The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Current Maintainer: Kim Dohyun
Support: https://github.com/lualatex/luamplib

2026/02/09 v2.39.0

Abstract

Package to have METAPOST code typeset directly in a document with LuaTgX

Contents
1 Documentation
1.1 TEX e
1.1.1 \mplibforcehmodeo
1.1.2 \everymplib, \everyendmplib
1.1.3 \mplibsetformat
1.1.4 \mplibnumbersystem
1.1.5 \mplibshowlog e
1.1.6 \mpliblegacybehavior
1.1.7 \mplibtextextlabel
1.1.8 \mplibcodeinherit
1.1.9 \mplibglobaltextext
1.1.10 Separate METAPOST instances
1.1.11 \mplibverbatim.o
1.1.12 \mpdim . . oL e e e e e e e e e e e
1.1.13 \MPCOlor e e e e e e e e e
1.1.14 \mpfig, \endmpfig e
1.1.15 Aboutcachefiles
1.1.16 About figure box metric Lo oL
1.1.17 luamplibefg . . . 00 oL
1.1.18 TaggedPDF
1.2 METAPOST
1.2.1 mplibdimen, mplibcolor
1.2.2 mplibtexcolor, mplibrgbtexcolor.
1.2.3 withmplibcolors
1.2.4 withtransparency e e e e e e e

O O 00 00N NN NNV R R R W W W W N

-
= \O

- e
N = R R

https://github.com/lualatex/luamplib

1.2.5 withshadingmethod 12

1.2.6 withfademethod 13

1.2.7 mplibgraphictext e 14

1.2.8 mplibglyph e 15

1.2.9 mplibdrawglyph, anditsfriends 15
1.2.10 mpliboutlinetext 16
1.2.11 \mppattern, withmppattern. o ... 16
1.2.12 0 @SEIOUD & v v v e v e 19
1.2.13 \mplibgroup e e 20
1.2.14 withmaskinggroup e e 21
1.2.15 mpliblength, mplibuclength. 22
1.2.16 mplibsubstring, mplibucsubstring 22

1.3 Lua . .. e e 22
1.3.1 FUNSCript o o o o e e e e e e e e e e 22

1.3.2 luamplib.instances 22

1.3.3 luamplib.process_mplibcode. 23

1.3.4 luamplib.registerpattern 24

1.3.5 luamplib.registergroup 24

2 Implementation 24
2.1 Luamodule. 24
2.2 TEXpackage 93
3 The GNU GPL License v2 114

1 Documentation

This package aims at providing a simple way to typeset directly METAPOST code in a document
with LuaTgX. LuaTiX is built with the Lua mplib library, that runs METAPOST code. This package
is basically a wrapper for the Lua mplib functions and some TgX functions to have the output
of the mplib functions in the PDF.

Using this package is easy: in Plain, type your METAPOST code between the macros
\mplibcode and \endmplibcode, and in KIEX in the mplibcode environment.

The resulting METAPOST figures are put in a TgX hbox with dimensions adjusted to the META-
POST code.

The code of luamplib is basically from the luatex-mplib.lua and luatex-mplib. tex files from
ConTgXt. They have been adapted to KIEX and Plain by Elie Roux and Philipp Gesang and new
functionalities have been added by Kim Dohyun. The most notable changes are:

« Possibility to use btex ... etex to typeset TgX code. textext (string) is a more versatile
macro equivalent to TEX (string) from TEX.mp. TEX is also allowed and is a synonym of
textext. The argument of mplib’s primitive maketext will also be processed by the same
routine.

« Possibility to use verbatimtex ... etex to run a TgX code. VerbatimTeX (string) is a more
versatile macro corresponding to verbatimtex command. Of course the behavior can-
not be the same as the stand-alone mpost, so that you cannot include \documentclass,
\usepackage etc. When these TgX commands are found in verbatimtex ... etex, the entire
code will be ignored.

The treatment of verbatimtex command has changed a lot since v2.20: see below § 1.1.6.

« In the past, the package required PDF mode in order to have some output. Starting with
v2.7 it works in DVI mode as well, though DVIPDFMx is the only DVI tool currently
supported.

It seems to be convenient to divide the explanations of some more changes and cautions
into three parts: TgX, METAPOST, and Lua interfaces.

1.1 TEX
1.1.1 \mplibforcehmode

When this macro is declared, every METAPOST figure box will be typeset in horizontal mode;
so \centering, \raggedleft etc. will have effects. \mplibnoforcehmode, being default, reverts this
setting.!

1.1.2 \everymplib{...}, \everyendmplib{...}

\everymplib and \everyendmplib redefine the Lua table entry containing METAPOST code which
will be automatically inserted at the beginning and ending of each METAPOST code chunk.

\everymplib{ beginfig(@); }

\everyendmplib{ endfig; }
\begin{mplibcode} Q
% beginfig/endfig not needed

draw fullcircle scaled 1cm;
\end{mplibcode}

1.1.3 \mplibsetformat{plain|metafun}

There are (basically) two formats for METAPOST: plain and metafun. By default, the plain
format is used, but you can set the format to be used by future figures at any time using
\mplibsetformat{ (format name)}.

N.B. As metafun is such a complicated format, we cannot support all the functionalities
producing special effects provided by metafun. At least, however, transparency (actually opac-
ity), shading (gradient colors) and transparency group are fully supported, and outlinetext is
supported by our own alternative mpliboutlinetext (see below § 1.2.10). You can try other ef-
fects as well, though we did not fully tested their proper functioning.

'Actually these commands redefine \prependtomplibbox. So you can redefine this macro with anything suitable
before a box. But see § 1.1.18 on Tagged PDF.

transparency (texdoc metafun §8.2) Transparency is so simple that you can apply it to
an object, with plain format as well as metafun, just by appending withprescript
"tr_transparency=(numeric)" to the sentence. (0 < (numeric) < 1)

From v2.36, withtransparency is available with plain format as well. See below § 1.2.4.

shading (texdoc metafun §8.3) One thing worth mentioning about shading is: when a color
expression is given in string type, it is regarded by luamplib as a color expression of
TgX side. For instance, when withshadecolors(”orange”, 2/3red) is given, the first color
"orange" will be interpreted as a color, xcolor or [3color’s expression.

From v2.36, shading is available with plain format as well with extended functionality.

See below § 1.2.5.

transparency group (texdoc metafun § 8.8) As for transparency group, the current metafun
document is not correct. The true syntax is:

draw <picture>|<path> asgroup <string>

where (string) should be "” (empty), "isolated”, "knockout”, or "isolated,knockout”. Be-
ware that currently many of the PDF rendering applications, except Adobe Acrobat, can-
not properly render the isolated or knockout effect.

Transparency group is available with plain format as well with extended functionality.
See below § 1.2.12.

1.1.4 \mplibnumbersystem{scaled|double|decimal}

Users can choose numbersystem option. The default value is scaled, which can be changed by
declaring \mplibnumbersystem{double} or \mplibnumbersystem{decimal}.

1.1.5 \mplibshowlog{enable|disable}

Default: disable. When \mplibshowlog{enable} is declared, log messages returned by the META-
POST process will be printed to the .1og file. This is the TEX side interface for luamplib. showlog.

1.1.6 \mpliblegacybehavior{enable|disable}

Legacy behavior By default, \mpliblegacybehavior{enable} is already declared for backward
compatibility, in which case TgX code in verbatimtex ... etex that comes just before beginfig()
will be inserted before the following METAPOST figure box. In this way, each figure box can be
freely moved horizontally or vertically. Also, a box number can be assigned to a figure box,
allowing it to be reused later.3

\mplibcode
verbatimtex \moveright 3cm etex; beginfig(@); ... endfig;

*As for user’s setting, enable, true and yes are identical; all others are identical to disable.
SBut the recommended way to reuse a figure is using \mplibgroup command. See below § 1.2.13.

verbatimtex \leavevmode etex; beginfig(1); ... endfig;

verbatimtex \leavevmode\lower Tex etex; beginfig(2); ... endfig;
verbatimtex \endgraf\moveright 1cm etex; beginfig(3); ... endfig;
\endmplibcode

N.B. \endgraf should be used instead of \par inside mplibcode environment.
On the other hand, TgX code in verbatimtex ... etex between beginfig() and endfig will be
inserted after flushing out the METAPOST figure. An example:*

\mplibcode
D := sqrt(2)*x9;

beginfig(0); Q
draw fullcircle scaled D;

VerbatimTeX("\gdef\Dia{" & decimal D & "}"); diameter: 22.62764bp.
endfig;
\endmplibcode
diameter: \Dia bp.

New and recommended way By contrast, when \mpliblegacybehavior{disable} is declared,
any verbatimtex ... etex, along with btex ... etex, will be run sequentially one by one. So,
some TEX code in verbatimtex ... etex will have effect on btex ... etex codes thereafter.

\begin{mplibcode}
beginfig(0);
draw btex ABC etex;
verbatimtex \bfseries etex; ABC DEF GHI
draw btex DEF etex shifted (1cm,9); % bold face
draw btex GHI etex shifted (2cm,9); % bold face
endfig;
\end{mplibcode}

1.1.7 \mplibtextextlabel{enable|disable}

Default: disable. \mplibtextextlabel{enable} enables the labels typeset via textext instead of
infont operator. So, label("my text”, origin) thereafter is exactly the same as label(textext
"my text"”, origin).

N.B. Inthebackground, luamplib redefines infont operator so that the right side argument
(the font part) is totally ignored. Therefore the left side arguemnt (the text part) will be typeset
with the current TgX font.

From v2.35, however, the redefinition of infont operator has been revised: when the char-
acter code of the text argument is less than 32 (control characters), or is equal to 35 (#), 36 ($),
37 (%), 38 (&), 92 (\), 94 (), 95 (L), 123 ({), 125 (3), 126 (~) or 127 (DEL), the original infont
operator will be used instead of textext operator so that the font part will be honored. De-
spite the revision, please take care of char operator in the text argument, as this might bring
unpermitted characters into TgX.

‘But the recommended way to access METAPOST variables from TgX (or Lua) side is to use Lua code via
luamplib.instances. For details see below § 1.3.2.

1.1.8 \mplibcodeinherit{enable|disable}

Default: disable. \mplibcodeinherit{enable} enables the inheritance of variables, constants,
and macros defined by previous METAPOST code chunks. On the other hand, \mplibcodeinherit
{disable} will make each code chunk being treated as an independent instance, never affected
by previous code chunks.

1.1.9 \mplibglobaltextext{enable|disable}

Default: disable. Formerly, to inherit btex ... etex boxes as well as other METAPOST macros,
variables and constants, it was necessary to declare \mplibglobaltextext{enable} in advance.
But from v2.27, this is implicitly enabled when \mplibcodeinherit is enabled. The command
still remains mostly for backward compatibility.

\mplibcodeinherit{enable}
%\mplibglobaltextext{enable}
\everymplib{ beginfig(®);} \everyendmplib{ endfig;}

\mplibcode <:::>
label(btex $\sqrt{2}$ etex, origin);

draw fullcircle scaled 20;

picture pic; pic := currentpicture;
\endmplibcode
\mplibcode

currentpicture := pic scaled 2;
\endmplibcode

1.1.10 Separate METAPOST instances

luamplib v2.22 has added the support for several named METAPOST instances in KTEX environ-
ment mplibcode or Plain TgX commands \mplibcode ... \endmplibcode. The syntax for KIEX is:

\begin{mplibcode}[instanceName]
% some mp code
\end{mplibcode}

The behavior is as follows.

o All the variables and functions are shared only among all the environments belonging
to the same instance.

+ \mplibcodeinherit only affects the environments with no instance name set (since if a
name is set, the code is intended to be reused at some point).

« btex ... etex boxes are also shared and do not require \mplibglobaltextext.
« When an instance names is set, respective \currentmpinstancenanme is set as well.

In parellel with this functionality, we support optional argument of instance name for
\everymplib and \everyendmplib, affecting only those mplibcode environments of the same name.

Unnamed \everymplib affects not only those instances with no name, but also those with name
but with no corresponding \everymplib. The syntax is:

\everymplib[instanceNamel{. ..}
\everyendmplib[instanceNamel{...}

1.1.11 \mplibverbatim{enable|disable}

Default: disable. Users can issue \mplibverbatim{enable}, after which the contents of mplibcode
environment will be read verbatim. As a result, except for \mpdim and \mpcolor (see § 1.1.12 and
§ 1.1.13), all other TEX commands outside of the btex or verbatimtex ... etex are not expanded
and will be fed literally to the mplib library.

1.1.12 \mpdim{...}

Besides other TgX commands, \mpdim is specially allowed in the mplibcode environment. This
feature is inpired by gmp package authored by Enrico Gregorio. Please refer to the manual of
gmp package for details.

draw origin--(.4\mpdim{\linewidth},)
withpen pencircle scaled 4 dashed evenly scaled 4
withcolor \mpcolor{orange}

’

1.1.13 \mpcolor[...1{...}

With \mpcolor command, color names or expressions of color, xcolor and L3color module/pack-
ages can be used in the mplibcode environment (after withcolor command, in principle). See
the example above at § 1.1.12. The optional [...] denotes the option of xcolor’s \color com-
mand. For spot colors, [3color (in PDF/DVI mode), colorspace, spotcolor (in PDF mode) and
xespotcolor (in DVI mode) packages are supported as well.

N.B. Formerly, only the first object would have been colored as intended among multi-
ple graphical objects in a METAPOST image, because \mpcolor always produced withprescript
command internally. Since v2.38.1, now that \mpcolor returns a METAPOST color expression if
possible, users can issue the sentence as follows without worrying about the location of the
color command:

draw image (drawarrow (left--right) scaled 5)
scaled 7
withcolor \mpcolor{red!50}

’

Be aware, however, that even after v2.38.1 \mpcolor will still insert the withprescript command
when the color specified is a spot color (or named color in DVI mode). Users therefore have to
revise the code so that the color can have effect inside the image. For instance:

draw image (drawarrow (left--right) scaled 5 withcolor \mpcolor{spotA})
scaled 7

’

1.1.14 \mpfig ... \endmpfig

Besides the mplibcode environment (for KTEX) and \mplibcode ... \endmplibcode (for Plain), we
also provide unexpandable TgX macros \mpfig ... \endmpfig and its starred version \mpfig= ...
\endmpfig to save typing toil. The former is roughly the same as follows:

\begin{mplibcode}[@mpfig]
beginfig(0)
token list declared by \everymplib[@mpfig]

token list declared by \everyendmplib[@mpfig]
endfig;
\end{mplibcode}

and the starred version is roughly the same as follows:
\begin{mplibcode}[@mpfig]
\end{mplibcode}

In these macros \mpliblegacybehavior{disable} is forcibly declared. Again, as both share the
same instance name, METAPOST codes are inherited among them. A simple example:

\everymplib[@mpfig]{ drawoptions(withcolor 1/3[red,white]); }

\mpfigx input boxes \endmpfig

\mpfig
circleit.a(btex Box 1 etex); drawboxed(a);

\endmpfig

Users can change the instance name (default value: @mpfig) by redefining \mpfiginstancename,
after which a new mplib instance will start and code inheritance too will begin anew. \let
\mpfiginstancename\empty will prevent code inheritance if \mplibcodeinherit is not true.

1.1.15 About cache files

To support btex ... etex in external .mp files, luamplib inspects the content of each and every
.mp file and makes caches if nececcsary before returning their paths to the mplib library. This
could waste the compilation time, as most .mp files do not contain btex ... etex commands. So
luamplib provides macros as follows, so that users can give instructions about files that do not
require this functionality.

« \mplibmakenocache{ (filename)[, (filename), ...1}
« \mplibcancelnocache{(filename)[, (filename), ...}

where (filename) is a filename excluding .mp extension. Note that .mp files under $TEXMFMAIN/
metapost/base and $TEXMFMAIN/metapost/context/base are already registered by default.

By default, cache files will be stored in $TEXMFVAR/luamplib_cache or, if it’s not avail-
able (mostly not writable), in the directory where output files are saved: to be specific,

$TEXMF_OUTPUT_DIRECTORY/luamplib_cache, ./luamplib_cache, $TEXMFOUTPUT/luamplib_cache, and .,
in this order. $TEXMF_OUTPUT_DIRECTORY is normally the value of --output-directory command-
line option.

Users can change this behavior by the command \mplibcachedir{(directory path)}, where
tilde (~) is interpreted as the user’s home directory (on a windows machine as well). As back-
slashes (\) should be escaped by users, it would be easier to use slashes (/) instead.

1.1.16 About figure box metric

Notice that, after each figure is processed, the macro \MPwidth stores the width value of the
latest figure; \MPheight, the height value. Incidentally, also note that \MP11x, \MP11ly, \MPurx, and
\MPury store the bounding box information of the latest figure without the unit bp.

1.1.17 luamplib.cfg

At the end of package loading, luamplib searches luamplib.cfg and, if found, reads the
file in automatically. Frequently used settings such as \everymplib, \mplibforcehmode or
\mplibcodeinherit are suitable for going into this file.

1.1.18 Tagged PDF

When tagpdf package is loaded and activated, mplibcode environment accepts additional options
for tagged PDF. The code related to this functionality is currently in experimental stage, not
guaranteeing backward compatibility. Available optional keys are similar to those of the KIEX’s
picture environment (texdoc latex-lab-graphic). The default tagging mode is the alt key with
Figure structure.

alt=(text) starts a Figure tag by default and sets an alternate text of the figure from the (text).
BBox info will be added automatically to the PDF. This key is needed for ordinary META-
posT figures, for which, if no alt text is given, a default text will be used with a warning
issued. You can change the alternate text within METAPOST code as well: VerbatimTeX
"\mplibalttext{(text)}";

actualtext=(text) startsa Span tag implicitly and sets a replacement text (a.k.a. actual text) from
the (text). If in vertical mode, horizontal mode will be forced by \noindent command.>
BBox info will not be added. This key is intended for figures which can be represented
by a character or a small sequence of characters. You can change the actual text within
METAPOST code as well: VerbatimTeX "\mplibactualtext{(text)}";

artifact starts an Artifact MC (marked content). BBox info will not be added. This key is
intended for decorative figures which have no semantic meaning.

text starts an Artifact MC but enables tagging on TgX-text boxes (such as btex ... etex, ex-
cluding pictures made by infont operator). If in vertical mode, horizontal mode will be

STt is not recommended to personally redefine \prependtomplibbox. Apart from using \mplibforcehmode or
\mplibnoforcehmode, the redefinition might be incompatible with actualtext key. See § 1.1.1 on these commands.

forced by \noindent command.® BBox info will not be added. This key is intended for
figures the meaning of which is the sequence of texts in the TgX-text boxes in the order
they are drawn in the figure. Inside text-mode figures, reusing TgX-text boxes is strongly
discouraged.

