmpfig
3273 \fi
3274 \fi
3275 }
3276 \def\mplibgobbleoptsmpfig[#1]{\mplibmainmpfig}
3277 \def\mplibmainmpfig{%
3278 \begingroup
3279 \mplibsetupcatcodes
3280 \mplibdomainmpfig
3281 }
3282 \long\def\mplibdomainmpfig#1\endmpfig{%
3283 \endgroup
3284 \directlua{

96

3285 local legacy = luamplib.legacyverbatimtex
3286 local everympfig = luamplib.everymplib["\mpfiginstancename"] or ""
3287 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"] or ""
3288 luamplib.legacyverbatimtex = false
3289 luamplib.everymplib["\mpfiginstancename"] = ""
3290 luamplib.everyendmplib["\mpfiginstancename"] = ""
3291 luamplib.process_mplibcode(
3292 "beginfig(0) "..everympfig.." "..[===[\unexpanded{#1}]===].." "..everyendmpfig.." endfig;",
3293 "\mpfiginstancename")
3294 luamplib.legacyverbatimtex = legacy
3295 luamplib.everymplib["\mpfiginstancename"] = everympfig
3296 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3297 }%
3298 \endgroup
3299 }
3300 \def\mplibprempfig#1{%
3301 \begingroup
3302 \mplibsetupcatcodes
3303 \mplibdoprempfig
3304 }
3305 \long\def\mplibdoprempfig#1\endmpfig{%
3306 \endgroup
3307 \directlua{
3308 local legacy = luamplib.legacyverbatimtex
3309 local everympfig = luamplib.everymplib["\mpfiginstancename"]
3310 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"]
3311 luamplib.legacyverbatimtex = false
3312 luamplib.everymplib["\mpfiginstancename"] = ""
3313 luamplib.everyendmplib["\mpfiginstancename"] = ""
3314 luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\mpfiginstancename")
3315 luamplib.legacyverbatimtex = legacy
3316 luamplib.everymplib["\mpfiginstancename"] = everympfig
3317 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3318 }%
3319 \endgroup
3320 }
3321 \protected\def\endmpfig{endmpfig}

The Plain-specific stuff.

3322 \unless\ifcsname ver@luamplib.sty\endcsname
3323 \def\mplibcodegetinstancename[#1]{\xdef\currentmpinstancename{#1}\mplibcodeindeed}
3324 \protected\def\mplibcode{%
3325 \begingroup
3326 \futurelet\nexttok\mplibcodebranch
3327 }
3328 \def\mplibcodebranch{%
3329 \ifx [\nexttok
3330 \expandafter\mplibcodegetinstancename
3331 \else

97

3332 \global\let\currentmpinstancename\empty
3333 \expandafter\mplibcodeindeed
3334 \fi
3335 }
3336 \def\mplibcodeindeed{%
3337 \begingroup
3338 \mplibsetupcatcodes
3339 \mplibdocode
3340 }
3341 \long\def\mplibdocode#1\endmplibcode{%
3342 \endgroup
3343 \directlua{luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\currentmpinstancename")}%
3344 \endgroup
3345 }
3346 \protected\def\endmplibcode{endmplibcode}
3347 \else

The LATEX-specific part: a new environment.
3348 \newenvironment{mplibcode}[1][]{%
3349 \xdef\currentmpinstancename{#1}%
3350 \mplibtmptoks{}\ltxdomplibcode
3351 }{}
3352 \def\ltxdomplibcode{%
3353 \begingroup
3354 \mplibsetupcatcodes
3355 \ltxdomplibcodeindeed
3356 }
3357 \def\mplib@mplibcode{mplibcode}
3358 \long\def\ltxdomplibcodeindeed#1\end#2{%
3359 \endgroup
3360 \mplibtmptoks\expandafter{\the\mplibtmptoks#1}%
3361 \def\mplibtemp@a{#2}%
3362 \ifx\mplib@mplibcode\mplibtemp@a
3363 \directlua{luamplib.process_mplibcode([===[\the\mplibtmptoks]===],"\currentmpinstancename")}%
3364 \end{mplibcode}%
3365 \else
3366 \mplibtmptoks\expandafter{\the\mplibtmptoks\end{#2}}%
3367 \expandafter\ltxdomplibcode
3368 \fi
3369 }
3370 \fi

User settings.
3371 \def\mplibshowlog#1{\directlua{
3372 local s = string.lower("#1")
3373 if s == "enable" or s == "true" or s == "yes" then
3374 luamplib.showlog = true
3375 else
3376 luamplib.showlog = false
3377 end

98

3378 }}
3379 \def\mpliblegacybehavior#1{\directlua{
3380 local s = string.lower("#1")
3381 if s == "enable" or s == "true" or s == "yes" then
3382 luamplib.legacyverbatimtex = true
3383 else
3384 luamplib.legacyverbatimtex = false
3385 end
3386 }}
3387 \def\mplibverbatim#1{\directlua{
3388 local s = string.lower("#1")
3389 if s == "enable" or s == "true" or s == "yes" then
3390 luamplib.verbatiminput = true
3391 else
3392 luamplib.verbatiminput = false
3393 end
3394 }}
3395 \newtoks\mplibtmptoks

\everymplib & \everyendmplib: macros resetting luamplib.every(end)mplib tables

3396 \ifcsname ver@luamplib.sty\endcsname
3397 \protected\def\everymplib{%
3398 \begingroup
3399 \mplibsetupcatcodes
3400 \mplibdoeverymplib
3401 }
3402 \protected\def\everyendmplib{%
3403 \begingroup
3404 \mplibsetupcatcodes
3405 \mplibdoeveryendmplib
3406 }
3407 \newcommand\mplibdoeverymplib[2][]{%
3408 \endgroup
3409 \directlua{
3410 luamplib.everymplib["#1"] = [===[\unexpanded{#2}]===]
3411 }%
3412 }
3413 \newcommand\mplibdoeveryendmplib[2][]{%
3414 \endgroup
3415 \directlua{
3416 luamplib.everyendmplib["#1"] = [===[\unexpanded{#2}]===]
3417 }%
3418 }
3419 \else
3420 \def\mplibgetinstancename[#1]{\def\currentmpinstancename{#1}}
3421 \protected\def\everymplib#1#{%
3422 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3423 \begingroup
3424 \mplibsetupcatcodes

99

3425 \mplibdoeverymplib
3426 }
3427 \long\def\mplibdoeverymplib#1{%
3428 \endgroup
3429 \directlua{
3430 luamplib.everymplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3431 }%
3432 }
3433 \protected\def\everyendmplib#1#{%
3434 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3435 \begingroup
3436 \mplibsetupcatcodes
3437 \mplibdoeveryendmplib
3438 }
3439 \long\def\mplibdoeveryendmplib#1{%
3440 \endgroup
3441 \directlua{
3442 luamplib.everyendmplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3443 }%
3444 }
3445 \fi

TEX macros for dimen/color
3446 \def\mpdim#1{ runscript("luamplibdimen{#1}") }
3447 \def\mpcolor#1#{\domplibcolor{#1}}
3448 \def\domplibcolor#1#2{ runscript("luamplibcolor{#1{#2}}") }

mplib’s number system. Now binary has gone away.
3449 \def\mplibnumbersystem#1{\directlua{
3450 local t = "#1"
3451 if t == "binary" then t = "decimal" end
3452 luamplib.numbersystem = t
3453 }}

Settings for .mp cache files.
3454 \def\mplibmakenocache#1{\mplibdomakenocache #1,*,}
3455 \def\mplibdomakenocache#1,{%
3456 \ifx\empty#1\empty
3457 \expandafter\mplibdomakenocache
3458 \else
3459 \ifx*#1\else
3460 \directlua{luamplib.noneedtoreplace["#1.mp"]=true}%
3461 \expandafter\expandafter\expandafter\mplibdomakenocache
3462 \fi
3463 \fi
3464 }
3465 \def\mplibcancelnocache#1{\mplibdocancelnocache #1,*,}
3466 \def\mplibdocancelnocache#1,{%
3467 \ifx\empty#1\empty
3468 \expandafter\mplibdocancelnocache

100

3469 \else
3470 \ifx*#1\else
3471 \directlua{luamplib.noneedtoreplace["#1.mp"]=false}%
3472 \expandafter\expandafter\expandafter\mplibdocancelnocache
3473 \fi
3474 \fi
3475 }
3476 \def\mplibcachedir#1{\directlua{luamplib.getcachedir("\unexpanded{#1}")}}

More user settings.
3477 \def\mplibtextextlabel#1{\directlua{
3478 local s = string.lower("#1")
3479 if s == "enable" or s == "true" or s == "yes" then
3480 luamplib.textextlabel = true
3481 else
3482 luamplib.textextlabel = false
3483 end
3484 }}
3485 \def\mplibcodeinherit#1{\directlua{
3486 local s = string.lower("#1")
3487 if s == "enable" or s == "true" or s == "yes" then
3488 luamplib.codeinherit = true
3489 else
3490 luamplib.codeinherit = false
3491 end
3492 }}
3493 \def\mplibglobaltextext#1{\directlua{
3494 local s = string.lower("#1")
3495 if s == "enable" or s == "true" or s == "yes" then
3496 luamplib.globaltextext = true
3497 else
3498 luamplib.globaltextext = false
3499 end
3500 }}

The followings are from ConTEXt general, mostly.
We use a dedicated scratchbox.