Note that the text in a TgX-text box which starts with [taggingoff] will not be tagged at
all, and of course [taggingoff] and its trailing spaces will be gobbled by luamplib. For
example, the first and the third boxes in the following figure will not be tagged, and still
remain in the Artifact MC-chunks.

\begin{mplibcode}[text]
beginfig(1)
draw btex [taggingoff] $\sqrt 2$ etex ;
draw textext "$\sqrt 3$" shifted 12down ;
draw TEX "[taggingoff] $\sqrt 5$" shifted 24down ;
draw maketext "$\sqrt 7$" shifted 36down ;
draw mplibgraphictext "$\sqrt x$" shifted 48down ;
endfig;
\end{mplibcode}

RECLOS

off Given this key, nothing will be tagged by luamplib.

tag=(name) You can choose a tag name, default value being Figure.” For instance, you can set
‘tag=Formula, alt=(text)’ to get a Formula element with its alternate text.?

adjust-BBox=(dimens) You can correct the BBox attribute of the figure by space-separated four
dimensional values, which will be added to the automatically calculated BBox values. To
draw the bounding box for checking with half-transparent red color, you can add debug=
BBox to the argument of \DocumentMetadata command.

tagging-setup=(key-val list) This key accepts as its value the list of key-value options men-
tioned so far.

You can set these options anywhere in the document by declaring \SetKeys[luamplib/tagging]
{(key-val list)}, which will affect mplib figures thereafter in the scope. And the options listed
above are provided for \mpfig and \usemplibgroup (see below § 1.2.12) commands as well.

\begin{mplibcode}[myInstanceName, alt=drawing of a circle]
\end{mplibcode}
\mpfiglalt=drawing of a square box]

\endmpfig

5The key text also shares the limitation mentioned in the previous footnote.
"The option tag=false, however, is a synonym of the off key.
8Beware that this bypasses BTEX’s regular math formula tagging, for which the text key is needed.

10

\usemplibgroup[alt=drawing of a trianglel{...}

\mppattern{...} % see below
\mpfigloff] % do not tag this figure
\endmpfig

\endmppattern

As for the instance name of mplibcode environment, instance=(name) or instancename=(name)
is also allowed in addition to the raw instance name as shown above.

1.2 METAPOST
1.2.1 mplibdimen ..., mplibcolor ...

These are METAPOST interfaces for the TgX commands \mpdim and \mpcolor (see above §1.1.12
and § 1.1.13). For example, mplibdimen "\linewidth" is basically the same as \mpdim{\linewidth},
and mplibcolor "red!50" is basically the same as \mpcolor{red!50}. The difference is that these
METAPOST operators can also be used in external .mp files, which cannot have TgX commands
outside of the btex or verbatimtex ... etex.

1.2.2 mplibtexcolor ..., mplibrgbtexcolor ...

mplibtexcolor, which accepts a string argument, is a METAPOST operator that converts a TgX
color expression to a METAPOST color expression, that can be used anywhere color expression
is expected as well as after the withcolor command.” For instance:

color col;
col := mplibtexcolor "olive!50";

But the result may vary in its color model (gray/rgb/cmyk) according to the given TEX color.
Therefore the example shown above would raise a METAPOST error: cmykcolor col; should have
been declared. By contrast, mplibrgbtexcolor (string) always returns rgb-model expressions.

N.B. Spot colors are forced to cmyk or rgb model, so these operators are not recommended
for spot colors.

1.2.3 withmplibcolors (..., ...)

Unlike the withcolor command, users can specify one color for filling and another color for
stroking using the macro withmplibcolors at the end of a sentence. The syntax is withmplibcolors
({fill color expr), (stroke color expr)). When the argument is in string type, it is regarded as
the color expression of TgX side. A simple example (see also the example at § 1.2.9):

filldraw fullcircle scaled 40

withpen pencircle scaled 2
withmplibcolors ("orange!60"”, 2/3red)

’

°Since v2.38.1, the operation of mplibtexcolor is the same as that of mplibcolor if the color specified is not a spot
color or a named color in DVI mode.

11

The PDF file size is much smaller than issueing two sentences with different colors, though the
apparent effect is the same.

1.2.4 withtransparency (..., ...)

withtransparency({number) | (string), (numeric)) is provided for plain format as well as meta-
fun. The first argument accepts a number or a name of alternative transparency methods (see
texdoc metafun § 8.2 Figure 8.1). The second argument accepts a numeric expression denoting

opacity.

\mpfig
fill unitsquare scaled 40
withcolor 1/3[blue,white]
withtransparency (1, 0.5) % or ("normal”, 0.5)

fill fullcircle scaled 40 .

withcolor red
withtransparency (1, 0.5)

’

\mpfig

1.2.5 ... withshadingmethod ...

The syntax is exactly the same as metafun’s new shading method (texdoc metafun § 8.3.3), except
that the ‘shade’ contained in each and every macro name has changed to ‘shading’ in luamplib:
for instance, while withshademethod is a macro name which only works with metafun format, the
equivalent provided by luamplib, withshadingmethod, works with plain as well. Other differences
to the metafun’s and some cautions are:

o Textual pictures as well as paths can have shading effect. The term textual picture here
means a picture generated by btex ... etex, textext, TEX, maketext, mplibgraphictext (see
below § 1.2.7), or infont operator, though technically only the last one is a true textual
picture. Note that the picture, including transparency group, in which all the objects
are filled without color (e.g., see below § 1.2.9; see also § 1.2.12 and § 1.2.13) can also be
regarded as a textual picture.

draw btex \bfseries\TeX etex rotated 20 scaled 6
withshadingmethod "linear”
withshadingvector (9,3)
withshadingstep (
withshadingfraction 1/2 ‘(‘ ’

withshadingcolors (red,green) }_
) ;.r)
withshadingstep (

withshadingfraction 1

withshadingcolors (green,blue)

)

’

12

« When shading a picture generated by ‘infont’ operator or that has multiple components,
the effect of withshadingvector and that of withshadingdirection will be the same, as lu-
amplib considers only the bounding box of the picture.

As shown, the syntax is (path) | (textual picture) withshadingmethod (string), where the latter
shall be either "linear” or "circular”. Other macros for optional values are:

withshadingvector (pair) Starting and ending points (as time value) on the path.

withshadingdirection (pair) Starting and ending points (as time value) on the bounding box.
Default value: (0,2)

withshadingorigin (pair) The center of starting and ending circles. Default value: center p,
where p is the operand of withshadingmethod.

withshadingradius (pair) Radii of starting and ending circles. This is no-op in linear mode.
Default value: (0, abs(center p - urcorner p))

withshadingfactor (numeric) Multiplier of the radii. This is no-op in linear mode. Default
value: 1.2

withshadingcenter (pair) Values for shifting starting center. For instance, (9,0) means that the
center of starting circle is center p; (1,1) means urcorner p; (-1,-1) means llcorner p.

withshadingtransform (string) where (string) shall be "yes"” (respect transform) or "no” (ignore
transform). Default value: "no” for pictures made by infont operator or having multiple
components; "yes" for all other cases.

withshadingdomain (pair) Limiting values of parametric variable that varies on the axis of color
gradient. Default value: (0,1)

withshadingstep (...) for combined shading of more than two colors.

withshadingfraction (numeric) Fractional number of each shading step. Only meaningful with
withshadingstep.

withshadingcolors ({color expr), (color expr)) Starting and ending colors, default value being
(white, black). String-type argument is regarded as the color expression of TgX side.

withshadingstroke (string) where (string) shall be "yes” or "no”. Only meaningful when the
shading object is a (path); if "yes”, we get the path stroked and then shaded. More
efficient than issueing two sentences.

1.2.6 ... withfademethod ...

This is a METAPOST operator which makes the color of an object gradiently transparent. The
syntax is (path) | (picture) withfademethod (string), the latter being either "linear” or "circular”.
Though it is similar to the withshademethod from metafun, the differences are: (1) the operand

13

of withfademethod can be a picture as well as a path; (2) you cannot make gradient colors, but
can only make gradient opacity.
Related macros to control optional values are:

withfadeopacity ({numeric), (numeric)) sets the starting opacity and the ending opacity, de-
fault value being (1,0). ‘1’ denotes full color; ‘0’ full transparency.

withfadevector ({(pair), (pair)) sets the starting and ending points. Default value in the linear
mode is (1lcorner p, lrcorner p), where p is the operand, meaning that fading starts
from the left edge and ends at the right edge. Default value in the circular mode is
(center p, center p), which means centers of both starting and ending circles are the
center of the bounding box.

withfadecenter is a synonym of withfadevector.

withfaderadius ((numeric), (numeric)) sets the radii of starting and ending circles. This is
no-op in the linear mode. Default value is (08, abs(center p - urcorner p)), meaning
that fading starts from the center and ends at the four corners of the bounding box.

withfadebbox ({(pair), (pair)) sets the bounding box of the fading area, default value being
(11corner p, urcorner p). Though this option is not needed in most cases, there could
be cases when users want to explicitly control the bounding box. Particularly, see the
description below at § 1.2.12 on the analogous macro withgroupbbox.

An example:

\mpfig
picture mill;
mill = btex \includegraphics[width=100bpl{mill} etex;
draw mill
withfademethod "circular”
withfadecenter (center mill, center mill)
withfaderadius (20, 50)
withfadeopacity (1, @)

\endmpfig

1.2.7 mplibgraphictext ...

mplibgraphictext (string) is a METAPOST operator, the effect of which is similar to that of Con-
TgXt’s graphictext or our own mpliboutlinetext (see below §1.2.10). However the syntax is
somewhat different.

draw mplibgraphictext "\bfseries Funny"
rotated 20 scaled 3

fakebold 2.3 % fontspec option @i@@ j
fillcolor "red!50" % color expression
drawcolor 2/3 blue % or strokecolor 2/3 blue

’

14

fakebold, fillcolor and drawcolor (or strokecolor) are optional; default values are 2, "white"” and
"black” respectively.’® When the color expression is given in string type, it is regarded as color,
xcolor or L3color’s expression. All from mplibgraphictext to the end of sentence will compose an
anonymous picture, which can be drawn or assigned to a variable. Incidentally, withfillcolor
and withdrawcolor are synonyms of fillcolor and drawcolor, hopefully to be compatible with
graphictext.

N.B. In some cases, especially when processing complicated TgX code, mplibgraphictext
will produce better results than ConTgXt or even than our own mpliboutlinetext, not to mention
the much smaller PDF file size. There are, however, some limitations such that you can’t apply
shading (gradient colors) to the text with metafun’s withshademethod.’' Again, in DVI mode,
unicode-math package is needed for math formulae, as we cannot embolden type1 fonts in DVI
mode. But the most critical limitation is that, unlike mpliboutlinetext, you cannot manipulate
the shape of outline paths, because the returned picture is basically a btex ... etex picture.

1.2.8 mplibglyph ... of ...

From v2.30, we provide a new METAPOST operator mplibglyph, which returns a METAPOST picture
containing outline paths of a glyph in opentype, truetype or type1 fonts. When a type1 font is
specified, METAPOST primitive glyph will be called.

mplibglyph 50 of \fontid\font % slot 50 of current font
mplibglyph "Q" of "TU/TeXGyrePagella(@)/m/n/10" % font csname
mplibglyph "Q" of "texgyrepagella-regular.otf” % raw filename
mplibglyph "Q" of "Times.ttc(2)" % subfont number
mplibglyph "Q" of "SourceHanSansK-VF.otf[Regular]” % instance name

Both arguments before and after “of” can be either a number or a string. Number arguments
are regarded as a glyph slot (GID) and a font id number, repectively. String argument at the
left side is regarded as a glyph name in the font or a unicode character. String argument at the
right side is regarded as a TgX font csname (without backslash) or the raw filename of a font.
When it is a font filename, a number within parentheses after the filename denotes a subfont
number (starting from zero) of a TTC font; a string within brackets denotes an instance name
of a variable font.

1.2.9 mplibdrawglyph ..., mplibstrokeglyph ..., mplibfillandstrokeglyph ...

As the structure of the picture returned by mplibglyph is quite similar to the result of glyph
primitive, METAPOST’s draw command will fill the inner path of the picture with the background
color. In contrast, mplibdrawglyph (picture) command fills the paths according to the nonzero
winding number rule. As a result, for instance, the area surrounded by inner path of “O” will
remain transparent.

N.B. To apply the nonzero winding number rule to a picture containing paths, luamplib
appends withpostscript "collect” to the paths except the last one in the picture. If you want the
even-odd rule instead, you can additionally declare withpostscript "evenodd” to the last path.

*Users can use the withmplibcolors macro instead of fillcolor and drawcolor options. See § 1.2.3 on this macro.
"'But this limitation is now lifted by the introduction of withshadingmethod. See above § 1.2.5.

15

N.B. By the way, when you want fill-and-stroke effect, issueing filldraw command to the
last path will not always produce what you want: in such cases, you have to issue the command
draw (the last path) withpostscript "both” (or "eoboth” to apply even-odd rule).*?

As this could be somewhat annoying to users, luamplib v2.38.0 or later provides the fol-
lowing commands as well: mplibfillandstrokeglyph (picture), mplibstrokeglyph (picture), and
mplibfillglyph (picture), the last one being a synonym of mplibdrawglyph command.

An example:

mplibfillandstrokeglyph
mplibglyph "R" of \fontid\font scaled 1/12
withpen pencircle scaled 1
withmplibcolors ("orange", 2/3red)

’

1.2.10 mpliboutlinetext (...)

From v2.31, a new METAPOST operator mpliboutlinetext is available, which mimicks metafun’s
outlinetext. So the syntax is the same: see the metafun manual § 8.7 (texdoc metafun). A simple
example:

draw mpliboutlinetext.b ("$\sqrt{2+\alpha}$")
(withcolor \mpcolor{red!33}) A\/z + @
(withpen pencircle scaled .2 withcolor 2/3red)
scaled 3

’

After the process, mpliboutlinepic[] and mpliboutlinenum will be preserved as global variables;
mpliboutlinepic[1] ... mpliboutlinepic[mpliboutlinenum] will be an array of images, each of
which containing outline paths of a glyph or a rule.

N.B. As Unicode grapheme cluster is not considered in the array, a unit that must be a
single cluster might be separated apart.

1.2.11 \mppattern{...} ... \endmppattern, ... withmppattern ...

TEX macros \mppattern{(name)} ... \endmppattern define a tiling pattern cell associated with
the (name). METAPOST command withmppattern, the syntax being (cyclic path) | (textual picture)
withmppattern (string), will fill the given path or text with the tiling pattern cell of the (name)
by replicating it horizontally and vertically.'> As said before at § 1.2.5, the textual picture here
means any text typeset by TgX, mostly the result of the btex command (and its derivatives) or
the infont operator.

> metafun provides macros nofill, eofill, fillup, eofillup etc. (see metafun manual § 2.11), which luamplib with
plain format does not provide currently.

Swithpattern is an operator virtually the same as withmppattern, but the former forces a METAPOST picture. There-
fore you cannot but use draw command with withpattern operator. On the other hand, if some special command is
not appended (see the example just below), (cyclic path) withmppattern (string) works as intended only with fill
or filldraw command.

16

Table 1: options for \mppattern

Key Value Type Explanation

xstep number horizontal spacing between pattern cells
ystep number vertical spacing between pattern cells
xshift number horizontal shifting of pattern cells

yshift number vertical shifting of pattern cells

bbox table or string 11x, 1ly, urx, ury values™

matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed

colored or coloured boolean false for uncolored pattern. default: true

*in string type, numbers are separated by spaces

An example:

\mppattern{mypatt} % or \begin{mppattern}{mypatt}
[% options: see below
xstep = 10,
ystep = 7,
matrix = "rotated 45", % or "0.7 0.7 -0.7 0.7" or {0.7, 0.7, -0.7, 0.7}
]
\mpfig % or any other TeX code

draw (up--down) scaled 5
withcolor 2/3[blue,white]

draw (left--right) scaled 5
withcolor 2/3[red,white]

\endmpfig
\endmppattern % or \end{mppattern}

\mpfig

draw fullcircle scaled 50
withpostscript "collect”

draw fullcircle scaled 120
withmppattern "mypatt”
withpen pencircle scaled 1
withcolor \mpcolor{red!50!blue!50}
withpostscript "eoboth”

\endmpfig

The available options, actually elements of a Lua table, are listed in Table 1. For the sake
of convenience, the width and height values of the tiling pattern cell will be written down into
the log file (depth is always zero). Users can refer to them for option setting.

As for matrix option, METAPOST code such as "rotated 30 slanted .2" is allowed as well as
the string or table of four numbers. You can also set xshift and yshift values by using ‘shifted’

17

operator. But when xshift or yshift option is explicitly given, they have precedence over the
effect of ‘shifted’ operator.

When you use special effect such as transparency in a pattern cell, resources option is
needed: for instance, resources="/ExtGState 1 @ R". However, as luamplib automatically in-
cludes the resources of the current page, this option is not needed in most cases.

Option colored=false (or coloured=false) will generate an uncolored pattern cell which shall
have no color at all (i.e. withoutcolor command is needed for the cells made from METAPOST
code). Uncolored pattern will be painted later by the color of a METAPOST object. An example:

\begin{mppattern}{pattnocolor?}
L
colored = false,
matrix = "slanted .3 rotated 30",
]
\tiny\TeX
\end{mppattern}

\begin{mplibcode}
beginfig(1)

picture tex;

tex = mpliboutlinetext.p ("\bfseries \TeX");

for i=1 upto mpliboutlinenum:

mplibfillandstrokeglyph mpliboutlinepic[i]

scaled 8
withmppattern "pattnocolor”
withpen pencircle scaled 1/2
withcolor (i/4)[red,blue] % paints the pattern

’

endfor
endfig;
\end{mplibcode}

A much simpler and efficient way to obtain a similar result (but without colorful characters in
this example) is to give a textual picture as the operand of withmppattern:

\begin{mplibcode}
beginfig(2)
draw mplibgraphictext "\bfseries\TeX"
fakebold 1/2
rotated 15 scaled 8
withmppattern "pattnocolor”
withmplibcolors (
2/3[red,white], % paints the pattern
2/3 red
)
endfig;
\end{mplibcode}

18

1.2.12 ... asgroup ...

As said before, transparency group is available with plain as well as metafun format. The syntax
is exactly the same: (picture) | (path) asgroup ""|" isolated,knockout”,
which will return a METAPOST picture. It is called Transparency Group because the objects
contained in the group are composited to produce a single object, so that outer transparency
effect, if any, will be applied to the group as a whole, not to the individual objects cumulatively.
The additional feature provided by luamplib is that you can reuse the group as many times
as you want in the TgX code or in other METAPOST code chunks, with infinitesimal increase in
the size of PDF file. For this functionality we provide TgX and METAPOST macros as follows:

isolated"” | "knockout

nl n

withgroupname (string) associates a transparency group with the given name. When this is not
appended to the sentence with asgroup operator, the default group name ‘lastmplibgroup’
will be used.

\usemplibgroup{(name)} is a TgX command to reuse a transparency group of the name once
used. Note that the position of the group will be origin-based: in other words, lower-left
corner of the bounding box will be shifted to the origin.

usemplibgroup (string) is a METAPOST command which will add a transparency group of the
name to the currentpicture. Contrary to the TgX command just mentioned, the position
of the group is the same as the original transparency group.

withgroupbbox ({pair), (pair)) sets the bounding box of the transparency group, default value
being (11lcorner p, urcorner p). This option might be needed especially when you draw
with a thick pen a path that touches the boundary; you would probably want to append
to the sentence ‘withgroupbbox (bot 1ft 11corner p, top rt urcorner p)’, supposing that the
pen was selected by the pickup command.