3501 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the literals.
3502 \def\mplibstarttoPDF#1#2#3#4{%
3503 \prependtomplibbox
3504 \hbox dir TLT\bgroup
3505 \xdef\MPllx{#1}\xdef\MPlly{#2}%
3506 \xdef\MPurx{#3}\xdef\MPury{#4}%
3507 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3508 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3509 \parskip0pt%
3510 \leftskip0pt%
3511 \parindent0pt%

101

3512 \everypar{}%
3513 \setbox\mplibscratchbox\vbox\bgroup
3514 \noindent
3515 }
3516 \def\mplibstoptoPDF{%
3517 \par
3518 \egroup %
3519 \setbox\mplibscratchbox\hbox %
3520 {\hskip-\MPllx bp%
3521 \raise-\MPlly bp%
3522 \box\mplibscratchbox}%
3523 \setbox\mplibscratchbox\vbox to \MPheight
3524 {\vfill
3525 \hsize\MPwidth
3526 \wd\mplibscratchbox0pt%
3527 \ht\mplibscratchbox0pt%
3528 \dp\mplibscratchbox0pt%
3529 \box\mplibscratchbox}%
3530 \wd\mplibscratchbox\MPwidth
3531 \ht\mplibscratchbox\MPheight
3532 \box\mplibscratchbox
3533 \egroup
3534 }

Text items have a special handler.
3535 \def\mplibtextext#1#2#3#4#5{%
3536 \begingroup
3537 \setbox\mplibscratchbox\hbox
3538 {\font\temp=#1 at #2bp%
3539 \temp
3540 #3}%
3541 \setbox\mplibscratchbox\hbox
3542 {\hskip#4 bp%
3543 \raise#5 bp%
3544 \box\mplibscratchbox}%
3545 \wd\mplibscratchbox0pt%
3546 \ht\mplibscratchbox0pt%
3547 \dp\mplibscratchbox0pt%
3548 \box\mplibscratchbox
3549 \endgroup
3550 }

Input luamplib.cfg when it exists.
3551 \openin0=luamplib.cfg
3552 \ifeof0 \else
3553 \closein0
3554 \input luamplib.cfg
3555 \fi

Code for tagpdf

102

3556 \def\luamplibtagtextboxset#1#2{#2}
3557 \let\luamplibnotagtextboxset\luamplibtagtextboxset
3558 \let\luamplibtagasgroupset\relax
3559 \let\luamplibtagasgroupput\luamplibtagtextboxset
3560 \ifcsname SuspendTagging\endcsname\else\endinput\fi
3561 \ifcsname ver@tagpdf.sty\endcsname \else
3562 \ExplSyntaxOn
3563 \keys_define:nn{luamplib/tagging}
3564 {
3565 ,alt .code:n = { }
3566 ,actualtext .code:n = { }
3567 ,artifact .code:n = { }
3568 ,text .code:n = { }
3569 ,off .code:n = { }
3570 ,tag .code:n = { }
3571 ,adjust-BBox .code:n = { }
3572 ,tagging-setup .code:n = { }
3573 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3574 ,instancename .meta:n = { instance = {#1} }
3575 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3576 }
3577 \RenewDocumentCommand\mplibcode{O{}}
3578 {
3579 \tl_gclear:N \currentmpinstancename
3580 \keys_set:ne{luamplib/tagging}{#1}
3581 \mplibtmptoks{}\ltxdomplibcode
3582 }
3583 \cs_set_eq:NN \mplibalttext \use_none:n
3584 \cs_set_eq:NN \mplibactualtext \use_none:n

2025/12/05: \begin{center}\mpfig ...\endmpfig\end{center} raises an Error! aswe issue \everypar{}
before flushing literals out. It is related to \partokencontext=2 recently introduced by LATEX.
Why we used vbox initially? where hbox seems to be sufficient. Anyway, among various solu-
tions including \partokencontext\z@, \let\par\@@par, and \endgraf, we here attempt to address
the issue by adding the following line, which LATEX’s \everypar should have done.
3585 \tl_put_left:Nn \mplibstoptoPDF \@newlistfalse
3586 \ExplSyntaxOff
3587 \endinput\fi
3588 \ExplSyntaxOn
3589 \tl_new:N \l__luamplib_tag_envname_tl
3590 \tl_new:N \l__luamplib_tag_alt_tl
3591 \tl_new:N \l__luamplib_tag_alt_dflt_tl
3592 \tl_new:N \l__luamplib_tag_actual_tl
3593 \tl_new:N \l__luamplib_tag_struct_tl
3594 \tl_set:Nn\l__luamplib_tag_struct_tl {Figure}
3595 \bool_new:N \l__luamplib_tag_usetext_bool
3596 \bool_new:N \l__luamplib_tag_bboxcorr_bool
3597 \seq_new:N \l__luamplib_tag_bboxcorr_seq
3598 \tl_new:N \l__luamplib_tag_bbox_draw_tl

103

3599 \tl_new:N \l__luamplib_BBox_llx_tl
3600 \tl_new:N \l__luamplib_BBox_lly_tl
3601 \tl_new:N \l__luamplib_BBox_urx_tl
3602 \tl_new:N \l__luamplib_BBox_ury_tl
3603 \msg_new:nnn {luamplib}{figure-text-reuse}
3604 {
3605 tex-text~box~#1~probably~is~incorrectly~tagged.~
3606 Reusing~a~box~in~text~mode~is~strongly~discouraged.~
3607 Check~the~resulting~PDF.
3608 }
3609 \msg_new:nnn {luamplib}{mplibgroup-text-mode}
3610 {
3611 mplibgroup~'#1'~probably~is~incorrectly~tagged.~
3612 Using~mplibgroup~with~text~mode~is~not~recommended.~
3613 Check~the~resulting~PDF.
3614 }
3615 \msg_new:nnn{luamplib}{alt-text-missing}
3616 {
3617 Alternate~text~for~#1~is~missing.~
3618 Using~the~default~value~'#2'~instead.
3619 }

Sockets for tex-text boxes.
3620 \socket_new:nn{tagsupport/luamplib/textext/set}{2}
3621 \socket_new:nn{tagsupport/luamplib/textext/put}{2}
3622 \socket_new_plug:nnn{tagsupport/luamplib/textext/set}{default}
3623 {

TODO: we check text mode here. If we tag text boxes for all modes, we will get a lot of
structure-has-no-parent warning; no good-looking, though it seems to be no harm.
3624 \bool_if:NTF \l__luamplib_tag_usetext_bool
3625 {
3626 \tag_mc_end_push:
3627 \tag_struct_begin:n{tag=NonStruct, stash, parent-tag=text}
3628 \cs_gset_nopar:cpe {luamplib.taggedbox.#1} {\tag_get:n{struct_num}}

TODO: We force an MC. Otherwise a and b in btex a x b etex are not tagged.
3629 \tag_mc_begin:n{tag=text}
3630 #2
3631 \tag_mc_end:
3632 \tag_struct_end:
3633 \tag_mc_begin_pop:n{}
3634 }
3635 {
3636 \tag_suspend:n{\luamplibtagtextboxset}
3637 #2
3638 \tag_resume:n{\luamplibtagtextboxset}
3639 }
3640 }
3641 \socket_new_plug:nnn{tagsupport/luamplib/textext/put}{default}

104

3642 {
3643 \bool_lazy_and:nnTF
3644 { \l__luamplib_tag_usetext_bool }
3645 { \cs_if_free_p:c {luamplib.notaggedbox.#1} }
3646 {
3647 \tag_resume:n{\mplibputtextbox}
3648 \tag_mc_end:
3649 \cs_if_exist:cTF {luamplib.taggedbox.#1}
3650 {
3651 \exp_args:Nc \tag_struct_use_num:n {luamplib.taggedbox.#1}
3652 #2
3653 \cs_undefine:c {luamplib.taggedbox.#1}
3654 }
3655 {
3656 \msg_warning:nnn{luamplib}{figure-text-reuse}{#1}
3657 \tag_mc_begin:n{}
3658 \int_set:Nn \l_tmpa_int {#1}
3659 \tag_mc_reset_box:N \l_tmpa_int
3660 #2
3661 \tag_mc_end:
3662 }
3663 \tag_mc_begin:n{artifact}
3664 }
3665 {
3666 \int_set:Nn \l_tmpa_int {#1}
3667 \tag_mc_reset_box:N \l_tmpa_int
3668 #2
3669 }
3670 }
3671 \socket_assign_plug:nn{tagsupport/luamplib/textext/set}{default}
3672 \socket_assign_plug:nn{tagsupport/luamplib/textext/put}{default}
3673 \cs_set_nopar:Npn \luamplibtagtextboxset
3674 {
3675 \tag_socket_use:nnn{luamplib/textext/set}
3676 }

For tex-text boxes starting with [taggingoff], which we will not tag at all. They will be just in
the artifact MC-chunks.