An example showing the difference between the TgX and METAPOST commands:

\mpfig
draw image(
fill fullcircle scaled 50 shifted 20right withcolor blue;
fill fullcircle scaled 50 withcolor red ;
)
asgroup
withgroupname "mygroup”
withtransparency (1, 1/2)

nn

draw (left--right) scaled 5;
draw (up--down) scaled 5;
\endmpfig

\noindent

\clap{\vrule width 10bp height .25bp depth .25bp}% _+'
\clap{\vrule width .5bp height 5bp depth 5bp}%

\usemplibgroup{mygroup}

19

\mpfig
usemplibgroup "mygroup”
withtransparency (1, 1/3)
draw (left--right) scaled 5;
draw (up--down) scaled 5;
\endmpfig

Also note that normally the transparency groups are not affected by outer color commands.
However, if you have made the original transparency group using withoutcolor command, col-
ors will have effects on the uncolored objects in the group.

1.2.13 \mplibgroup{...} ... \endmplibgroup

These TgX macros are described here in this subsection, as they are deeply related to the asgroup
operator. Users can define a transparency group or a normal form XObject with these macros
from TgX side. The syntax is similar to the \mppattern command (see above § 1.2.11).

An example:

\mplibgroup{mygrx} % or \begin{mplibgroup}{mygrx}
[% options: see below
asgroup="",
]
\mpfig % or any other TeX code

pickup pencircle scaled 10;
draw (left--right) scaled 20 rotated 45 ;
draw (left--right) scaled 20 rotated -45 ;
\endmpfig
\endmplibgroup % or \end{mplibgroup}

\usemplibgroup{mygrx}

\mpfig
usemplibgroup "mygrx" scaled 1.5
withtransparency (1, 0.5)

\endmpfig

Availabe options, much fewer than those for \mppattern, are listed in Table 2. Again, the
width/height/depth values of the mplibgroup will be written down into the log file.

When asgroup option, including empty string, is not given, a normal form XObject will be
generated rather than a transparency group. Thus the individual objects, not the XObject as a
whole, will be affected by outer transparency command.

As for the option asgroup="masking", see the next subsection § 1.2.14.

As shown, you can reuse the mplibgroup using the TgX command \usemplibgroup or the
METAPOST command usemplibgroup. The behavior of these commands is the same as that de-
scribed above at § 1.2.12, excepting that the mplibgroup made by TgX code (not by METAPOST
code) respects original height and depth.

20

Table 2: options for \mplibgroup

Key Value Type Explanation

asgroup string "' "isolated”, "knockout”, "isolated,knockout” or "masking”
bbox table or string 11x, 11y, urx, ury values™

matrix table or string xx, yx, xy, yy values™ or MP transform code

resources string PDF resources if needed

*1in string type, numbers are separated by spaces

1.2.14 ... withmaskinggroup ...

Using this command, the mplibgroup generated by the option asgroup="masking” (see Table 2)
can be utilized as a masking transparency group upon a picture or a path object. The syntax is
(picture)|(path) withmaskinggroup (string), the latter being the name of a pre-defined masking
group.

The masking group should be prepared in grayscale color model: the area painted with 1
(white) will preserve the full color of the object; the area painted with @ (black) will force full
transparency, making it invisible. By default, the background color is black.

N.B. Tiling pattern (see above § 1.2.11) is not allowed in the masking group.

An example:

\mpfig*
picture pic;
pic = image(
fill fullcircle scaled 80 withcolor 1/4[blue,white];
fill fullcircle scaled 80 shifted (40,0) withcolor 1/4[red,white];
);
\endmpfig

\mplibgroup{mymask}[asgroup="masking"]
\mpfig
fill bbox pic
withcolor 1/10
label(TEX "\sffamily\bfseries\scshape\huge Meta" scaled 2, center pic)
withcolor 1 ;
\endmpfig
\endmplibgroup

\mpfig
fill bbox pic
withshadingmethod "linear”
withshadingcolors(3/4red, 3/4blue)

’

draw pic
withmaskinggroup "mymask"

\endmpfig

21

1.2.15 mpliblength ..., mplibuclength ...

mpliblength (string) returns the number of unicode characters in the string. This is a unicode-
aware version equivalent to the METAPOST primitive length, but accepts only a string-type ar-
gument. For instance, mpliblength "abgdéf” returns 6, not 8.

On the other hand, mplibuclength (string) returns the number of unicode grapheme clusters
in the string. For instance, mplibuclength "Apfel”, where A is encoded using two codepoints
(U+oo041 and U+0308), returns 5, not 6 or 7. This operator requires lua-uni-algos package.

1.2.16 mplibsubstring ... of ..., mplibucsubstring ... of ...

mplibsubstring (pair) of (string) is a unicode-aware version equivalent to the METAPOST’s
substring ... of ... primitive. The syntax is the same as the latter, but the string is in-
dexed by unicode characters. For instance, mplibsubstring (2,5) of "abgdéf"” returns "¢dé”, and
mplibsubstring (5,2) of "abcdéf” returns "édg".

On the other hand, mplibucsubstring (pair) of (string) returns the part of the string indexed
by unicode grapheme clusters. For instance, mplibucsubstring (8,1) of "Apfel”, where A is en-
coded using two codepoints (U+o041 and U+0308), returns "A”, not "A". This operator requires
lua-uni-algos package.

1.3 Lua
1.3.1 runscript ...

A good many METAPOST macros described in this documentation have been implemented using
the primitive runscript. With runscript (string), you can run a Lua code chunk from METAPOST
side and get some METAPOST code returned by Lua if you want. As the functionality is provided
by the mplib library itself, luamplib does not have much to say about it.

One thing is worth mentioning, however: if you return a Lua table to the METAPOST process,
it is automatically converted to a relevant METAPOST data type such as pair, color, cmykcolor or
transform. So users can save some extra toil of converting a table to a string, though it’s not a
big deal. For instance, runscript "return {1,0,0}" will give you the METAPOST color expression
(1,0,0) automatically.

1.3.2 Lua table luamplib.instances

Users can access the Lua table containing mplib instances, luamplib. instances, through which
METAPOST variables are also easily accessible from Lua side, as documented in LuaTgX manual
§11.2.8.4 (texdoc luatex). The following example will print false, 3.0, MetaPost and the knots
and the cyclicity of the path unitsquare.

\begin{mplibcode}[myinstance]
boolean b; b =1 > 2;
numeric n; n = 3;
string s; s = "MetaPost”;
path p; p = unitsquare;

22

Table 3: elements in luamplib table (partial)

Key Type Related TgX macro Cft.
codeinherit boolean \mplibcodeinherit §1.1.8
everyendmplib table \everyendmplib §1.1.2
everymplib table \everymplib §1.1.2
getcachedir function ({string)) \mplibcachedir §1.1.15
globaltextext boolean \mplibglobaltextext §1.1.9
legacyverbatimtex boolean \mpliblegacybehavior §1.1.6
noneedtoreplace table \mplibmakenocache §1.1.15
numbersystem string \mplibnumbersystem §1.14
setformat function ((string)) \mplibsetformat §1.1.3
showlog boolean \mplibshowlog §1.15
textextlabel boolean \mplibtextextlabel §1.1.7
verbatiminput boolean \mplibverbatim §1.1.11

\end{mplibcode}

\directlua{

local myinstance = luamplib.instances.myinstance
print(myinstance:get_boolean "b")
print(myinstance:get_numeric "n")
print(myinstance:get_string "s")
local t = myinstance:get_path "p”
for k,v in pairs(t) do
print(k, type(v)=="table' and table.concat(v,' ') or v)
end

3

Of course, this sort of Lua code can also be run inside METAPOST code using runscript command.
Again, of course you can access a METAPOST variable using your own TgX macro. For example:

\def\mpnumeric#1#2{\directlua{
tex.sprint(tostring(luamplib.instances["#1"]:get_numeric"#2"))

1}

\mpnumeric{myinstance}{n}\relax 3.0

1.3.3 Lua function luamplib.process_mplibcode
Users can run a METAPOST code chunk from Lua side by using this function:

luamplib.process_mplibcode (<string> metapost code, <string> instance name)

The second argument cannot be absent, but can be an empty string ("") which means that
it has no instance name.

Some other elements in the luamplib namespace, listed in Table 3, can affect the process of
process_mplibcode.

23

1.3.4 Lua function luamplib.registerpattern
This is the Lua interface for \mppattern ... \endmppattern described above at § 1.2.11.

luamplib.registerpattern (<number> box register, <string> pattern name, <table> options)

The first argument is the register of a box containing a pattern cell, which should be pre-
pared in advance by the user. For instance, \setbox@=\hbox{\tiny\TeX}, or corresponding Lua
code using tex.setbox function; then the argument should be 0.

As for the third argument, see above Table 1. The argument cannot be absent, but can be
an empty table, i.e. { }.

1.3.5 Lua function luamplib.registergroup
This is the Lua interface for \mplibgroup ... \endmplibgroup described above at § 1.2.13.

luamplib.registergroup (<number> box register, <string> group name, <table> options)

The first argument is the register of a box prepared in advance by the user. When the
contents of the box have been generated from TgX (not METAPOST) code, please make sure that
both of the TgX macros ‘MP11x’ and ‘MP1ly’ are defined as ‘0’ before invoking the Lua function.

As for the third argument, see above Table 2. The argument cannot be absent, but can be
an empty table, i.e. { }.

Reusing an mplibgroup, \usemplibgroup{(name)}, is basically the same as running the TgX
macro ‘luamplib.group.(name)’. If you need the boxresource index, inspect this macro using
token.get_macro function.

2 Implementation

2.1 Lua module

1
2 luatexbase.provides_module {

3 hame = "luamplib”,

4 version ="2.39.0",

s date = "2026/02/09"

6 description = "Lua package to typeset Metapost with LuaTeX's MPLib.",
7}

8

Use the luamplib namespace, since mplib is for the METAPOST library itself. ConTgXt uses

metapost.
9 luamplib = luamplib or { }
10 local luamplib = luamplib

11
12 local format, abs = string.format, math.abs

13

Use our own function for warn/info/err.

24

14 local function termorlog (target, text, kind)
15 if text then

16 local mod, write, append = "luamplib”, texio.write_nl, texio.write
17 kind = kind

18 or target == "term” and "Warning (more info in the log)”

19 or target == "log" and "Info"

20 or target == "term and log"” and "Warning"

21 or "Error”

22 target = kind == "Error” and "term and log" or target

23 local t = text:explode”\n+"
24 write(target, format(”Module %s %s:", mod, kind))
25 if #t == 1 then

26 append(target, format(" %s", t[11))

27 else

28 for _,1line in ipairs(t) do

29 write(target, line)

30 end

31 write(target, format("(%s) ", mod))

32 end

33 append(target, format(” on input line %s", tex.inputlineno))
34 write(target, "")

35 if kind == "Error” then error() end

36 end

37 end

38 local function warn (...) -- beware '%’' symbol

39 termorlog(”term and log”, select("#",...) > 1 and format(...) or ...)
40 end

41 local function info (...)

42 termorlog("log”, select("#",...) > 1 and format(...) or ...)
43 end

44 local function err (...)

45 termorlog("error”, select("#",...) > 1 and format(...) or ...)
46 end

47

48 luamplib.showlog = luamplib.showlog or false

49

Provide a few “shortcuts” expected by the code.
50 local tableconcat = table.concat
51 local tableinsert = table.insert
52 local tableunpack = table.unpack

53 local texsprint = tex.sprint
54 local texgettoks = tex.gettoks
55 local texgetbox = tex.getbox

56 local texruntoks = tex.runtoks
57if not texruntoks then
58 err("Your LuaTeX version is too old. Please upgrade it to the latest”)

59 end
60 local is_defined = token.is_defined
61 local get_macro = token.get_macro

25

62 local mplib = require ('mplib')

63 local kpse require ('kpse')

64 local 1fs require ('1fs’)

65 local 1fsattributes = 1fs.attributes

66 local 1fsisdir = 1fs.isdir
67 local 1fsmkdir = 1fs.mkdir
68 local 1fstouch = 1fs.touch
69 local ioopen = io.open
70

Some helper functions, prepared for the case when 1-file etc is not loaded.
71 local file = file or { }
72 local replacesuffix = file.replacesuffix or function(filename, suffix)
73 return (filename:gsub("%.[%a%d]+$","")) .. "." .. suffix
74 end
75 local is_writable = file.is_writable or function(name)
76 if 1fsisdir(name) then

77 name = name .. "/_luam_plib_temp_file_"
78 local fh = ioopen(name,"w")

79 if fh then

8o fh:close(); os.remove(name)

81 return true

82 end

83 end

84 end

85 local mk_full_path = 1fs.mkdirp or 1fs.mkdirs or function(path)
86 local full = ""

87 for sub in path:gmatch(”(/*[*\\/]+)") do

88 full = full .. sub

89 1fsmkdir(full)

9o end
91 end
92

btex ... etex in input .mp files will be replaced in finder. Because of the limitation of mplib
regarding make_text, we might have to make cache files modified from input files.
First of all, determine the directory to store cache files.

93 local outputdir, cachedir
94 if 1fstouch then

95 for i,v in ipairs{'TEXMFVAR', 'TEXMF_OUTPUT_DIRECTORY','.", 'TEXMFOUTPUT'} do
96 local var = i == 3 and v or kpse.var_value(v)

97 if var and var ~= "" then

98 for _,vv in next, var:explode(os.type == "unix” and ":" or ";") do
99 local dir = format("%s/%s",vv,"luamplib_cache")

100 if not 1fsisdir(dir) then

101 mk_full_path(dir)

102 end

103 if is_writable(dir) then

104 outputdir = dir

105 break

26

106 end

107 end

108 if outputdir then break end
109 end

110 end

111 end

[}

112 outputdir = outputdir or
113 function luamplib.getcachedir(dir)

114 dir = dir:gsub("##","#")

115 dir = dir:gsub("*~",

116 os.type == "windows"” and os.getenv("UserProfile") or os.getenv("HOME"))
117 if 1fstouch and dir then

118 if 1fsisdir(dir) then

119 if is_writable(dir) then

120 cachedir = dir

121 else

122 warn("Directory '%s’' is not writable!”, dir)
123 end

124 else

125 warn("Directory '%s' does not exist!”, dir)
126 end

127 end

128 end

Some basic METAPOST files not necessary to make cache files.

129 local noneedtoreplace = {

130 ["boxes.mp”] = true, -- ["format.mp"] = true,

131 ["graph.mp”] = true, ["marith.mp"] = true, ["mfplain.mp”] = true,

132 ["mpost.mp”] = true, ["plain.mp"] = true, ["rboxes.mp"] = true,

133 ["sarith.mp"] = true, ["string.mp"] = true, -- ["TEX.mp"] = true,

134 ["metafun.mp”] = true, ["metafun.mpiv"] = true, ["mp-abck.mpiv"”] = true,
135 ["mp-apos.mpiv"] = true, ["mp-asnc.mpiv"] = true, ["mp-bare.mpiv"] = true,
136 ["mp-base.mpiv"] = true, ["mp-blob.mpiv"] = true, ["mp-butt.mpiv”] = true,
137 ["mp-char.mpiv"] = true, ["mp-chem.mpiv”] = true, ["mp-core.mpiv"] = true,
138 ["mp-crop.mpiv”] = true, ["mp-figs.mpiv"] = true, ["mp-form.mpiv"] = true,
139 ["mp-func.mpiv"] = true, ["mp-grap.mpiv”] = true, ["mp-grid.mpiv"] = true,
140 ["mp-grph.mpiv"] = true, ["mp-idea.mpiv”] = true, ["mp-luas.mpiv"] = true,
141 ["mp-mlib.mpiv"] = true, ["mp-node.mpiv"] = true, ["mp-page.mpiv"] = true,
142 ["mp-shap.mpiv"] = true, ["mp-step.mpiv”] = true, ["mp-text.mpiv"] = true,
143 ["mp-tool.mpiv"] = true, ["mp-cont.mpiv"] = true,

144 }

145 luamplib.noneedtoreplace = noneedtoreplace

146

Pattern formats to replace btex and verbatimtex . .. etex in input files, if needed.

147 local name_b = "%f[%a_]"

148 local name_e = "%f[*%a_]"

149 local btex_etex = name_b.."btex"..name_e.."%sx(.-)%s*"..name_b.."etex"..name_e

150 local verbatimtex_etex = name_b.."verbatimtex”..name_e.."%s*(.-)%s*"..name_b.."etex". .name_e

151

27

Function luamplib. finder
152 local currenttime = os.time()
153 do

154

local luamplibtime = 1fsattributes(kpse.find_file"luamplib.lua”, "modification”)

format.mp is much complicated, so specially treated.

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

local function replaceformatmp(file,newfile,ofmodify)
local fh = ioopen(file,"r")
if not fh then return file end
local data = fh:read("*all"); fh:close()
fh = ioopen(newfile,"w")
if not fh then return file end
fh:write(
"let normalinfont = infont;\n",
"primarydef str infont name = rawtextext(str) enddef;\n",
data,
"vardef Fmant_(expr x) = rawtextext(decimal abs x) enddef;\n",
"vardef Fexp_(expr x) = rawtextext(\"$*{\"&decimal x&\"}$\") enddef;\n",
"let infont = normalinfont;\n"
); fh:close()
1fstouch(newfile,currenttime,ofmodify)
return newfile
end
local function replaceinputmpfile (name,file)
local ofmodify = 1fsattributes(file,”modification”)
if not ofmodify then return file end
local newfile = name:gsub("%W","_")
newfile = format("%s/luamplib_input_%s", cachedir or outputdir, newfile)
if newfile and luamplibtime then
local nf = 1fsattributes(newfile)
if nf and nf.mode == "file" and
ofmodify == nf.modification and luamplibtime < nf.access then
return nf.size == @ and file or newfile
end
end
if name == "format.mp” then return replaceformatmp(file,newfile,ofmodify) end
local fh = ioopen(file,”r")
if not fh then return file end
local data = fh:read("*all”); fh:close()

“etex” must be preceded by a space and followed by a space or semicolon as specified in LuaTgX
manual, which is not the case of standalone METAPOST though.

188
189
190
191
192
193
194
195

local count,cnt = 9,0
data, cnt = data:gsub(btex_etex, "btex %1 etex ") -- space
count = count + cnt
data, cnt = data:gsub(verbatimtex_etex, "verbatimtex %1 etex;") -- semicolon
count = count + cnt
if count == @ then
noneedtoreplace[name] = true
fh = ioopen(newfile,"w");

28

196 if fh then

197 fh:close()

198 1fstouch(newfile,currenttime,ofmodify)
199 end

200 return file

201 end

202 fh = ioopen(newfile,"w")

203 if not fh then return file end

204 fh:write(data); fh:close()

205 1fstouch(newfile,currenttime,ofmodify)
206 return newfile

207 end

As the finder function for mplib, use the kpse library and make it behave like as if METAPOST
was used. And replace .mp files with cache files if needed. See also #74, #97.