3677 \cs_set_nopar:Npn \luamplibnotagtextboxset #1 #2
3678 {
3679 \bool_set_eq:NN \l_tmpa_bool \l__luamplib_tag_usetext_bool
3680 \bool_set_false:N \l__luamplib_tag_usetext_bool
3681 \tag_socket_use:nnn{luamplib/textext/set}{#1}{#2}
3682 \cs_gset_nopar:cpn {luamplib.notaggedbox.#1}{#1}
3683 \bool_set_eq:NN \l__luamplib_tag_usetext_bool \l_tmpa_bool
3684 }
3685 \cs_set_nopar:Npn \mplibputtextbox #1
3686 {
3687 \vbox to 0pt{\vss\hbox to 0pt{

105

3688 \socket_use:nnn{tagsupport/luamplib/textext/put}{#1}{\raise\dp#1\copy#1}
3689 \hss}}
3690 }

TODO: Not sure whether asgroup/mplibgroup with text mode will be tagged correctly. Prob-
ably not. At least, this will raise a warning.
3691 \cs_set_nopar:Npn \luamplibtagasgroupset
3692 {
3693 \bool_set_false:N \l__luamplib_tag_usetext_bool
3694 }
3695 \cs_set_nopar:Npn \luamplibtagasgroupput
3696 {
3697 \bool_if:NT \l__luamplib_tag_usetext_bool { \tag_resume:n{\luamplibtagasgroupput} }
3698 \tag_socket_use:nnn{luamplib/mplibgroup/put}
3699 }

A socket for mplibgroup. Again, we issue a warning upon text mode.
3700 \socket_new:nn{tagsupport/luamplib/mplibgroup/put}{2}
3701 \socket_new_plug:nnn{tagsupport/luamplib/mplibgroup/put}{default}
3702 {
3703 \cs_if_free:cT {luamplib.mplibgroup.text.#1}
3704 {
3705 \msg_warning:nnn {luamplib} {mplibgroup-text-mode} {#1}
3706 \cs_gset_nopar:cpn {luamplib.mplibgroup.text.#1} {#1}
3707 }
3708 \tag_mc_end:
3709 \tag_mc_begin:n{tag=text}
3710 #2
3711 \tag_mc_end:
3712 \tag_mc_begin:n{artifact}
3713 }
3714 \socket_assign_plug:nn{tagsupport/luamplib/mplibgroup/put}{default}

A macro for BBox attribute
3715 \cs_set_nopar:Npn __luamplib_tag_bbox_attribute:n #1
3716 {
3717 \tl_set:Ne \l_tmpa_tl {luamplib.BBox.\tag_get:n{struct_num}}
3718 \tex_savepos:D
3719 \property_record:ee{\l_tmpa_tl}{xpos,ypos}
3720 \tl_set:Ne \l__luamplib_BBox_llx_tl
3721 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{xpos}{0}sp } }
3722 \tl_set:Ne \l__luamplib_BBox_lly_tl
3723 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{ypos}{0}sp - \dp#1 } }
3724 \tl_set:Ne \l__luamplib_BBox_urx_tl
3725 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_llx_tl bp + \wd#1 } }
3726 \tl_set:Ne \l__luamplib_BBox_ury_tl
3727 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_lly_tl bp + \ht#1 + \dp#1 } }
3728 \bool_if:NT \l__luamplib_tag_bboxcorr_bool
3729 {
3730 \int_zero:N \l_tmpa_int

106

3731 \tl_map_inline:nn
3732 {
3733 \l__luamplib_BBox_llx_tl
3734 \l__luamplib_BBox_lly_tl
3735 \l__luamplib_BBox_urx_tl
3736 \l__luamplib_BBox_ury_tl
3737 }
3738 {
3739 \int_incr:N \l_tmpa_int
3740 \tl_set:Ne ##1
3741 {
3742 \fp_eval:n
3743 {
3744 ##1
3745 +
3746 \dim_to_decimal_in_bp:n { \seq_item:NV \l__luamplib_tag_bboxcorr_seq \l_tmpa_int }
3747 }
3748 }
3749 }
3750 }
3751 \tag_struct_gput:ene {\tag_get:n{struct_num}} {attribute}
3752 {
3753 /O /Layout /BBox [
3754 \l__luamplib_BBox_llx_tl\c_space_tl
3755 \l__luamplib_BBox_lly_tl\c_space_tl
3756 \l__luamplib_BBox_urx_tl\c_space_tl
3757 \l__luamplib_BBox_ury_tl
3758]
3759 }
3760 \bool_if:NT \l__tag_graphic_debug_bool
3761 {
3762 \iow_log:e
3763 {
3764 luamplib/tagging~debug:~BBox~of~structure~\tag_get:n{struct_num}~is~
3765 \l__luamplib_BBox_llx_tl\c_space_tl
3766 \l__luamplib_BBox_lly_tl\c_space_tl
3767 \l__luamplib_BBox_urx_tl\c_space_tl
3768 \l__luamplib_BBox_ury_tl
3769 }
3770 \sys_if_output_pdf:TF
3771 {
3772 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3773 {
3774 \pdfextension save\relax
3775 \opacity_select:n{0.5} \color_select:n{red}
3776 \pdfextension literal~text
3777 {
3778 \l__luamplib_BBox_llx_tl\c_space_tl
3779 \l__luamplib_BBox_lly_tl\c_space_tl

107

3780 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3781 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3782 re~f
3783 }
3784 \pdfextension restore\relax
3785 }
3786 }
3787 {
3788 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3789 {
3790 \special{pdf:bcontent}
3791 \opacity_select:n{0.5} \color_select:n{red}
3792 \special{pdf:code~
3793 1~0~0~1~
3794 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{xpos}{0}sp + \wd#1 }~
3795 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{ypos}{0}sp }~
3796 cm
3797 }
3798 \special{pdf:code~
3799 \l__luamplib_BBox_llx_tl\c_space_tl
3800 \l__luamplib_BBox_lly_tl\c_space_tl
3801 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3802 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3803 re~f
3804 }
3805 \special{pdf:econtent}
3806 }
3807 }
3808 }
3809 }

Sockets for main process

3810 \socket_new:nn{tagsupport/luamplib/figure/begin}{1}
3811 \socket_new:nn{tagsupport/luamplib/figure/end}{2}
3812 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{transparent}{#2}
3813 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{alt}
3814 {
3815 \tag_mc_end_push:
3816 \tl_if_empty:NT\l__luamplib_tag_alt_tl
3817 {
3818 \tl_if_empty:eTF{#1}
3819 { \tl_set:Nn \l__luamplib_tag_alt_tl {metapost~figure} }
3820 { \tl_set:Ne \l__luamplib_tag_alt_tl {metapost~figure~\text_purify:n{#1}} }
3821 \msg_warning:nnVV{luamplib}{alt-text-missing}
3822 \l__luamplib_tag_envname_tl \l__luamplib_tag_alt_tl
3823 }
3824 \tag_struct_begin:n
3825 {
3826 tag=\l__luamplib_tag_struct_tl,

108

3827 alt=\l__luamplib_tag_alt_tl,
3828 }
3829 \tag_mc_begin:n{}
3830 }
3831 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{alt}
3832 {
3833 __luamplib_tag_bbox_attribute:n {#1}
3834 #2
3835 \tl_use:N \l__luamplib_tag_bbox_draw_tl
3836 \tag_mc_end:
3837 \tag_struct_end:
3838 \tag_mc_begin_pop:n{}
3839 }
3840 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{actualtext}
3841 {
3842 \tag_mc_end_push:
3843 \tag_struct_begin:n
3844 {
3845 tag=Span,
3846 actualtext=\l__luamplib_tag_actual_tl,
3847 }
3848 \tag_mc_begin:n{}
3849 }
3850 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{actualtext}
3851 {
3852 #2
3853 \tag_mc_end:
3854 \tag_struct_end:
3855 \tag_mc_begin_pop:n{}
3856 }
3857 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{artifact}
3858 {
3859 \tag_mc_end_push:
3860 \tag_mc_begin:n{artifact}
3861 }
3862 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{artifact}
3863 {
3864 #2
3865 \tag_mc_end:
3866 \tag_mc_begin_pop:n{}
3867 }

A socket for tagging init, so that we can declare \SetKeys[luamplib/tagging]{...} anywhere in
the document.