208 local mpkpse

209 do

210 local exe = @

211 while arg[exe-1] do

212 exe = exe-1

213 end

214 mpkpse = kpse.new(arglexel, "mpost")
215 end

216 local special_ftype = {
217 pfb = "typel fonts”,

218 enc = "enc files”,

219}

220 function luamplib.finder (name, mode, ftype)
221 if mode == "w" then

222 if name and name ~= "mpout.log” then

223 kpse.record_output_file(name) -- recorder
224 end

225 return name

226 else

227 ftype = special_ftype[ftype] or ftype

228 local file = mpkpse:find_file(name, ftype)
229 if file then

230 if 1fstouch and ftype == "mp" and not noneedtoreplace[name] then
231 file = replaceinputmpfile(name,file)
232 end

233 else

234 file = mpkpse:find_file(name, name:match("%a+$"))
235 end

236 if file then

237 kpse.record_input_file(file) -- recorder
238 end

239 return file

240 end

241 end

29

242 end
243

For the main function: process

plain or metafun, though we cannot support metafun format fully.
244 local currentformat = "plain”
245 function luamplib.setformat (name)
246 currentformat = name
247 end

v2.9 has introduced the concept of “code inherit”
248 luamplib.codeinherit = false

249 local mplibinstances = {}

250 luamplib.instances = mplibinstances

251 local has_instancename = false

252
253 local process

254 do

255 local function reporterror (result, prevlog)

256 if not result then

257 err("no result object returned”)

258 else

259 local t, e, 1 = result.term, result.error, result.log

log has more information than term, so log first (2021/08/02)

260 local log =1 or t or "no-term”

261 log = log:gsub("%(Please type a command or say ‘end’'%)",""):gsub("\n+","\n")
262 if result.status > @ then

263 local first = log:match”(.-\n! .-)\n! "
264 if first then

265 termorlog("term”, first)

266 termorlog(”log”, log, "Warning")

267 else

268 warn(log)

269 end

270 if result.status > 1 then

271 err(e or "see above messages')

272 end

273 elseif prevlog then

274 log = prevlog..log

v2.6.1: now luamplib does not disregard show command, even when luamplib.showlog is false.
Incidentally, it does not raise error nor prints an info, even if output has no figure.
275 local show = log:match”"\n>>? .+"

276 if show then

277 termorlog("term”, show, "Info (more info in the log)")
278 info(log)

279 elseif luamplib.showlog and log:find"%g" then

280 info(log)

281 end

282 end

30

283 return log
284 end
285 end

lualibs-os.lua installs a randomseed. When this file is not loaded, we should explicitly seed a
unique integer to get random randomseed for each run.

286 if not math.initialseed then math.randomseed(currenttime) end

287 local function luamplibload (name)

288 local mpx = mplib.new {

289 ini_version = true,

290 find_file = luamplib.finder,

Make use of make_text and run_script. And we provide numbersystem option since v2.4. See
https://github.com/lualatex/luamplib/issues/21

291 make_text = luamplib.maketext,

292 run_script = luamplib.runscript,
293 math_mode = luamplib.numbersystem,
294 job_name = tex.jobname,

295 random_seed = math.random(4095),

296 utf8_mode = true,

297 extensions =1,

298 }

Append our own METAPOST preamble to the preamble loading plain/metafun format.
299 local preamble = tableconcat{

300 format(luamplib.preambles.preamble, replacesuffix(name,"mp")),

301 luamplib.preambles.mplibcode,

302 luamplib.legacyverbatimtex and luamplib.preambles.legacyverbatimtex or "",
303 luamplib.textextlabel and luamplib.preambles.textextlabel or ""

304 b

305 local result, log
306 if not mpx then

307 result = { status = 99, error = "out of memory"}
308 else

309 result = mpx:execute(preamble)

310 end

311 log = reporterror(result)

312 return mpx, result, log

313 end

Here, excute each mplibcode data, ie \begin{mplibcode} ... \end{mplibcode}.
314 function process (data, instancename)

315 local currfmt

316 if instancename and instancename ~= "" then
317 currfmt = instancename

318 has_instancename = true

319 else

320 currfmt = tableconcat{

321 currentformat,

322 luamplib.numbersystem or "scaled”,

323 tostring(luamplib. textextlabel),

31

https://github.com/lualatex/luamplib/issues/21

324 tostring(luamplib.legacyverbatimtex),

325 }

326 has_instancename = false

327 end

328 local mpx = mplibinstances[currfmt]

329 local standalone = not (has_instancename or luamplib.codeinherit)
330 if mpx and standalone then

331 mpx: finish()

332 end

333 local log = ""

334 if standalone or not mpx then

335 mpx, _, log = luamplibload(currentformat)
336 mplibinstances[currfmt] = mpx

337 end

338 local converted, result = false, {}

339 if mpx and data then

340 result = mpx:execute(data)

341 local log = reporterror(result, log)

342 if log then

343 if result.fig then

344 converted = luamplib.convert(result)
345 end

346 end

347 else

348 err”Mem file unloadable. Maybe generated with a different version of mplib?”
349 end

350 return converted, result

351 end

352 end

353

dvipdfmx is supported, though nobody seems to use it.
354 local pdfmode = tex.outputmode > 0
355
make_text and some run_script uses LuaTgX’s tex.runtoks.
356 local catlatex = luatexbase.registernumber(”catcodetable@latex”)
357 local catat1l = luatexbase.registernumber(”catcodetable@atletter”)
tex. scantoks sometimes fail to read catcode properly, especially \#, \&, or \%. After some exper-

iment, we dropped using it. Instead, a function containing tex.sprint seems to work nicely.
358 local function run_tex_code (str, cat)
359 texruntoks(function() texsprint(cat or catlatex, str) end)
360 end

For conversion of sp to bp.
361 local factor = 65536x(7227/7200)
362

Prepare textext box number containers, locals and globals. localid can be any number.
They are local anyway. The number will be reset at the start of a new code chunk. Global
boxes will use \newbox command in tex.runtoks process. This is the same when codeinherit is

32

true. Boxes in instances with name will also be global, so that their tex boxes can be shared
among instances of the same name.

363 local texboxes = { globalid = 0, localid = 4096 }
364 local process_tex_text

365 do

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

400 end

401

local textext_fmt = 'image(addto currentpicture doublepath unitsquare \z

xscaled %f yscaled %f shifted (0,-%f) \z
withprescript "mplibtexboxid=%i:%f:%f")’

function process_tex_text (str, maketext)

if str then
if not maketext then str = str:gsub(”"\r.-$","") end
local global = (has_instancename or luamplib.globaltextext or luamplib.codeinherit)
and "\\global” or ""
local tex_box_id
if global == "" then
tex_box_id = texboxes.localid + 1
texboxes.localid = tex_box_id
else
local boxid = texboxes.globalid + 1
texboxes.globalid = boxid
run_tex_code(format([[\expandafter\newbox\csname luamplib.box.%s\endcsname]], boxid))
tex_box_id = tex.getcount’allocationnumber’
end
if str:find"*%[taggingoff%1" then
str = str:gsub("*%[taggingoff%]%sx","")
run_tex_code(format("\\luamplibnotagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
tex_box_id, global, tex_box_id, str))
else
run_tex_code(format("\\luamplibtagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
tex_box_id, global, tex_box_id, str))
end
local box = texgetbox(tex_box_id)
local wd = box.width / factor
local ht = box.height / factor
local dp = box.depth / factor
return textext_fmt:format(wd, ht+dp, dp, tex_box_id, wd, ht+dp)
end
return

nn

end

Make color or xcolor’s color expressions usable, with \mpcolor or mplibcolor. These com-

mands should be used with graphical objects. Attempt to support I3color as well.

402 if is_defined’'color_select:n’' then

403
404
405
406

run_tex_code{

"\\newcatcodetable\\luamplibcctabexplat”,
"\\begingroup”,
"\\catcode'@=11 ",

33

407 "\\catcode'_=11 ",

408 "\\catcode':=11 ",

409 "\\savecatcodetable\\luamplibcctabexplat”,
410 "\\endgroup",

411}

412 end

413 local ccexplat = luatexbase.registernumber”luamplibcctabexplat”

414

415 local process_color, process_mplibcolor

A common function for color functions
416 local function colorsplit (res)

417 local t, tt = { 3}, res:gsub("[%[%11","",2):explode()

418 local be = tt[1]:find"*%d" and 1 or 2

419 for i=be, #tt do

420 if not tonumber(tt[i]) then break end

421 t[#t+1] = tt[i]

422 end

423 if #t == 0 then -- named color in DVI mode with no DocumentMetadata

424 run_tex_code{"\\extractcolorspecs{", tt[3], "}\\mplibtmpa\\mplibtmpb"}
425 t = get_macro”mplibtmpb”:explode”,"

426 end

427 return t

428 end

429 do

430 local colfmt = ccexplat and "13color” or "xcolor”

431 local mplibcolorfmt = {

432 xcolor = tableconcat{

433 [[\begingroup\let\XCemcolor\relax]],

434 [[\def\set@color{\global\mplibtmptoks\expandafter{\current@color}}1],
435 [[\color%s\endgroupl],

436 b

437 13color = tableconcat{

438 [[\begingroup\def__color_select:N#1{\expandafter__color_select:nn#13}1],
439 [[\def__color_backend_select:nn#1#2{\global\mplibtmptoks{#1 #2}}11,
440 [[\def__kernel_backend_literal:e#1{\global\mplibtmptoks\expandafter{\expanded{#1}}}11,
441 [[\color_select:n%s\endgroupl],

442 h

443}

444 function process_color (str)

445 if str then

446 if not str:find("%b{}") then

447 str = format("{%s}",str)

448 end

449 local myfmt = mplibcolorfmt[colfmt]

450 if colfmt == "13color” and is_defined"”color” then

451 if str:find("%b[]1") then

452 myfmt = mplibcolorfmt.xcolor

453 else

454 for _,v in ipairs(str:match”{(.+)}":explode"!") do

34

455 if not v:find("*%s*%d+%sx$") then

456 local pp = get_macro(format("1__color_named_%s_prop",v))
457 if not pp or pp == "" then

458 myfmt = mplibcolorfmt.xcolor

459 break

460 end

461 end

462 end

463 end

464 end

465 run_tex_code(myfmt: format(str), ccexplat or catati1)

466 local t = texgettoks"mplibtmptoks"”

467 if not pdfmode then

468 if t:find"*hsb" or not t:find"%d" then

469 t = "color push " .. t

470 elseif not t:find"*pdf” then

471 t = t:gsub("%a+ (.+)","pdf:bc [%11")

472 end

473 end

474 return format('1 withprescript "mpliboverridecolor=%s"', t)
475 end

476 return ""

477 end

478 function process_mplibcolor(str)

479 local res = process_color(str)

480 if res:find” cs " or res:find"@pdf.obj"” or res:find"color push” then return res end
481 res = colorsplit(res:match’'"mpliboverridecolor=(.+)"")

482 return format("(%s)", tableconcat(res, ","))

483 end

484 end

485

for \mpdim or mplibdimen
486 local function process_dimen (str)
487 if str then
488 str = str:gsub("{(.+)}","%1")
489 run_tex_code(format([[\mplibtmptoks\expandafter{\the\dimexpr %s\relax}]], str))
490 return format("begingroup %s endgroup”, texgettoks"mplibtmptoks™)

491 end

492 return "
493 end

494

Newly introduced method of processing verbatimtex ... etex. This function is used when
\mpliblegacybehavior{false} is declared.
495 local function process_verbatimtex_text (str)
496 if str then

497 run_tex_code(str)
498 end
499 return ""

35

500 end

501

For legacy verbatimtex process. verbatimtex ... etex before beginfig() is inserted just be-
fore the mplib box. And TgX code inside beginfig() ... endfig is inserted after the mplib box.
502 local tex_code_pre_mplib = {3}
503 Lluamplib.figid = 1
504 luamplib.in_the_fig = false
505 local function process_verbatimtex_prefig (str)

506 if str then

507 tex_code_pre_mplib[luamplib.figid] = str
508 end

509 return "

510 end

511 local function process_verbatimtex_infig (str)

512 if str then

513 return format('special "postmplibverbtex=%s";', str)
514 end

515 return ""

516 end

517

For metafun format. see issue #79.
518mp = mp or {}
519 local mp = mp
520 mp.mf_path_reset = mp.mf_path_reset or function() end
521 mp.mf_finish_saving_data = mp.mf_finish_saving_data or function() end
522 mp.report = mp.report or info

metafun 2021-03-09 changes crashes luamplib.

523 catcodes = catcodes or {}

524 local catcodes = catcodes

525 catcodes.numbers = catcodes.numbers or {}

526 catcodes.numbers.ctxcatcodes = catcodes.numbers.ctxcatcodes or catlatex
527 catcodes.numbers. texcatcodes = catcodes.numbers.texcatcodes or catlatex
528 catcodes.numbers. luacatcodes = catcodes.numbers.luacatcodes or catlatex
529 catcodes.numbers.notcatcodes = catcodes.numbers.notcatcodes or catlatex
530 catcodes.numbers.vrbcatcodes = catcodes.numbers.vrbcatcodes or catlatex
531 catcodes.numbers.prtcatcodes = catcodes.numbers.prtcatcodes or catlatex
532 catcodes.numbers. txtcatcodes = catcodes.numbers.txtcatcodes or catlatex
533

Now luamplib.runscript

534 do

535 local runscript_funcs = {

536 luamplibtext = process_tex_text,

537 luamplibcolor = process_mplibcolor,

538 luamplibdimen = process_dimen,

539 luamplibprefig = process_verbatimtex_prefig,
540 luamplibinfig = process_verbatimtex_infig,
541 luamplibverbtex = process_verbatimtex_text,

36

542

A function from ConTgXt general.

543 local function mpprint(buffer,...)
544 for i=1,select("#",...) do

545 local value = select(i,...)

546 if value ~= nil then

547 local t = type(value)

548 if t == "number” then

549 buffer[#buffer+1] = format("%.16f",value)
550 elseif t == "string” then

551 buffer[#buffer+1] = value

552 elseif t == "table"” then

553 buffer[#buffer+1] = "(" .. tableconcat(value,”,") ..
554 else -- boolean or whatever

555 buffer[#buffer+1] = tostring(value)
556 end

557 end

558 end

559 end

560 function luamplib.runscript (code)
561 local id, str = code:match("(.-){(.*)}")
562 if id and str then

563 local f = runscript_funcs[id]

564 if f then

565 local t = f(str)

566 if t then return t end

567 end

568 end

569 local f = loadstring(code)

570 if type(f) == "function” then

571 local buffer = {3}

572 function mp.print(...)

573 mpprint(buffer,...)

574 end

575 local res = {f()}

576 buffer = tableconcat(buffer)

577 if buffer and buffer ~= "" then
578 return buffer

579 end

580 buffer = {3}

581 mpprint(buffer, tableunpack(res))
582 return tableconcat(buffer)

583 end

584 return ""

585 end

586 end

587

luamplib.maketext

37

588 luamplib.legacyverbatimtex = true
589 do

make_text must be one liner, so comment sign is not allowed.
590 local function protecttexcontents (str)
591 return str:gsub("\\%%", "\@PerCent\0")

592 :gsub("%%.-\n", "")

593 :gsub("%%.-%$", ")

594 :gsub("%zPerCent%z", "\\%%")

595 :gsub("\r.-$", ")

596 sgsub("%s+", " ")

597 end

598 function luamplib.maketext (str, what)

599 if str and str ~= "" then

600 str = protecttexcontents(str)

601 if what == 1 then

602 if not str:find("\\documentclass”..name_e) and
603 not str:find("\\begin%s*{document}") and
604 not str:find("\\documentstyle"..name_e) and
605 not str:find("\\usepackage"..name_e) then
606 if luamplib.legacyverbatimtex then

607 if luamplib.in_the_fig then

608 return process_verbatimtex_infig(str)
609 else

610 return process_verbatimtex_prefig(str)
611 end

612 else

613 return process_verbatimtex_text(str)

614 end

615 end

616 else

617 return process_tex_text(str, true) -- bool is for 'chari3’
618 end

619 end

620 return ""

621 end

622 end

623

luamplib’s METAPOST color operators
624 luamplib.gettexcolor = function (str, rgb)
625 local res = process_color(str):match’"mpliboverridecolor=(.+)"'
626 if res:find” cs " or res:find"@pdf.obj" then
627 if not rgb then

628 warn("%s is a spot color. Forced to CMYK", str)
629 end

630 run_tex_code({

631 "\\color_export:nnN{",

632 str,

633 ",

38

634 rgb and "space-sep-rgb" or "space-sep-cmyk”,

635 "N\mplib_@tempa"”,

636 },ccexplat)

637 return get_macro”mplib_@tempa”:explode()

638 end

639 local t = colorsplit(res)

640 if #t == 3 or not rgb then return t end

641 if #t == 4 then

642 return { 1 - math.min(1,t[1]+t[4]), 1 - math.min(1,t[2]+t[4]), 1 - math.min(1,t[3]+t[4]) }
643 end

644 return { t[1]1, t[11, t[1] %

645 end

646

647 Lluamplib.shadecolor = function (str)

648 local res = process_color(str):match’"mpliboverridecolor=(.+)"'

649 if res:find” cs " or res:find"@pdf.obj" then -- spot color shade: 13 only

An example of spot color shading:
\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}

\ExplSyntax0On
\color_model_new:nnn { pantone3005 }
{ Separation }
{
name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0, 0}
}
\color_set:nnn{spotA}{pantone3005}{1}
\color_set:nnn{spotB}{pantone3005}{0.6}
\color_model_new:nnn { pantonel215 }
{ Separation }
{
name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 9.51, 0}
}
\color_set:nnn{spotC}{pantone12153}{1}
\color_model_new:nnn { pantone2040 }
{ Separation }
{
name = PANTONE~2040~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.28, 0.21, 0.04}
}
\color_set:nnn{spotD}{pantone2040}{1}
\ExplSyntax0ff
\begin{document}
\begin{mplibcode}

39

beginfig(1)
fill unitsquare xscaled \mpdim\textwidth yscaled 1cm
withshadingmethod "linear”
withshadingvector (0,1)
withshadingstep (
withshadingfraction .5
withshadingcolors ("spotB","spotC")
)
withshadingstep (
withshadingfraction 1
withshadingcolors ("spotC”,"spotD")
)
endfig;
\end{mplibcode}
\end{document}

another one: user-defined DeviceN colorspace

\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntax0On
\color_model_new:nnn { pantonel215 }
{ Separation }
{
name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 9.51, 0}

}

\color_model_new:nnn { pantone+black }

{ DeviceN }

{ names = {pantonel1215,black} }
\color_set:nnn{purepantone}{pantonetblack}{1,0}
\color_set:nnn{pureblack} {pantonetblack}{0,1}
\ExplSyntax0ff
\begin{document?}

\mpfig
fill unitsquare xscaled \mpdim{\textwidth} yscaled 30
withshadingmethod "linear”
withshadingcolors ("purepantone”,"pureblack”)
\endmpfig
\end{document?}

650 run_tex_code({

651 [[\color_export:nnN{1], str, [[}{backend}\mplib_@tempa]l,

652 3}, ccexplat)

653 local name, value = get_macro’'mplib_@tempa’:match’'{(.-)H(.-)}'
654 local t, obj = res:explode()

40

655 if pdfmode then

656 obj = format("%s @ R", ltx.pdf.object_id(t[1]:sub(2,-1)))

657 else

658 obj = t[2]

659 end

660 return format('(1) withprescript”mplib_spotcolor=%s:%s:%s"', value,obj,name)
661 end

662 return colorsplit(res)

663 end

664

luamplib.fillandstrokecolor

665 do
666 local function graphictextcolor (col, filldraw)
667 if col:find"*[%d%.:1+$" then

668 col = col:explode”:"

669 for i=1,#col do

670 col[i] = format("%.3f", col[il)

671 end

672 if pdfmode then

673 local op = #col == 4 and "k" or #col == 3 and "rg" or "g"
674 col[#col+1] = filldraw == "fill" and op or op:upper()
675 return tableconcat(col,” ")

676 end

677 return format("[%s]", tableconcat(col,” "))

678 end

679 col = process_color(col):match’"mpliboverridecolor=(.+)""'
680 if pdfmode then

681 local t = col:explode()

682 local b = filldraw == "fill" and 1 or #t/2+1

683 local e = b == 1 and #t/2 or #t

684 return tableconcat(t,” ", b, e)

685 end

686 return format("[%s]", tableconcat(colorsplit(col),” "))
687 end

688 function luamplib.fillandstrokecolor (fill, stroke)
689 fill = graphictextcolor(fill, "fill")

690 stroke = graphictextcolor(stroke, "stroke")

691 local bc = pdfmode and "" or "pdf:bc "

692 return format('withprescript "mpliboverridecolor=%s%s %s"', bc, fill, stroke)
693 end

694 end

695

Remove trailing zeros for smaller PDF

696 local decimals = "%.%d+"
697 local function rmzeros(str) return str:gsub(”%.?0+$","") end
698

common function for mplibgraphictext and mpliboutlinetext

41

699 local function getrulemetric (box, curr, bp)

700 local running = -1073741824

701 local wd,ht,dp = curr.width, curr.height, curr.depth
702 wd = wd == running and box.width or wd

703 ht = ht == running and box.height or ht

704 dp = dp == running and box.depth or dp

705 if bp then

706 return wd/factor, ht/factor, dp/factor

707 end

708 return wd, ht, dp
709 end

710

luamplib’s mplibgraphictext operator

711 do

712 local emboldenfonts = { }

713 local function getemboldenwidth (curr, fakebold)
714 local width = emboldenfonts.width

715 if not width then

716 local f

717 local function getglyph(n)

718 while n do

719 if n.head then

720 getglyph(n.head)

721 elseif n.font and n.font > @ then
722 f = n.font; break

723 end

724 n = node.getnext(n)

725 end

726 end

727 getglyph(curr)

728 width = font.getcopy(f or font.current()).size * fakebold / factor * 10
729 emboldenfonts.width = width

730 end

731 return width

732 end

733 local function getrulewhatsit (line, wd, ht, dp)

734 line, wd, ht, dp = line/1000, wd/factor, ht/factor, dp/factor
735 local pl

736 local fmt = "%f w %f %f %f %f re %s”

737 if pdfmode then

738 pl = node.new("whatsit”,"pdf_literal”)
739 pl.mode = @

740 else

741 fmt = "pdf:content "..fmt

742 pl = node.new("whatsit”,"special")

743 end

744 pl.data = fmt:format(line, @, -dp, wd, ht+dp, "B") :gsub(decimals,rmzeros)
745 local ss = node.new"glue”

42

746 node.setglue(ss, 0, 65536, 65536, 2, 2)
747 pl.next = ss

748 return pl

749 end

copying attributes of rule/glue node to improve tagging of mplibgraphictext

750 local tag_update_attrs
751 if is_defined”ver@tagpdf.sty” then

752 tag_update_attrs = function (n, curr)

753 while n do

754 n.attr = curr.attr

755 if n.head then

756 tag_update_attrs(n.head, curr)

757 end

758 n = node.getnext(n)

759 end

760 end

761 else

762 tag_update_attrs = function() end

763 end

764 local function embolden (box, curr, fakebold)

765 local head = curr

766 while curr do

767 if curr.head then

768 curr.head = embolden(curr, curr.head, fakebold)
769 elseif curr.replace then

770 curr.replace = embolden(box, curr.replace, fakebold)
771 elseif curr.leader then

772 if curr.leader.head then

773 curr.leader.head = embolden(curr.leader, curr.leader.head, fakebold)
774 elseif curr.leader.id == node.id"rule” then

775 local glue = node.effective_glue(curr, box)

776 local line = getemboldenwidth(curr, fakebold)
777 local wd,ht,dp = getrulemetric(box, curr.leader)
778 if box.id == node.id"hlist"” then

779 wd = glue

780 else

781 ht, dp = 0, glue

782 end

783 local pl = getrulewhatsit(line, wd, ht, dp)

784 local pack = box.id == node.id"hlist” and node.hpack or node.vpack
785 local list = pack(pl, glue, "exactly")

786 tag_update_attrs(list,curr)

787 head = node.insert_after(head, curr, list)

788 head, curr = node.remove(head, curr)

789 end

790 elseif curr.id == node.id"rule” and curr.subtype == @ then
791 local line = getemboldenwidth(curr, fakebold)

792 local wd,ht,dp = getrulemetric(box, curr)

43

793 if box.id == node.id"vlist"” then

794 ht, dp = @, ht+dp

795 end

796 local pl = getrulewhatsit(line, wd, ht, dp)

797 local list

798 if box.id == node.id"hlist” then

799 list = node.hpack(pl, wd, "exactly")

800 else

801 list = node.vpack(pl, ht+dp, "exactly")

802 end

803 tag_update_attrs(list,curr)

804 head = node.insert_after(head, curr, list)

805 head, curr = node.remove(head, curr)

806 elseif curr.id == node.id"glyph” and curr.font > @ then
807 local f = curr.font

808 local key = format("%s:%s",f,fakebold)

809 local i = emboldenfonts[key]

810 if not i then

811 local ft = font.getfont(f) or font.getcopy(f)

812 if pdfmode then

813 width = ft.size * fakebold / factor * 10

814 emboldenfonts.width = width

815 ft.mode, ft.width = 2, width

816 i = font.define(ft)

817 else

818 if ft.format ~= "opentype” and ft.format ~= "truetype” then
819 goto skip_typel

820 end

821 local name = ft.name:gsub('"",""):gsub(";$","")
822 name = format('%s;embolden=%s;',name,fakebold)
823 _, i = fonts.constructors.readanddefine(name, ft.size)
824 end

825 emboldenfonts[key] = i

826 end

827 curr.font = i

828 end

829 ::skip_typel::

830 curr = node.getnext(curr)

831 end

832 return head

833 end

834 luamplib.graphictext = function (text, fakebold, fc, dc)
835 local fmt = process_tex_text(text):sub(1,-2)

836 local id = tonumber(fmt:match”"mplibtexboxid=(%d+):")
837 emboldenfonts.width = nil

838 local box = texgetbox(id)

839 box.head = embolden(box, box.head, fakebold)

840 local colors = luamplib.fillandstrokecolor(fc, dc)

841 return format('%s %s)', fmt, colors)

44

842 end
843 end
844

luamplib’s mplibglyph operator

845 do

846 local function mperr (str)

847 return format("hide(errmessage %q)", str)
848 end

849 local function getangle (a,b,c)
850 local r = math.deg(math.atan(c.y-b.y, c.x-b.x) - math.atan(b.y-a.y, b.x-a.x))
851 if r > 180 then

852 r=r - 360

853 elseif r < -180 then
854 r=r + 360

855 end

856 return r

857 end

858 local function turning (t)
859 local r, n =0, #t
860 for i=1,2 do

861 tableinsert(t, t[il)

862 end

863 for i=1,n do

864 r = r + getangle(t[i], t[i+1], t[i+2])
865 end

866 return r/360

867 end

868 local function glyphimage(t, fmt)
869 local q,p,r = {{3,{}}

870 for i,v in ipairs(t) do

871 local cmd = v[#v]

872 if cmd == "m" then

873 p = {format(’'(%s,%s)',v[1]1,v[21)}

874 r = {{x=v[11,y=v[21}}

875 else

876 local nt = t[i+1]

877 local last = not nt or nt[#nt] == "m"

878 if emd == "1" then

879 local pt = t[i-1]

880 local seco = pt[#pt] == "m"

881 if (last or seco) and r[1].x == v[1] and r[1].y == v[2] then
882 else

883 tableinsert(p, format('--(%s,%s)',v[1]1,v[2]))
884 tableinsert(r, {x=v[1],y=v[21})

885 end

886 if last then

887 tableinsert(p, '--cycle')

888 end

45

889 elseif cmd == "c" then

890 tableinsert(p, format('..controls(%s,%s)and(%s,%s)',v[1],v[21,v[3]1,v[4]))
891 if last and r[1].x == v[5] and r[1].y == v[6] then

892 tableinsert(p, '..cycle')

893 else

894 tableinsert(p, format('..(%s,%s)',v[5]1,v[61))

895 if last then

896 tableinsert(p, '--cycle')

897 end

898 tableinsert(r, {x=v[5],y=v[61})

899 end

900 else

901 return mperr”unknown operator”

902 end

903 if last then

904 tableinsert(ql turning(r) > @ and 1 or 2], tableconcat(p))
905 end

906 end

907 end

908 r={13
909 if fmt == "opentype"” then

910 for _,v in ipairs(q[1]) do

911 tableinsert(r, format('addto currentpicture contour %s;',v))

912 end

913 for _,v in ipairs(q[2]) do

914 tableinsert(r, format('addto currentpicture contour %s withcolor background;’,v))
915 end

916 else

917 for _,v in ipairs(q[2]) do

918 tableinsert(r, format('addto currentpicture contour %s;',v))

919 end

920 for _,v in ipairs(q[1]) do

921 tableinsert(r, format('addto currentpicture contour %s withcolor background;’,v))
922 end

923 end

924 return format('image(%s)’, tableconcat(r))

925 end

926 if not table.tofile then require”lualibs-lpeg”; require”lualibs-table”; end
927 function luamplib.glyph (f, c)

928 local filename, subfont, instance, kind, shapedata

929 local fid = tonumber(f) or font.id(f)

930 if fid > @ then

931 local fontdata = font.getfont(fid) or font.getcopy(fid)

932 filename, subfont, kind = fontdata.filename, fontdata.subfont, fontdata.format
933 instance = fontdata.specification and fontdata.specification.instance

934 filename = filename and filename:gsub("”*harfloaded:","")

935 else

936 local name

937 f = f:match"*%sx(.+)%sx$"

46

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

name, subfont, instance = f:match”(.+)%((%d+)%)%[(.-)%1$"
if not name then
name, instance = f:match”(.+)%[(.-)%]$" -- SourceHanSansK-VF.otf[Heavy]
end
if not name then
name, subfont = f:match”(.+)%((%d+)%)$" -- Times.ttc(2)
end
name = name or f
subfont = (subfont or 0)+1
instance = instance and instance:lower()
for _,ftype in ipairs{"opentype”, "truetype"} do
filename = kpse.find_file(name, ftype.."” fonts")
if filename then
kind = ftype; break
end
end
end
if kind ~= "opentype” and kind ~= "truetype" then
f = fid and fid > @ and tex.fontname(fid) or f
if kpse.find_file(f, "tfm") then
return format("glyph %s of %q", tonumber(c) or format("%q",c), f)
else
return mperr”font not found”

end
end
local time = 1fsattributes(filename,"modification”)
local k = format("shapes_%s(%s)[%s]", filename, subfont or ""”, instance or "")

local h = format(string.rep('%02x', 256/8), string.byte(sha2.digest256(k), 1, -1))
local newname = format("%s/%s.lua", cachedir or outputdir, h)
local newtime = lfsattributes(newname,"modification”) or @
if time == newtime then
shapedata = require(newname)
end
if not shapedata then
shapedata = fonts and fonts.handlers.otf.readers.loadshapes(filename, subfont,instance)
if not shapedata then return mperr”loadshapes() failed. luaotfload not loaded?” end
table.tofile(newname, shapedata, "return”)
1fstouch(newname, time, time)
end
local gid = tonumber(c)
if not gid then
local uni = utf8.codepoint(c)
for i,v in pairs(shapedata.glyphs) do
if ¢ == v.name or uni == v.unicode then
gid = i; break
end
end
end
if not gid then return mperr”cannot get GID (glyph id)" end

47

987 local fac = 1000 / (shapedata.units or 1000)
988 local t = shapedata.glyphs[gid].segments
989 if not t then return "image()" end

990 for i,v in ipairs(t) do

991 if type(v) == "table" then

992 for ii,vv in ipairs(v) do

993 if type(vv) == "number” then

994 t[iJ[ii] = format("%.0f", vv * fac)
995 end

996 end

997 end

998 end

999 kind = shapedata.format or kind

1000 return glyphimage(t, kind)

1001 end

1002 end

1003

1004 do

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

1033

mpliboutlinetext : based on mkiv’s font-mps.lua

local rulefmt = "mpliboutlinepic[%i]:=image(addto currentpicture contour \z
unitsquare shifted - center unitsquare;) xscaled %f yscaled %f shifted (%f,%f);"
local outline_horz, outline_vert
function outline_vert (res, box, curr, xshift, yshift)
local b2u = box.dir == "LTL"
local dy = (b2u and -box.depth or box.height)/factor
local ody = dy
while curr do
if curr.id == node.id"rule"” then
local wd, ht, dp = getrulemetric(box, curr, true)
local hd = ht + dp
if hd ~= @ then
dy = dy + (b2u and dp or -ht)
if wd ~= @ and curr.subtype == @ then
res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+(ht-dp)/2)
end
dy = dy + (b2u and ht or -dp)
end
elseif curr.id == node.id"glue"” then
local vwidth = node.effective_glue(curr,box)/factor
if curr.leader then
local curr, kind = curr.leader, curr.subtype
if curr.id == node.id"rule” then
local wd = getrulemetric(box, curr, true)
if wd ~= @ then
local hd = vwidth
local dy = dy + (b2u and @ or -hd)
if hd ~= @ and curr.subtype == @ then
res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+hd/2)

48

1034 end

1035 end

1036 elseif curr.head then

1037 local hd = (curr.height + curr.depth)/factor

1038 if hd <= vwidth then

1039 local dy, n, iy = dy, 0, ©

1040 if kind == 100 or kind == 103 then -- todo: gleaders
1041 local ady = abs(ody - dy)

1042 local ndy = math.ceil(ady / hd) * hd

1043 local diff = ndy - ady

1044 n = math.floor((vwidth-diff) / hd)

1045 dy = dy + (b2u and diff or -diff)

1046 else

1047 n = math.floor(vwidth / hd)

1048 if kind == 101 then

1049 local side = vwidth % hd / 2

1050 dy = dy + (b2u and side or -side)

1051 elseif kind == 102 then

1052 iy = vwidth % hd / (n+1)

1053 dy = dy + (b2u and iy or -iy)

1054 end

1055 end

1056 dy = dy + (b2u and curr.depth or -curr.height)/factor
1057 hd = b2u and hd or -hd

1058 iy = b2u and iy or -iy

1059 local func = curr.id == node.id"hlist” and outline_horz or outline_vert
1060 for i=1,n do

1061 res = func(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1062 dy =dy + hd + iy

1063 end

1064 end

1065 end

1066 end

1067 dy = dy + (b2u and vwidth or -vwidth)

1068 elseif curr.id == node.id"kern” then

1069 dy = dy + curr.kern/factor * (b2u and 1 or -1)

1070 elseif curr.id == node.id"vlist” then

1071 dy = dy + (b2u and curr.depth or -curr.height)/factor

1072 res = outline_vert(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1073 dy = dy + (b2u and curr.height or -curr.depth)/factor

1074 elseif curr.id == node.id"hlist” then

1075 dy = dy + (b2u and curr.depth or -curr.height)/factor

1076 res = outline_horz(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1077 dy = dy + (b2u and curr.height or -curr.depth)/factor

1078 end

1079 curr = node.getnext(curr)

1080 end

1081 return res

1082 end

49

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

1131

function outline_horz (res, box, curr, xshift, yshift, discwd)
local r2l1 = box.dir == "TRT"
local dx = r2l1 and (discwd or box.width/factor) or @
local dirs = { { dir = r2l, dx = dx } }
while curr do
if curr.id == node.id"dir"” then
local sign, dir = curr.dir:match”(.)(...)"
local level, newdir = curr.level, r2l
if sign == "+" then
newdir = dir == "TRT"
if r2l ~= newdir then
local n = node.getnext(curr)
while n do
if n.id == node.id"dir” and n.level+1 == level then break end
n = node.getnext(n)

end

n = n or node.tail(curr)

dx = dx + node.rangedimensions(box, curr, n)/factor * (newdir and 1 or -1)
end
dirs[levell

else
local level = level + 1
newdir = dirs[level].dir
if r2l ~= newdir then

dx = dirs[level].dx

end

end

r2l = newdir

elseif curr.char and curr.font and curr.font > @ then

local ft = font.getfont(curr.font) or font.getcopy(curr.font)

local gid = ft.characters[curr.char].index or curr.char

local scale = ft.size / factor / 1000

local slant = (ft.slant or 0)/1000

local extend = (ft.extend or 1000)/1000

local squeeze = (ft.squeeze or 1000)/1000

local expand = 1 + (curr.expansion_factor or 0)/1000000

local xscale, yscale = scale * extend * expand, scale * squeeze

dx = dx - (r2l and curr.width/factor*expand or 9)

local xoff, yoff = (curr.xoffset or @)/factor, (curr.yoffset or 0)/factor

local xpos, ypos = dx + xshift + xoff, yshift + yoff

local vertical = ""

if ft.shared and (ft.shared.features.vert or ft.shared.features.vrt2) then
if ft.shared.features.vertical then -- luatexko

vertical = "rotated 90"

local data = ft.characters[curr.char] or { }

if ft.hb then

local hoff, voff = (data.luatexko_hoff or @)/factor, (data.luatexko_voff or @)/factor
local charraise = (ft.luatexko_charraise or 0)/factor
Xpos, ypos = xpos - voff + hoff - charraise, ypos + hoff + voff + charraise

{ dir = r2l, dx = dx }

50

1132 else

1133 local cmds = data.commands or { {0,0}, {0,0} }

1134 local voff, hoff = -cmds[1][2]/factor, cmds[2][2]/factor
1135 Xpos, ypos = xpos + hoff, ypos + voff

1136 end

1137 elseif curr ~= box.head then -- luatexja

1138 vertical = "rotated 90"

1139 local en = ft.parameters.quad/factor/2

1140 Xpos, ypos = xpos - xoff - yoff + en, ypos - yoff + xoff - en
1141 end

1142 end

1143 local image

1144 if ft.format == "opentype” or ft.format == "truetype" then

1145 image = luamplib.glyph(curr.font, gid)

1146 else

1147 local name, scale = ft.name, 1

1148 local vf = font.read_vf(name, ft.size)