3868 \socket_new:nn{tagsupport/luamplib/figure/init}{0}
3869 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{alt}
3870 {
3871 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{alt}
3872 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{alt}

109

3873 }
3874 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{actualtext}
3875 {
3876 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{actualtext}
3877 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{actualtext}

In vmode, hmode will be forced by \noindent upon actualtext and text modes.
3878 \prependtomplibbox \mplibnoforcehmode
3879 \mode_if_vertical:T { \noindent \aftergroup\par }
3880 }
3881 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{artifact}
3882 {
3883 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3884 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3885 }
3886 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{text}
3887 {
3888 \bool_set_true:N \l__luamplib_tag_usetext_bool
3889 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3890 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3891 \prependtomplibbox \mplibnoforcehmode
3892 \mode_if_vertical:T { \noindent \aftergroup\par }
3893 }
3894 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{off}
3895 {
3896 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{noop}
3897 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{transparent}
3898 }
3899 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

Key-value options
3900 \keys_define:nn{luamplib/tagging}
3901 {
3902 ,alt .code:n =
3903 {
3904 \tl_set:Ne\l__luamplib_tag_alt_tl{\text_purify:n{#1}}
3905 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3906 }
3907 ,actualtext .code:n =
3908 {
3909 \tl_set:Ne\l__luamplib_tag_actual_tl{\text_purify:n{#1}}
3910 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{actualtext}
3911 }
3912 ,artifact .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{artifact} }
3913 ,text .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{text} }
3914 ,off .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{off} }
3915 ,tag .code:n =
3916 {
3917 \str_case:nnF {#1}
3918 {

110

3919 {false} { \keys_set:nn {luamplib/tagging} {off} }
3920 {artifact} { \keys_set:nn {luamplib/tagging} {artifact} }
3921 }
3922 {
3923 \tl_set:Nn\l__luamplib_tag_struct_tl{#1}
3924 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3925 }
3926 }
3927 ,adjust-BBox .code:n =
3928 {
3929 \bool_set_true:N \l__luamplib_tag_bboxcorr_bool
3930 \seq_set_split:Nnn \l__luamplib_tag_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
3931 }
3932 ,tagging-setup .code:n = { \keys_set_known:nn {luamplib/tagging} {#1} }
3933 }
3934 \keys_define:nn {luamplib/instance}
3935 {
3936 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3937 ,instancename .meta:n = { instance = {#1} }
3938 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3939 }

Redefine our macros

3940 \cs_set_nopar:Npn \mplibstarttoPDF #1 #2 #3 #4
3941 {
3942 \prependtomplibbox
3943 \hbox dir~TLT\bgroup
3944 \tag_socket_use:nn{luamplib/figure/begin}\l__luamplib_tag_alt_dflt_tl
3945 \xdef\MPllx{#1}\xdef\MPlly{#2}%
3946 \xdef\MPurx{#3}\xdef\MPury{#4}%
3947 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3948 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3949 \parskip0pt
3950 \leftskip0pt
3951 \parindent0pt
3952 \everypar{}%
3953 \setbox\mplibscratchbox\vbox\bgroup
3954 \tag_suspend:n{\mplibstarttoPDF}
3955 \noindent
3956 }
3957 \cs_set_nopar:Npn \mplibstoptoPDF
3958 {
3959 \par
3960 \egroup
3961 \setbox\mplibscratchbox\hbox
3962 {\hskip-\MPllx bp
3963 \raise-\MPlly bp
3964 \box\mplibscratchbox}%
3965 \setbox\mplibscratchbox\vbox to \MPheight

111

3966 {\vfill
3967 \hsize\MPwidth
3968 \wd\mplibscratchbox0pt
3969 \ht\mplibscratchbox0pt
3970 \dp\mplibscratchbox0pt
3971 \box\mplibscratchbox}%
3972 \wd\mplibscratchbox\MPwidth
3973 \ht\mplibscratchbox\MPheight
3974 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\box\mplibscratchbox}
3975 \egroup
3976 }
3977 \RenewDocumentCommand\mplibcode{O{}}
3978 {
3979 \tl_set:Nn \l__luamplib_tag_envname_tl {mplibcode}
3980 \tl_gclear:N \currentmpinstancename
3981 \keys_set_known:neN {luamplib/tagging} {#1} \l_tmpa_tl
3982 \keys_set:nV {luamplib/instance} \l_tmpa_tl
3983 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \currentmpinstancename
3984 \tag_socket_use:n{luamplib/figure/init}
3985 \mplibtmptoks{}\ltxdomplibcode
3986 }
3987 \RenewDocumentCommand\mpfig{s O{}}
3988 {
3989 \begingroup
3990 \tl_set:Nn \l__luamplib_tag_envname_tl {mpfig}
3991 \keys_set_known:ne {luamplib/tagging} {#2}
3992 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \mpfiginstancename
3993 \tag_socket_use:n{luamplib/figure/init}
3994 \IfBooleanTF{#1} { \mplibprempfig * }
3995 { \mplibmainmpfig }
3996 }
3997 \RenewDocumentCommand\usemplibgroup{O{} m}
3998 {
3999 \begingroup
4000 \tl_set:Nn \l__luamplib_tag_envname_tl {usemplibgroup}
4001 \keys_set_known:ne {luamplib/tagging} {#1}
4002 \tag_socket_use:n{luamplib/figure/init}
4003 \prependtomplibbox\hbox dir~TLT\bgroup
4004 \tag_socket_use:nn{luamplib/figure/begin}{#2}
4005 \setbox\mplibscratchbox\hbox\bgroup
4006 \bool_if:NF \l__luamplib_tag_usetext_bool { \tag_suspend:n{\usemplibgroup} }
4007 \tag_socket_use:nnn{luamplib/mplibgroup/put}{#2}{\csname luamplib.group.#2\endcsname}
4008 \egroup
4009 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\unhbox\mplibscratchbox}
4010 \egroup
4011 \endgroup
4012 }