1149 if vf and vf.characters[gid] then

1150 local cmds = vf.characters[gid].commands or {3}

1151 for _,v in ipairs(cmds) do

1152 if v[1] == "char"” then

1153 gid = v[2]

1154 elseif v[1] == "font” and vf.fonts[v[2]] then

1155 name = vf.fonts[v[2]].name

1156 scale = vf.fonts[v[2]].size / ft.size

1157 end

1158 end

1159 end

1160 image = format("glyph %s of %q scaled %f", gid, name, scale)
1161 end

1162 res[#res+1] = format("mpliboutlinepic[%i]:=%s xscaled %f yscaled %f slanted %f %s shifted (%f,%f);",
1163 #res+1, image, xscale, yscale, slant, vertical, xpos, ypos)
1164 dx = dx + (r2l and @ or curr.width/factorxexpand)

1165 elseif curr.replace then

1166 local width = node.dimensions(curr.replace)/factor

1167 dx = dx - (r2l and width or 0)

1168 res = outline_horz(res, box, curr.replace, xshift+dx, yshift, width)
1169 dx = dx + (r2l and @ or width)

1170 elseif curr.id == node.id"rule"” then

1171 local wd, ht, dp = getrulemetric(box, curr, true)

1172 if wd ~= @ then

1173 local hd = ht + dp

1174 dx = dx - (r2l and wd or @)

1175 if hd ~= @ and curr.subtype == @ then

1176 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1177 end

1178 dx = dx + (r2l and @ or wd)

1179 end

1180 elseif curr.id == node.id"glue"” then

51

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

1229

local width = node.effective_glue(curr, box)/factor
dx = dx - (r2l and width or @)
if curr.leader then
local curr, kind = curr.leader, curr.subtype
if curr.id == node.id"rule"” then
local wd, ht, dp = getrulemetric(box, curr, true)
local hd = ht + dp
if hd ~= @ then
wd = width
if wd ~= @ and curr.subtype == @ then
res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
end
end
elseif curr.head then
local wd = curr.width/factor
if wd <= width then
local dx = r2l and dx+width or dx
local n, ix =0, 0
if kind == 100 or kind == 103 then -- todo: gleaders
local adx = abs(dx-dirs[1].dx)
local ndx = math.ceil(adx / wd) * wd
local diff = ndx - adx
n = math.floor((width-diff) / wd)
dx = dx + (r2l and -diff-wd or diff)
else
n = math.floor(width / wd)
if kind == 101 then
local side = width % wd /2
dx = dx + (r2l and -side-wd or side)
elseif kind == 102 then
ix = width % wd / (n+1)
dx = dx + (r2l and -ix-wd or ix)
end
end
wd = r2l and -wd or wd
ix = r2l and -ix or ix
local func = curr.id == node.id"hlist” and outline_horz or outline_vert
for i=1,n do
res = func(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
dx = dx + wd + ix
end
end
end
end
dx = dx + (r2l and @ or width)
elseif curr.id == node.id"kern” then
dx = dx + curr.kern/factor * (r2l and -1 or 1)
elseif curr.id == node.id"math” then
dx = dx + curr.surround/factor * (r2l and -1 or 1)

52

1230 elseif curr.id == node.id"vlist” then

1231 dx = dx - (r2l and curr.width/factor or @)

1232 res = outline_vert(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1233 dx = dx + (r2l and @ or curr.width/factor)

1234 elseif curr.id == node.id"hlist” then

1235 dx = dx - (r2l and curr.width/factor or 0)

1236 res = outline_horz(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1237 dx = dx + (r2l and @ or curr.width/factor)

1238 end

1239 curr = node.getnext(curr)

1240 end

1241 return res

1242 end

1243 function luamplib.outlinetext (text)

1244 local fmt = process_tex_text(text)

1245 local id = tonumber(fmt:match”"mplibtexboxid=(%d+):")
1246 local box = texgetbox(id)

1247 local res = outline_horz({ }, box, box.head, 0, 0)
1248 if #res == 0 then res = { "mpliboutlinepic[1]:=image();" } end
1249 return tableconcat(res) .. format("mpliboutlinenum:=%i;", #res)
1250 end
1251 end
1252

lua functions for mplib(uc)substring ... of ...

1253 function luamplib.getunicodegraphemes (s)
1254 local t = { }
1255 local graphemes = require’'lua-uni-graphemes’

1256 for _, _, c in graphemes.graphemes(s) do
1257 table.insert(t, c)

1258 end

1259 return t

1260 end

1261 function luamplib.unicodesubstring (s,b,e,grph)
1262 local tt, t, step ={ }

1263 if grph then

1264 t = luamplib.getunicodegraphemes(s)

1265 else

1266 t={13}

1267 for _, ¢ in utf8.codes(s) do
1268 table.insert(t, utf8.char(c))
1269 end

1270 end

1271 if b <= e then
1272 b, step = b+1, 1

1273 else
1274 e, step = e+1, -1
1275 end

1276 for i = b, e, step do

53

1277 table.insert(tt, t[il)

1278 end

1279 S = table.concat(tt):gsub('"','"&ditto&"")
1280 return string.format('"%s"', s)

1281 end

1282

METAPOST preambles

1283 luamplib.preambles = {

1284 preamble = [[

1285 boolean mplib ; mplib := true ;

1286 let dump = endinput ;

1287 let normalfontsize = fontsize;

1288 input %s ;

1289 11,

1290 mplibcode = [[

1291 texscriptmode := 2;

1292 def rawtextext primary t = runscript(”luamplibtext{"&t&"}") enddef;
1293 def mplibcolor primary t = runscript(”luamplibcolor{"&t&"3}") enddef’;
1294 def mplibdimen primary t = runscript(”luamplibdimen{"&t&"}") enddef;
1295 def VerbatimTeX primary t = runscript(”luamplibverbtex{"&t&"}") enddef’;
1296 if known context_mlib:

1297 defaultfont := "cmtt10";

1298 let infont = normalinfont;

1299 let fontsize = normalfontsize;

1300 vardef thelabel@#(expr p,z) =

1301 if string p :

1302 thelabel@#(p infont defaultfont scaled defaultscale,z)
1303 else :

1304 p shifted (z + labeloffset*mfun_laboff@# -

1305 (mfun_labxf@#*1lrcorner p + mfun_labyf@#xulcorner p +
1306 (1-mfun_labxf@#-mfun_labyf@#)*1lcorner p))

1307 fi

1308 enddef;

1309 else:

1310 vardef textext@# primary t = rawtextext (t) enddef;

1311 def message expr t =

1312 if string t: runscript(”mp.report[=["&t&"1=]1") else: errmessage "Not a string” fi
1313 enddef;

1314 def withtransparency (expr a, t) =

1315 withprescript "tr_alternative=" & if numeric a: decimal fi a
1316 withprescript "tr_transparency=" & decimal t

1317 enddef’;

1318 vardef ddecimal primary p =

1319 decimal xpart p & " " & decimal ypart p

1320 enddef;

1321 vardef boundingbox primary p =

1322 if (path p) or (picture p) :

1323 llcorner p -- lrcorner p -- urcorner p -- ulcorner p

54

1324 else :

1325 origin

1326 fi -- cycle

1327 enddef;

1328 fi

1329 def resolvedcolor(expr s) =

1330 runscript(”return luamplib.shadecolor('"& s &"')")
1331 enddef;

1332 def colordecimals primary c =

1333 if cmykcolor c:

1334 decimal cyanpart c & ":" & decimal magentapart c & ":" &

1335 decimal yellowpart c & ":" & decimal blackpart c

1336 elseif rgbcolor c:

1337 decimal redpart c & ":" & decimal greenpart c & ":" & decimal bluepart c
1338 elseif string c:

1339 if known graphictextpic: c else: colordecimals resolvedcolor(c) fi

1340 else:

1341 decimal ¢

1342 fi

1343 enddef’;

1344 def externalfigure primary filename =

1345 draw rawtextext(”\includegraphics{"& filename &"}")

1346 enddef’;

1347 def TEX = textext enddef’;

1348 def mplibtexcolor primary c =

1349 runscript(”return luamplib.gettexcolor('"& c &"')")

1350 enddef’;

1351 def mplibrgbtexcolor primary c =

1352 runscript(”return luamplib.gettexcolor('"& c &"','rgh')")

1353 enddef;

1354 def mplibgraphictext primary t =

1355 begingroup;

1356 mplibgraphictext_ (t)

1357 enddef’;

1358 def mplibgraphictext_ (expr t) text rest =

1359 save fakebold, scale, fillcolor, drawcolor, withfillcolor, withdrawcolor, strokecolor,
1360 fb, fc, dc, graphictextpic, alsoordoublepath;

1361 picture graphictextpic; graphictextpic := nullpicture;

1362 numeric fb; string fc, dc; fb:=2; fc:="white"; dc:="black";

1363 let scale = scaled;

1364 def fakebold primary ¢ = hide(fb:=c;) enddef;

1365 def fillcolor primary ¢ = hide(fc:=colordecimals c;) enddef;

1366 def drawcolor primary ¢ = hide(dc:=colordecimals c;) enddef;

1367 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1368 def alsoordoublepath expr p = if picture p: also else: doublepath fi p enddef;

1369 addto graphictextpic alsoordoublepath (origin--cycle) rest; graphictextpic:=nullpicture;
1370 def fakebold primary ¢ = enddef;

1371 let fillcolor = fakebold; let drawcolor = fakebold;

1372 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;

55

1373 image(draw runscript(”return luamplib.graphictext([===["&t&"]===1,"
1374 & decimal fb &",'"& fc &"','"& dc &"')") rest;)

1375 endgroup;

1376 enddef’;

1377 def mplibglyph expr c of f =

1378 runscript (

1379 "return luamplib.glyph(

Xl

1380 & if numeric f: decimal fi f
1381 & na "

,
1382 & if numeric c: decimal fi c
1383 & n)Il
1384)

1385 enddef;

1386 numeric luamplib_tmp_num_; luamplib_tmp_num_ = 0;

1387 def mplibdrawglyph expr g =

1388 luamplib_tmp_num_ := 0;

1389 for item within g:

1390 fill pathpart item

1391 if incr luamplib_tmp_num_ < length g: withpostscript "collect”; fi
1392 endfor

1393 enddef’;

1394 let mplibfillglyph = mplibdrawglyph;

1395 def mplibstrokeglyph expr g =

1396 luamplib_tmp_num_ := @;

1397 for item within g:

1398 draw pathpart item

1399 if incr luamplib_tmp_num_ < length g: withpostscript "collect”; fi
1400 endfor

1401 enddef’;

1402 def mplibfillandstrokeglyph expr g =

1403 luamplib_tmp_num_ := @;
1404 for item within g:
1405 draw pathpart item withpostscript

1406 if incr luamplib_tmp_num_ < length g: "collect”; else: "both” fi
1407 endfor

1408 enddef’;

1409 def withmplibcolors (expr f, s) =

1410 runscript("return luamplib.fillandstrokecolor('"” &

1411 if not string f: colordecimals fi f & "','" &

1412 if not string s: colordecimals fi s & "')")

1413 enddef;

1414 def mplib_do_outline_text_set_b (text f) (text d) text r =
1415 def mplib_do_outline_options_f = f enddef;

1416 def mplib_do_outline_options_d = d enddef;

1417 def mplib_do_outline_options_r = r enddef;

1418 enddef;

1419 def mplib_do_outline_text_set_f (text f) text r =

1420 def mplib_do_outline_options_f = f enddef;

1421 def mplib_do_outline_options_r = r enddef;

56

1422 enddef’;

1423 def mplib_do_outline_text_set_u (text f) text r

1424

def mplib_do_outline_options_f = f enddef;

1425 enddef’;

1426 def mplib_do_outline_text_set_d (text d) text r

1427
1428

def mplib_do_outline_options_d = d enddef;
def mplib_do_outline_options_r = r enddef;

1429enddef;
1430 def mplib_do_outline_text_set_r (text d) (text f) text r =

1431 def mplib_do_outline_options_d = d enddef;
1432 def mplib_do_outline_options_f = f enddef;
1433 def mplib_do_outline_options_r = r enddef;
1434enddef;

1435 def mplib_do_outline_text_set_n text r =

1436

def mplib_do_outline_options_r = r enddef;

1437 enddef’;
1438 def mplib_do_outline_text_set_p = enddef’;
1439 def mplib_fill_outline_text =

1440
1441
1442
1443
1444
1445
1446
1447

for n=1 upto mpliboutlinenum:
1:=0;
for item within mpliboutlinepic[n]:
i:=i+1;
fill pathpart item mplib_do_outline_options_f withpen pencircle scaled 0
if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]): withpostscript "collect”; fi
endfor
endfor

1448 enddef’;
1449 def mplib_draw_outline_text =

1450
1451
1452
1453
1454

for n=1 upto mpliboutlinenum:
for item within mpliboutlinepic[n]:
draw pathpart item mplib_do_outline_options_d;
endfor
endfor

1455 enddef;
1456 def mplib_filldraw_outline_text =

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

for n=1 upto mpliboutlinenum:
i:=0;
for item within mpliboutlinepic[n]:
i:=i+1;
if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]):
fill pathpart item mplib_do_outline_options_f withpostscript "collect”;
else:
draw pathpart item mplib_do_outline_options_f withpostscript "both”;
fi
endfor
endfor

1468 enddef’;
1469 vardef mpliboutlinetext@# (expr t) text rest =

1470

save kind; string kind; kind := str @#;

57

1471 save 1i; numeric i;

1472 picture mpliboutlinepic[]; numeric mpliboutlinenum;

1473 def mplib_do_outline_options_d = enddef;

1474 def mplib_do_outline_options_f = enddef;

1475 def mplib_do_outline_options_r = enddef;

1476 runscript("return luamplib.outlinetext[===["8&t&"]===]1");
1477 image (addto currentpicture also image (

1478 if kind = "f":

1479 mplib_do_outline_text_set_f rest;
1480 mplib_fill_outline_text;

1481 elseif kind = "d":

1482 mplib_do_outline_text_set_d rest;
1483 mplib_draw_outline_text;

1484 elseif kind = "b":

1485 mplib_do_outline_text_set_b rest;
1486 mplib_fill_outline_text;

1487 mplib_draw_outline_text;

1488 elseif kind = "u":

1489 mplib_do_outline_text_set_u rest;
1490 mplib_filldraw_outline_text;

1491 elseif kind = "r":

1492 mplib_do_outline_text_set_r rest;
1493 mplib_draw_outline_text;

1494 mplib_fill_outline_text;

1495 elseif kind = "p":

1496 mplib_do_outline_text_set_p;

1497 mplib_draw_outline_text;

1498 else:

1499 mplib_do_outline_text_set_n rest;
1500 mplib_fill_outline_text;

1501 fi;

1502) mplib_do_outline_options_r;)

1503 enddef ;

1504 def withmppattern primary p =

1505 Withprescript "mplibpattern=" & if numeric p: decimal fi p
1506 enddef’;

1507 primarydef t withpattern p =

1508 image(

1509 if cycle t:

1510 fill

1511 else:

1512 draw

1513 fi

1514 t withprescript "mplibpattern=" & if numeric p: decimal fi p;)

1515 enddef’;

1516 vardef mplibtransformmatrix (text e) =
1517 save t; transform t;

1518 t = identity e;

1519 runscript(”luamplib.transformmatrix = {"

58

non

1520 & decimal xxpart t &
1521 & decimal yxpart t & ","
1522 & decimal xypart t & ","
1523 & decimal yypart t & ",”
1524 & decimal xpart t & ",”
1525 & decimal ypart t & ",”

1526 & "}");

1527 enddef;

1528 primarydef p withmaskinggroup s =
1529 if picture p:

1530 image(

1531 draw p;

1532 draw center p withprescript "mplibfadestate=stop”;
1533)

1534 else:

1535 p withprescript "mplibfadestate=stop”

1536 fi

1537 withprescript "mplibfadetype=masking”
1538 withprescript "mplibmaskname=" & s
1539 enddef’;

1540 primarydef p withfademethod s =

1541 if picture p:

1542 image(

1543 draw p;

1544 draw center p withprescript "mplibfadestate=stop”;
1545)

1546 else:

1547 p withprescript "mplibfadestate=stop”

1548 fi

1549 withprescript "mplibfadetype=" & s
1550 withprescript "mplibfadebbox=" &

1551 decimal (xpart llcorner p -1/4) & ":" &
1552 decimal (ypart llcorner p -1/4) & ":" &
1553 decimal (xpart urcorner p +1/4) & ":" &
1554 decimal (ypart urcorner p +1/4)

1555 enddef’;
1556 def withfadeopacity (expr a,b) =
1557 Withprescript "mplibfadeopacity=" &

1558 decimal a & ":" &
1559 decimal b
1560 enddef;

1561 def withfadevector (expr a,b) =
1562 Withprescript "mplibfadevector=" &

1563 decimal xpart a & ":" &
1564 decimal ypart a & ":" &
1565 decimal xpart b & ":" &

1566 decimal ypart b
1567 enddef’;
1568 let withfadecenter = withfadevector;

59

1569 def withfaderadius (expr a,b) =

1570
1571
1572

withprescript "mplibfaderadius=" &
decimal a & ":" &
decimal b

1573 enddef’;
1574 def withfadebbox (expr a,b) =
1575 Wwithprescript "mplibfadebbox=" &

1576 decimal xpart a & ":" &
1577 decimal ypart a & ":" &
1578 decimal xpart b & ":" &
1579 decimal ypart b

1580 enddef’;

1581 primarydef p asgroup s =
1582 image(

1583 draw center p

1584 withprescript "mplibgroupbbox=" &

1585 decimal (xpart llcorner p -1/4) & ":" &
1586 decimal (ypart llcorner p -1/4) & ":" &
1587 decimal (xpart urcorner p +1/4) & ":" &
1588 decimal (ypart urcorner p +1/4)

1589 withprescript "gr_state=start”

1590 withprescript "gr_type=" & s;

1591 draw p;

1592 draw center p withprescript "gr_state=stop”;
1593)

1594 enddef’;
1595 def withgroupbbox (expr a,b) =
1596 Wwithprescript "mplibgroupbbox=" &

1597 decimal xpart a & ":" &
1598 decimal ypart a & ":" &
1599 decimal xpart b & ":" &

1600 decimal ypart b

1601 enddef’;

1602 def withgroupname expr s =

1603 Withprescript "mplibgroupname=" & s

1604 enddef’;

1605 def usemplibgroup primary s =

1606 draw maketext("\luamplibtagasgroupput{"& s &"}{\csname luamplib.group.”& s &"\endcsname}")
1607 shifted runscript(”return luamplib.trgroupshifts['" & s & "']")
1608 enddef’;

1609 path mplib_shade_path ;

1610 numeric mplib_shade_step ; mplib_shade_step := 0 ;

1611 numeric mplib_shade_fx, mplib_shade_fy ;

1612 numeric mplib_shade_1x, mplib_shade_ly ;

1613 numeric mplib_shade_nx, mplib_shade_ny ;

1614 numeric mplib_shade_dx, mplib_shade_dy ;

1615 numeric mplib_shade_tx, mplib_shade_ty ;

1616 primarydef p withshadingmethod m =

1617 P

60

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630

if picture p :

withprescript "sh_operand_type=picture”

if textual p or (length p > 1):
withprescript "sh_transform=no”
mplib_with_shade_method (boundingbox p, m)

else:

withprescript "sh_transform=yes”
mplib_with_shade_method (pathpart p, m)

fi
else :

withprescript "sh_transform=yes”
mplib_with_shade_method (p, m)

fi

1631enddef;
1632 def mplib_with_shade_method (expr p, m) =
hide(mplib_with_shade_method_analyze(p))

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653

withprescript
withprescript
withprescript
withprescript
withprescript
withprescript
withprescript

"sh_domain=0 1"
"sh_color=into"
"sh_color_a=" & colordecimals white
"sh_color_b=" & colordecimals black
"sh_first=" & ddecimal point @ of p
"sh_set_x=" & ddecimal (mplib_shade_nx,mplib_shade_1x)
"sh_set_y=" & ddecimal (mplib_shade_ny,mplib_shade_ly)

if m = "linear"” :
"sh_type=linear”

withprescript
withprescript
withprescript
withprescript
else :
withprescript
withprescript
withprescript
withprescript
withprescript
withprescript
fi

1654 enddef’;
1655 def mplib_with_shade_method_analyze(expr p) =

1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

mplib_shade_path :
mplib_shade_step :

mplib_shade_fx
mplib_shade_fy
mplib_shade_1x
mplib_shade_ly
mplib_shade_nx
mplib_shade_ny
mplib_shade_dx
mplib_shade_dy

"sh_factor=1"

"sh_center_a=" & ddecimal llcorner p
"sh_center_b=" & ddecimal urcorner p

"sh_type=circul
"sh_factor=1.2"
"sh_center_a="
"sh_center_b="
"sh_radius_a="
"sh_radius_b="

[V
L
xpart point
ypart point

=0,
=0 ;
abs(mplib_s
:= abs(mplib_s

for i=1 upto length(p) :

ar”

& ddecimal center p
& ddecimal center p

& decimal
& decimal

0 of p ;
0 of p ;

mplib_shade_fx ;
mplib_shade_fy ;

hade_fx -
hade_fy -

0

mplib_max_radius(p)

mplib_shade_1x) ;
mplib_shade_ly) ;

61

1667 mplib_shade_tx := abs(mplib_shade_fx - xpart point i of p) ;

1668 mplib_shade_ty := abs(mplib_shade_fy - ypart point i of p) ;

1669 if mplib_shade_tx > mplib_shade_dx :

1670 mplib_shade_nx := i + 1 ;

1671 mplib_shade_1x := xpart point i of p ;

1672 mplib_shade_dx := mplib_shade_tx ;

1673 fi;

1674 if mplib_shade_ty > mplib_shade_dy :

1675 mplib_shade_ny :=1i + 1 ;

1676 mplib_shade_ly := ypart point i of p ;

1677 mplib_shade_dy := mplib_shade_ty ;

1678 fi;

1679 endfor ;

1680 enddef’;

1681 vardef mplib_max_radius(expr p) =

1682 max (

1683 (xpart center p - xpart llcorner p) ++ (ypart center p - ypart llcorner p),
1684 (xpart center p - xpart ulcorner p) ++ (ypart ulcorner p - ypart center p),
1685 (xpart lrcorner p - xpart center p) ++ (ypart center p - ypart lrcorner p),
1686 (xpart urcorner p - xpart center p) ++ (ypart urcorner p - ypart center p)
1687)

1688 enddef’;
1689 def withshadingstep (text t) =

1690 hide(mplib_shade_step := mplib_shade_step + 1 ;)
1691 withprescript "sh_step=" & decimal mplib_shade_step
1692 t

1693 enddef’;

1694 def withshadingradius expr a =

1695 withprescript "sh_radius_a=" & decimal (xpart a)
1696 withprescript "sh_radius_b=" & decimal (ypart a)
1697 enddef’;

1698 def withshadingorigin expr a =
1699 withprescript "sh_center_a="
1700 Withprescript "sh_center_b="
1701enddef;

1702 def withshadingvector expr a =
1703 Withprescript "sh_center_a="
1704 Withprescript "sh_center_b="
1705 enddef';

1706 def withshadingdirection expr a =

1707 Wwithprescript "sh_center_a=" & ddecimal (point xpart a of boundingbox(mplib_shade_path))
1708 withprescript "sh_center_b=" & ddecimal (point ypart a of boundingbox(mplib_shade_path))
1709 enddef’;

1710 def withshadingtransform expr a =

1711 withprescript "sh_transform=" & a

1712enddef;

1713 def withshadingcenter expr a =

& ddecimal a
& ddecimal a

& ddecimal (point xpart a of mplib_shade_path)
& ddecimal (point ypart a of mplib_shade_path)

1714
1715

withprescript "sh_center_a=" & ddecimal (
center mplib_shade_path shifted (

62

1716 xpart a * xpart (lrcorner mplib_shade_path - llcorner mplib_shade_path)/2,

1717 ypart a * ypart (urcorner mplib_shade_path - lrcorner mplib_shade_path)/2
1718)

1719)

1720 enddef’;

1721 def withshadingdomain expr d =

1722 Withprescript "sh_domain=" & ddecimal d
1723 enddef;

1724 def withshadingfactor expr f
1725 Withprescript "sh_factor=" & decimal f

1726 enddef’;

1727 def withshadingfraction expr a =

1728 if mplib_shade_step > 0 :

1729 withprescript "sh_fraction_" & decimal mplib_shade_step & "=" & decimal a

1730 fi

1731 enddef’;

1732 def withshadingcolors (expr a, b) =
1733 if mplib_shade_step > 0 :

1734 withprescript "sh_color=into”

1735 withprescript "sh_color_a_" & decimal mplib_shade_step & "=" & colordecimals a
1736 withprescript "sh_color_b_" & decimal mplib_shade_step & "=" & colordecimals b
1737 else :

1738 withprescript "sh_color=into”

1739 withprescript "sh_color_a=" & colordecimals a

1740 withprescript "sh_color_b=" & colordecimals b

1741 fi

1742 enddef’;

1743 def withshadingstroke expr a =

1744 Wwithprescript "sh_stroking=" & a

1745 enddef;

1746 def mpliblength primary t =

1747 runscript("return utf8.len[===[" & t & "]===]")

1748 enddef’;

1749 def mplibsubstring expr p of t =

1750 runscript(”return luamplib.unicodesubstring([===[" & t & "]===],"
1751 & decimal xpart p & ","

1752 & decimal ypart p & ")")

1753 enddef’;

1754 def mplibuclength primary t =

1755 runscript(”return #luamplib.getunicodegraphemes[===[" & t & "J]===]")
1756 enddef’;

1757 def mplibucsubstring expr p of t =

1758 runscript(”return luamplib.unicodesubstring([===[" & t & "]1===],"
1759 & decimal xpart p & ","

1760 & decimal ypart p & ",true)"”)

1761 enddef;

1762 1],

1763 legacyverbatimtex = [[

1764 def specialVerbatimTeX (text t) = runscript(”luamplibprefig{”&t&"}") enddef;

63

1765 def normalVerbatimTeX (text t) = runscript(”luamplibinfig{"&t&"}") enddef;
1766 let VerbatimTeX = specialVerbatimTeX;

1767 extra_beginfig := extra_beginfig & " let VerbatimTeX = normalVerbatimTeX;"&
1768 "runscript(” &ditto& "luamplib.in_the_fig=true" &ditto& ");";

1769 extra_endfig := extra_endfig & " let VerbatimTeX = specialVerbatimTeX;"&
1770 "runscript(” &ditto&

1771 "if luamplib.in_the_fig then luamplib.figid=luamplib.figid+1 end "&

1772 "luamplib.in_the_fig=false" &ditto& ");";

1773 1],

1774 textextlabel = [[

1775 let luampliboriginalinfont = infont;

1776 primarydef s infont f =

1777 if (s < char 32)

1778 or (s =char 35) % #
1779 or (s =char 36) % $
1780 or (s =char 37) % %
1781 or (s =char 38) % &
1782 or (s = char 92) % \

1783 or (s = char 94) %
1784 or (s = char 95) % _
1785 or (s = char 123) % {
1786 or (s =char 125) % }
1787 or (s = char 126) % ~
1788 or (s = char 127) :

1789 s luampliboriginalinfont f
1790 else :

1791 rawtextext(s)

1792 fi

1793 enddef’;

1794 def fontsize expr f =

1795 begingroup

1796 save size; numeric size;
1797 size := mplibdimen("1em");
1798 if size = 0: 10pt else: size fi
1799 endgroup

1800 enddef’;

1801 11,

1802 }

1803

process_mplibcode

When \mplibverbatim is enabled, do not expand mplibcode data.
1804 luamplib.verbatiminput = false
1805 luamplib.everymplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1806 luamplib.everyendmplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1807 function luamplib.process_mplibcode (data, instancename)
1808 texboxes.localid = 4096

This is needed for legacy behavior

1809 if luamplib.legacyverbatimtex then

64

1810 luamplib.figid, tex_code_pre_mplib =1, {}

1811 end

1812 local everymplib luamplib.everymplib[instancename]

1813 local everyendmplib = luamplib.everyendmplib[instancename]

1814 data = format("\n%s\n%s\n%s\n",everymplib, data, everyendmplib)
1815 :gsub("\r","\n")

These five lines are needed for mplibverbatim mode.

1816 if luamplib.verbatiminput then

1817 data = data:gsub("\\mpcolor%s+(.-%b{3})", "mplibcolor(\"%1\")")
1818 cgsub("\\mpdim%s+(%b{3})", "mplibdimen(\"%1\")")

1819 :gsub("\\mpdim%s+(\\%a+)", "mplibdimen(\"%1\")")

1820 :gsub(btex_etex, "btex %1 etex ")
1821 :gsub(verbatimtex_etex, "verbatimtex %1 etex;")
1822 else

If not mplibverbatim, expand mplibcode data, so that users can use TgX codes in it. It has turned
out that no comment sign is allowed. However, we do not expand btex ... etex, verbatimtex
... etex, and string expressions.

1823 local t = { } -- to store btex, verbatimtex, string

1824 data = data:gsub(btex_etex, function(str)

1825 t[#t+1] = str

1826 return format("btex \\unexpanded{!1!u!a!%s!m!p!1!} etex ", #t) -- space
1827 end)

1828 :gsub(verbatimtex_etex, function(str)

1829 t[#t+1] = str

1830 return format("verbatimtex \\unexpanded{!l!ula!%s!m!p!1l!} etex;", #t) -- semicolon
1831 end)

1832 :gsub('"(.-)"", function(str)

1833 t[#t+1] = str

1834 return format('"\\unexpanded{!1!ula!%s!m!p!1!}"" #t)

1835 end)

1836 :gsub("\\%%", "\@PerCent\0")

1837 cgsub("%%.-\n","\n")

1838 :gsub("%zPerCent%z", "\\%%")

1839 run_tex_code(format("\\mplibtmptoks\\expandafter{\\expanded{%s}}",data))
1840 data = texgettoks”mplibtmptoks”

Next line to address issue #55
1841 sgsub("##", "#")

1842 cgsub("!1tulal (5d+)!m!p!1!"”, function(str) return t[tonumber(str)] or str end)
1843 end

1844 process(data, instancename)

1845 end

1846

pdfliterals will be stored in figcontents table, and written to pdf in one go at the end of the
flushing figure. Subtable post is for the legacy behavior.

1847 local figcontents = { post = { } }
1848 local function put2output(a,...)

65

1849 figcontents[#figcontents+1] = type(a) == "string” and format(a,...) or a
1850 end

1851 local function pdf_startfigure(n,llx,lly,urx,ury)

1852 put2output("\\mplibstarttoPDF{%f H{%fH{ % H{%f}",11x,11y,urx,ury)

1853 end

1854 local function pdf_stopfigure()

1855 put2output(”\\mplibstoptoPDF")

1856 end

tex.sprint with catcode regime -2, as sometimes # gets doubled in the argument of pdfliteral.

1857 local function pdf_literalcode (...)

1858 put2output{ -2, (format(...) :gsub(decimals,rmzeros)) }
1859 end

1860 local start_pdf_code = pdfmode

1861 and function() pdf_literalcode"q"” end

1862 or function() put2output”\\special{pdf:bcontent}" end
1863 local stop_pdf_code = pdfmode

1864 and function() pdf_literalcode”Q" end

1865 or function() put2output”\\special{pdf:econtent}" end
1866

Now we process hboxes created from btex ... etex or textext(...) or TEX(...) etc.

1867 local function put_tex_boxes (object,prescript)

1868 local box = prescript.mplibtexboxid:explode”:"

1869 local n,tw,th = box[1], tonumber(box[2]), tonumber(box[31)
1870 if n and tw and th then

1871 local op = object.path

1872 local first, second, fourth = op[1], op[2], op[4]

1873 local tx, ty = first.x_coord, first.y_coord

1874 local sx, rx, ry, sy =1, 0, 9, 1

1875 if tw ~= @ then

1876 sx = (second.x_coord - tx)/tw
1877 rx = (second.y_coord - ty)/tw
1878 if sx == 0 then sx = 0.00001 end
1879 end

1880 if th ~= @ then

1881 sy = (fourth.y_coord - ty)/th
1882 ry = (fourth.x_coord - tx)/th
1883 if sy == @ then sy = 0.00001 end
1884 end

1885 start_pdf_code()

1886 pdf_literalcode("%f %f %f %f %f %f cm”, sx,rx,ry,sy,tx,ty)
1887 put2output("\\mplibputtextbox{%i}",n)

1888 stop_pdf_code()

1889 end

1890 end

1891

Colors

1892 local do_preobj_CR

66

1893 do
1894 local prev_override_color
1895 function do_preobj_CR(object,prescript)

1896 if object.postscript == "collect” then return end
1897 local override = prescript and prescript.mpliboverridecolor
1898 if override then

1899 if pdfmode then

1900 pdf_literalcode(override)

1901 override = nil

1902 else

1903 put2output(”\\special{%s}",override)

1904 prev_override_color = override

1905 end

1906 else

1907 local cs = object.color

1908 if cs and #cs > @ then

1909 pdf_literalcode(luamplib.colorconverter(cs))
1910 prev_override_color = nil

1911 elseif not pdfmode then

1912 override = prev_override_color

1913 if override then

1914 put2output(”\\special{%s}",override)

1915 end

1916 end

1917 end

1918 return override

1919 end

1920 end

1921

For transparency, shading, fading, and pattern

1922 local pdfmanagement = is_defined’pdfmanagement_add:nnn’

1923 local pdfobjs, pdfetcs = {3}, {3}

1924 pdfetcs.pgfextgs = "pgf@sys@addpdfresource@extgs@plain”

1925 pdfetcs.pgfpattern = "pgf@sys@addpdfresource@patterns@plain”

1926 pdfetcs.pgfcolorspace = "pgf@sys@addpdfresource@colorspaces@plain’
1927 local function update_pdfobjs (os, stream)

1928 local key = os

1929 if stream then key = key..stream end

1930 local on = key and pdfobjs[key]

1931 if on then

i

1932 return on,false

1933 end

1934 if pdfmode then

1935 if stream then

1936 on = pdf.immediateobj("stream”,stream,os)
1937 elseif os then

1938 on = pdf.immediateobj(os)

1939 else

67

1940 on = pdf.reserveobj()

1941 end

1942 else

1943 on = pdfetcs.cnt or 1

1944 if stream then

1945 texsprint(format("\\special{pdf:stream @mplibpdfobj%s (%s) <<%s>>}",on,stream,os))
1946 elseif os then

1947 texsprint(format("\\special{pdf:obj @mplibpdfobj%s %s}",on,os))
1948 else

1949 texsprint(format("\\special{pdf:obj @mplibpdfobj%s <<>>}",on))
1950 end

1951 pdfetcs.cnt = on + 1

1952 end

1953 if key then

1954 pdfobjs[key] = on

1955 end

1956 return on,true

1957 end

1958 pdfetcs.resfmt = pdfmode and "%s @ R" or "@mplibpdfobj%s”
1959 if pdfmode then

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

pdfetcs.getpageres = pdf.getpageresources or function() return pdf.pageresources end
local getpageres = pdfetcs.getpageres
local setpageres = pdf.setpageresources or function(s) pdf.pageresources = s end
local initialize_resources = function (name)
local tabname = format("%s_res",name)
pdfetcs[tabname] = { }
if luatexbase.callbacktypes.finish_pdffile then -- ltluatex
local obj = pdf.reserveobj()
setpageres(format("%s/%s %i @ R", getpageres() or "", name, obj))
luatexbase.add_to_callback("finish_pdffile”, function()
pdf. immediateobj(obj, format("<<%s>>", tableconcat(pdfetcs[tabname]l)))
end,
format("luamplib.%s.finish_pdffile"”,name))
end
end
pdfetcs. fallback_update_resources = function (name, res)
local tabname = format("%s_res",name)
if not pdfetcs[tabname] then
initialize_resources(name)
end
if luatexbase.callbacktypes.finish_pdffile then
local t = pdfetcs[tabname]
t[#t+1] = res
else
local tpr, n = getpageres() or "", @
tpr, n = tpr:gsub(format("/%s<<",name), "%1"..res)
if n == @ then
tpr = format("%s/%s<<%s>>", tpr, name, res)
end

nn

68

1989 setpageres(tpr)

1990 end

1991 end

1992 else

1993 texsprint {

1994 "\\luamplibatfirstshipout{",

1995 "\\special{pdf:obj @MPlibTr<<>>}",

1996 "\\special{pdf:obj @MPlibSh<<>>}",

1997 "\\special{pdf:obj @MP1ibCS<<>>}",

1998 "\\special{pdf:obj @MPlibPt<<>>}}",

1999 }

2000 pdfetcs.resadded = { }

2001 pdfetcs.fallback_update_resources = function (name,res,obj)
2002 texsprint{"\\special{pdf:put ", obj, " <<", res, ">>}"}

2003 if not pdfetcs.resadded[name] then
2004 texsprint{"\\luamplibateveryshipout{\\special{pdf:put @resources <</", name, " ", obj, ">>}}"}
2005 pdfetcs.resadded[name] = obj
2006 end
2007 end
2008 end
2009
Transparency

2010 local function add_extgs_resources (on, new)
2011 local key = format("MPlibTr#%s", on)
2012 if new then

2013 local val = format(pdfetcs.resfmt, on)

2014 if pdfmanagement then

2015 texsprint {

2016 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ExtGState}{", key, "H", val, "}"
2017 }

2018 else

2019 local tr = format("/%s %s", key, val)

2020 if is_defined(pdfetcs.pgfextgs) then

2021 texsprint { "\\csname ", pdfetcs.pgfextgs, "\\endcsname{", tr, "}" }
2022 elseif is_defined"TRP@list” then

2023 texsprint(catat11,{

2024 [[\ifefilesw\immediate\write\@auxout{]],

2025 [[\string\g@addto@macro\string\TRP@list{]],

2026 tr,

2027 COIF\fi1]d,

2028 b

2029 if not get_macro”TRP@list"”:find(tr) then

2030 texsprint(catat11, [[\global\TRP@reruntruel])

2031 end

2032 else

2033 pdfetcs. fallback_update_resources("ExtGState”,tr,"@MPlibTr")
2034 end

2035 end

69

2036 end

2037 return key

2038 end

2039

2040 local do_preobj_TR

2041 do

2042 local transparancy_modes = {
2043 [0] = "Normal”,

2044 "Normal”, "Multiply”, "Screen”, "Overlay”,

2045 "SoftLight”, "HardLight", "ColorDodge”, "ColorBurn”,

2046 "Darken”, "Lighten”, "Difference”, "Exclusion”,

2047 "Hue", "Saturation”, "Color”, "Luminosity”,

2048 "Compatible”,

2049 normal = "Normal”, multiply = "Multiply”, screen = "Screen”,
2050 overlay = "Overlay”, softlight = "SoftlLight”, hardlight = "HardLight",
2051 colordodge = "ColorDodge”, colorburn = "ColorBurn”, darken = "Darken",
2052 lighten = "Lighten", difference = "Difference”, exclusion = "Exclusion”,
2053 hue = "Hue", saturation = "Saturation”, color = "Color”,
2054 luminosity = "Luminosity”, compatible = "Compatible”,

2055}

2056 function do_preobj_TR(object,prescript)

2057 if object.postscript == "collect” then return end

2058 local opag = prescript and prescript.tr_transparency

2059 if opag then

2060 local key, on, 0s, new

2061 local mode = prescript.tr_alternative or 1

2062 mode = transparancy_modes[tonumber(mode) or mode:lower()]

2063 if not mode then

2064 mode = prescript.tr_alternative

2065 warn("unsupported blend mode: '%s'", mode)

2066 end

2067 opaq = format("%.3f", opag) :gsub(decimals,rmzeros)

2068 for i,v in ipairs{ {mode,opaq},{"Normal”,1} } do

2069 os = format("<</BM/%s/ca %s/CA %s/AIS false>>" v[1],v[2],v[2])

2070 on, new = update_pdfobjs(os)

2071 key = add_extgs_resources(on,new)

2072 if i == 1 then

2073 pdf_literalcode("/%s gs", key)

2074 else

2075 return format("/%s gs",key)

2076 end

2077 end

2078 end

2079 end

2080 end

2081

Shading with metafun format.