Allow setting alt/actual text within metapost code. Of course we can use them in TEX code as

112

well.
4013 \cs_new_nopar:Npn \mplibalttext #1
4014 {
4015 \tl_set:Ne \l__luamplib_tag_alt_tl {\text_purify:n{#1}}
4016 }
4017 \cs_new_nopar:Npn \mplibactualtext #1
4018 {
4019 \tl_set:Ne \l__luamplib_tag_actual_tl {\text_purify:n{#1}}
4020 }
4021 \ExplSyntaxOff

That’s all folks!

113

3 The GNU GPL License v2

The GPL requires the complete license text to be distributed along with the code. I recommend
the canonical source, instead: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. But if
you insist on an included copy, here it is. You might want to zoom in.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses formost software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foun-
dation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Pub-
lic Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses,
in effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) Youmust cause anywork that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete correspondingmachine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommer-
cial distribution and only if you received the program in object code or exe-
cutable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission tomodify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

No Warranty

12. Because the program is licensed free of charge, there is no warranty for
the program, to the extent permitted by applicable law. Except when oth-
erwise stated in writing the copyright holders and/or other parties pro-
vide the program “as is” without warranty of any kind, either expressed
or implied, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. The entire risk as to
the qality and performance of the program is with you. Should the pro-
gram prove defective, you assume the cost of all necessary servicing, repair
or correction.

13. In no event unless reqired by applicable law or agreed to in writing will
any copyright holder, or any other party who may modify and/or redis-
tribute the program as permitted above, be liable to you for damages, in-
cluding any general, special, incidental or conseqential damages arising
out of the use or inability to use the program (including but not limited to
loss of data or data being rendered inaccurate or losses sustained by you
or third parties or a failure of the program to operate with any other
programs), even if such holder or other party has been advised of the pos-
sibility of such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the pub-
lic, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNUGeneral Public License alongwith
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.
This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever suits
your program.
You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

114

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Contents
	1 Documentation
	1.1 TeX
	1.1.1 \mplibforcehmode
	1.1.2 \everymplib, \everyendmplib
	1.1.3 \mplibsetformat
	1.1.4 \mplibnumbersystem
	1.1.5 \mplibshowlog
	1.1.6 \mpliblegacybehavior
	1.1.7 \mplibtextextlabel
	1.1.8 \mplibcodeinherit
	1.1.9 \mplibglobaltextext
	1.1.10 Separate metapost instances
	1.1.11 \mplibverbatim
	1.1.12 \mpdim
	1.1.13 \mpcolor
	1.1.14 \mpfig, \endmpfig
	1.1.15 About cache files
	1.1.16 About figure box metric
	1.1.17 luamplib.cfg
	1.1.18 Tagged PDF

	1.2 MetaPost
	1.2.1 mplibdimen, mplibcolor
	1.2.2 mplibtexcolor, mplibrgbtexcolor
	1.2.3 withmplibcolors
	1.2.4 withtransparency
	1.2.5 withshadingmethod
	1.2.6 withfademethod
	1.2.7 mplibgraphictext
	1.2.8 mplibglyph
	1.2.9 mplibdrawglyph, and its friends
	1.2.10 mpliboutlinetext
	1.2.11 \mppattern, withmppattern
	1.2.12 asgroup
	1.2.13 \mplibgroup
	1.2.14 withmaskinggroup
	1.2.15 mpliblength, mplibuclength
	1.2.16 mplibsubstring, mplibucsubstring

	1.3 Lua
	1.3.1 runscript
	1.3.2 luamplib.instances
	1.3.3 luamplib.process_mplibcode
	1.3.4 luamplib.registerpattern
	1.3.5 luamplib.registergroup

	2 Implementation
	2.1 Lua module
	2.2 TeX package

	3 The GNU GPL License v2