2082 local function sh_pdfpageresources(shtype,domain,colorspace,ca,cb,coordinates, steps, fractions)

70

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130

2131

for _,v in ipairs{ca,cb} do
for i,vv in ipairs(v) do
for ii,vvv in ipairs(vv) do

v[i][ii] = tonumber(vvv) and format("%.3f",vvv) or vvv

end
end
end

local fun2fmt,os = "<</FunctionType 2/Domain[%s]1/CO[%s]1/C1[%s]1/N 1>>"

if steps > 1 then
local list,bounds,encode = { },{ },{ }
for i=1,steps do
if i < steps then

bounds[i] = format("%.3f", fractions[i] or 1)

end
encode[2*i-1] = @
encode[2*i] =1

os = fun2fmt:format(domain,tableconcat(calil,’ '),tableconcat(cb[i],’ '))

:gsub(decimals, rmzeros)

list[i] = format(pdfetcs.resfmt, update_pdfobjs(os))

end
os = tableconcat {
"<</FunctionType 3",

format("”/Bounds[%s]", tableconcat(bounds, ' ")),
format("/Encode[%s]1", tableconcat(encode, ' ")),

format("/Functions[%s]", tableconcat(list,

format("/Domain[%s]1>>", domain),
} :gsub(decimals,rmzeros)
else

os = fun2fmt:format(domain,tableconcat(cal1],' '),tableconcat(cb[1]1,’ "))

:gsub(decimals, rmzeros)
end

local objref = format(pdfetcs.resfmt, update_pdfobjs(os))

os = tableconcat {
format("<</ShadingType %i", shtype),
format("/ColorSpace %s", colorspace),
format("/Function %s", objref),
format("”/Coords[%s]",
"/Extend[true truel/AntiAlias true>>",

} :gsub(decimals,rmzeros)

local on, new = update_pdfobjs(os)

if new then

local key, val = format("MP1libSh%s”, on), format(pdfetcs.resfmt, on)

if pdfmanagement then
texsprint {

"\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Shading}{", key, "}", val,

}

else
local res = format("/%s %s", key, val)

pdfetcs. fallback_update_resources(”Shading”,res,"@PlibSh")

coordinates),

71

' I)))

n}n

2132 end
2133 end
2134 return on

2135 end

2136

2137 local do_preobj_SH

2138 do

2139 pdfetcs.clrspcs = setmetatable({ }, { __index = function(t,names)
2140 run_tex_code({

2141 [[\color_model_new:nnn]],

2142 format("{mplibcolorspace_%s}", names:gsub(”,"”,"”_")),
2143 format("{DeviceN}{names={%s}}", names),

2144 [[\edef\mplib_@tempa{\pdf_object_ref_last:}1],

2145 }, ccexplat)

2146 local colorspace = get_macro’'mplib_@tempa’

2147 t[names] = colorspace

2148 return colorspace

2149 end })

2150 local function color_normalize(ca,cb)
2151 if #cb == 1 then

2152 if #ca == 4 then

2153 cb[1], cb[2], cb[3], cb[4] = 0, @, @, 1-cb[1]
2154 else -- #ca =3

2155 cb[1], cb[2], cb[3] = cb[1], cb[1], cb[1]
2156 end

2157 elseif #cb == 3 then -- #ca == 4

2158 cb[1], cb[2], cb[3], cb[4] = 1-cb[1], 1-cb[2], 1-cb[3], @
2159 end

2160 end

2161 function do_preobj_SH(object, prescript)

2162 local shade_no

2163 local sh_type = prescript and prescript.sh_type
2164 if not sh_type then

2165 return

2166 else

2167 local domain = prescript.sh_domain or "@ 1"

2168 local centera = (prescript.sh_center_a or "0 0"):explode()
2169 local centerb = (prescript.sh_center_b or "0 0"):explode()
2170 local transform = prescript.sh_transform == "yes"

2171 local sx,sy,sr,dx,dy = 1,1,1,0,0

2172 if transform then

2173 local first = (prescript.sh_first or "0 0"):explode()
2174 local setx = (prescript.sh_set_x or "0 0"):explode()
2175 local sety = (prescript.sh_set_y or "0 0"):explode()
2176 local x,y = tonumber(setx[1]) or @, tonumber(sety[1]) or @
2177 if x ~=0 and y ~= 0 then

2178 local path = object.path

2179 local pathlx = path[1].x_coord

2180 local pathly = path[1].y_coord

72

2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228

2229

local path2x = path[x].x_coord
local path2y = path[y].y_coord
local dxa = path2x - pathix
local dya = path2y - pathly
local dxb = setx[2] - first[1]
local dyb = sety[2] - first[2]

if dxa ~= 0 and dya ~= @ and dxb ~= @ and dyb ~= @ then
sx = dxa / dxb ; if sx < @ then sx = - sx end
dya / dyb ; if sy < @ then sy = - sy end

sy
sr = math.sqrt(sx*2 + sy*2)
dx = pathlx - sxxfirst[1]
dy = pathly - syxfirst[2]
end
end
end

local ca, cb, colorspace, steps, fractions
ca = { (prescript.sh_color_a_1 or prescript.sh_color_a or "9"):explode
cb = { (prescript.sh_color_b_1 or prescript.sh_color_b or "1"):explode

steps = tonumber(prescript.sh_step) or 1

if steps > 1 then

fractions = { prescript.sh_fraction_1 or 0 }

for i=2,steps do

fractions[i] = prescript[format(”sh_fraction_%i",i)] or (i/steps)

cali] = (prescript[format("sh_color_a_%i",i)] or "0"):explode”:"

cb[i] = (prescript[format(”sh_color_b_%i",i)] or "1"):explode

end

end

if prescript.mplib_spotcolor then
ca, cb={3 {1}

local names, pos, objref ={ 3}, -1,

local script = object.prescript:explode”\13+"

for i=#script,1,-1 do

if script[i]:find”"mplib_spotcolor” then
local t, name, value = script[i]:explode”="[2]:explode":"
value, objref, name = t[1], t[2], t[3]

if not names[name] then
pos = pos+1
names[name] = pos
names[#names+1] = name
end

t={1%

for j=1,names[name] do t[#t+1] = @ end

t[#t+1] = value

tableinsert(#ca == #cb and ca or cb, t)

end

end

for _,t in ipairs{ca,cb} do
for _,tt in ipairs(t) do

for i=1,#names-#tt do tt[#tt+1] = 0 end

nn

73

n,on

n,n

n,n

3
3

2230 end

2231 end

2232 if #names == 1 then

2233 colorspace = objref

2234 else

2235 colorspace = pdfetcs.clrspcs[tableconcat(names,”,”) 1]
2236 end

2237 else

2238 local model = @

2239 for _,t in ipairs{ca,cb} do

2240 for _,tt in ipairs(t) do

2241 model = model > #tt and model or #tt

2242 end

2243 end

2244 for _,t in ipairs{ca,cb} do

2245 for _,tt in ipairs(t) do

2246 if #tt < model then

2247 color_normalize(model == 4 and {1,1,1,1} or {1,1,1},tt)
2248 end

2249 end

2250 end

2251 colorspace = model == 4 and "/DeviceCMYK"

2252 or model == 3 and "/DeviceRGB"

2253 or model == 1 and "/DeviceGray”

2254 or err"unknown color model”

2255 end

2256 if sh_type == "linear"” then

2257 local coordinates = format("%f %f %f %f",

2258 dx + sx*centera[1], dy + syxcentera[2],

2259 dx + sx*centerb[1], dy + syxcenterb[2])

2260 shade_no = sh_pdfpageresources(2,domain,colorspace,ca,cb,coordinates, steps, fractions)
2261 elseif sh_type == "circular” then

2262 local factor = prescript.sh_factor or 1

2263 local radiusa = factor * prescript.sh_radius_a

2264 local radiusb = factor * prescript.sh_radius_b

2265 local coordinates = format("%f %f %f %f %f %f",

2266 dx + sx*centera[1], dy + syxcentera[2], srxradiusa,
2267 dx + sx*centerb[1], dy + syxcenterb[2], srxradiusb)
2268 shade_no = sh_pdfpageresources(3,domain,colorspace,ca,cb,coordinates, steps, fractions)
2269 else

2270 err”unknown shading type"

2271 end

2272 end

2273 return shade_no, prescript.sh_stroking == "yes"

2274 end

2275 end

2276

Shading Patterns: we can apply shading to textual pictures as well as paths.

74

2277 if not pdfmode then

2278 pdfetcs.patternresources = {}

2279 end

2280 local function add_pattern_resources (key, val)
2281 if pdfmanagement then

2282 texsprint {

2283 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Pattern}{", key, "}", val, "}"
2284 }

2285 else

2286 local res = format("/%s %s", key, val)
2287 if is_defined(pdfetcs.pgfpattern) then

2288 texsprint { "\\csname ", pdfetcs.pgfpattern, "\\endcsname{", res, "}" }
2289 else

2290 pdfetcs. fallback_update_resources("Pattern”,res,"@PlibPt")

2291 if not pdfmode then

2292 tableinsert(pdfetcs.patternresources, res) -- for gather_resources()
2293 end

2294 end

2295 end

2296 end

2297 function luamplib.dolatelua (on, os)

2298 local h, v = pdf.getpos()

2299 h = format("%f", h/factor) :gsub(decimals,rmzeros)

2300 Vv = format("%f", v/factor) :gsub(decimals,rmzeros)

2301 if pdfmode then

2302 pdf.obj(on, format("<<%s/Matrix[1 @ @ 1 %s %s]>>", os, h, v))

2303 pdf.refobj(on)

2304 e€lse

2305 local shift = os:explode()

2306 if tonumber(h) ~= tonumber(shift[1]) or tonumber(v) ~= tonumber(shift[2]) then

2307 warn([[Add 'withprescript "sh_matrixshift=%s %s"”' to the picture shadingl], h, v)
2308 end

2309 end

2310 end

2311 local function do_preobj_shading (object, prescript)

2312 if not prescript or not prescript.sh_operand_type then return end

2313 local on = do_preobj_SH(object, prescript)

2314 local os = format("/PatternType 2/Shading %s", format(pdfetcs.resfmt, on))

2315 on = update_pdfobjs()

2316 if pdfmode then

2317 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(”,on,”,[[",0s,"]1) }" })
2318 else

Why @xpos @ypos do not work properly???
Anyway, this seems to be needed for proper functioning:

\pagewidth=\paperwidth
\pageheight=\paperheight
\special{papersize=\the\paperwidth, \the\paperheight}

75

2319 if is_defined"RecordProperties” then

2320 put2output(tableconcat{

2321 "\\csname tex_savepos:D\\endcsname\\RecordProperties{luamplib/getpos/",on,"}{xpos,ypos}\z
2322 \\special{pdf:put ", format(pdfetcs.resfmt, on),"” <<",os,”/Matrix[1 @ 0 1 \z

2323 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{xpos}sp} \z
2324 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{ypos}sp}\z
2325 >3

2326 19)

2327 else

2328 local shift = prescript.sh_matrixshift or "0 0"

2329 texsprint{ "\\special{pdf:put ", format(pdfetcs.resfmt, on),” <<" os,"”/Matrix[1 @ @ 1 ",shift,"]>>}" }
2330 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(”,on,"”,[[",shift,"”11) }" })

2331 end

2332 end

2333 local key, val = format("MPlibPt%s"”, on), format(pdfetcs.resfmt, on)
2334 add_pattern_resources(key,val)
2335 pdf_literalcode("/Pattern cs/%s scn”, key)

To avoid possible double execution, once by Pattern gs, once by Sh operator.
2336 prescript.sh_type = nil
2337 end
2338
Tiling Patterns

2339 pdfetcs.patterns = { _luamplib_pattern_resources_ = { } }
2340 local function gather_resources (optres, is_mask)

2341 local t, do_pattern = { }, not optres

2342 local names = {"ExtGState”,"ColorSpace”,"Shading"}

2343 if do_pattern then

2344 names[#names+1] = "Pattern”

2345 end

2346 if pdfmode then

2347 if pdfmanagement then

2348 for _,v in ipairs(names) do

2349 if 1tx.__pdf.Page.Resources[v] then

2350 t[#t+1] = format("/%s %s @ R", v, ltx.pdf.object_id("__pdf/Page/Resources/"..v))
2351 end

2352 end

2353 else

2354 local res = pdfetcs.getpageres() or ""

2355 run_tex_code[[\mplibtmptoks\expandafter{\the\pdfvariable pageresources}]]
2356 res = res .. texgettoks'mplibtmptoks’

2357 if do_pattern then return res end

2358 res = res:explode”/+"

2359 for _,v in ipairs(res) do

2360 v = v:match"*%sx(.-)%sx$"

2361 if not v:find"Pattern” and not optres:find(v) then

2362 th#ta1] = "/" v

2363 end

2364 end

76

2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

2413

end
else
if pdfmanagement then
for _,v in ipairs(names) do
run_tex_code ({
"\\mplibtmptoks\\expanded{{",
"\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/", v, "}",
"{/", v, " \\pdf_object_ref:n{__pdf/Page/Resources/", v, "}}}}",
},ccexplat)
t[#t+1] = texgettoks'mplibtmptoks'’
end
elseif is_defined(pdfetcs.pgfextgs) then
run_tex_code ({
"\\mplibtmptoks\\expanded{{",
"\\ifpgf@sys@pdf@extgs@exists /ExtGState @pgfextgs\\fi",
"\\ifpgf@sys@pdf@colorspaces@exists /ColorSpace @pgfcolorspaces\\fi",
do_pattern and "\\ifpgf@sys@pdf@patterns@exists /Pattern @pgfpatterns \\fi"” or "",
"1,
3}, catatl1)
t[#t+1] = texgettoks'mplibtmptoks’
if pdfetcs.resadded.Shading then
t[#t+1] = format("/Shading %s", pdfetcs.resadded.Shading)
end
else
for _,v in ipairs(names) do
local vv = pdfetcs.resadded[v]
if vv then
t[#t+1] = format("/%s %s", v, vv)
end
end
end
end
if do_pattern then return tableconcat(t) end
-- get pattern resources
local mytoks
if pdfmanagement then
run_tex_code ({
"\\mplibtmptoks\\expanded{{",
"\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/Pattern}”,
"{\\pdfdict_use:n{g__pdf_Core/Page/Resources/Pattern}}”, "}}",
},ccexplat)
mytoks = texgettoks”mplibtmptoks”
if not pdfmode then
mytoks = mytoks:gsub("\\str_convert_pdfname:n%s*{(.-)}","%1") -- why not expanded?
end
elseif is_defined(pdfetcs.pgfextgs) then
if pdfmode then
mytoks = get_macro”pgf@sys@pgf@resource@list@patterns”
else

77

nn

2414 local tt, abc = {3}, get_macro”pgfutil@abc” or

2415 for v in abc:gmatch"@pgfpatterns%s*<<(.-)>>" do
2416 ttl#tt+1] = v

2417 end

2418 mytoks = tableconcat(tt)

2419 end

2420 e€lse

2421 local tt = pdfmode and pdfetcs.Pattern_res or pdfetcs.patternresources
2422 mytoks = tt and tableconcat(tt)

2423 end

2424 1if mytoks and mytoks ~= "" then

2425 if is_mask then -- glitch with acrobat

2426 local res, tt = pdfetcs.patterns._luamplib_pattern_resources_, { }
2427 for _,item in ipairs(mytoks:explode"/") do
2428 if not res[item:match”*%sx(.-)%s*$"] then
2429 tt[#tt+1] = item

2430 end

2431 end

2432 mytoks = tableconcat(tt,”/")

2433 end

2434 t[#t+1] = format("/Pattern<<%s>>" mytoks)
2435 end

2436 return tableconcat(t)

2437 end

2438 function luamplib.registerpattern (boxid, name, opts)

2439 local box = texgetbox(boxid)

2440 local wd = format("%.3f",box.width/factor)

2441 local hd = format("#%.3f", (box.height+box.depth)/factor)

2442 info("w/h/d of pattern '%s': %s 0", name, format("%s %s",wd, hd):gsub(decimals,rmzeros))
2443 1if opts.xstep == @ then opts.xstep = nil end

2444 1if opts.ystep == @ then opts.ystep = nil end

2445 1if opts.colored == nil then

2446 opts.colored = opts.coloured

2447 if opts.colored == nil then

2448 opts.colored = true

2449 end

2450 end

2451 1if type(opts.matrix) == "table"” then opts.matrix = tableconcat(opts.matrix,” ") end

2452 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox,” ") end
2453 if opts.matrix and opts.matrix:find"%a" then

2454 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2455 process(data, "@mplibtransformmatrix”)
2456 local t = luamplib.transformmatrix

2457 opts.matrix = format("%f %f %f %f", t[11, t[2], t[3]1, t[4])
2458 opts.xshift = opts.xshift or format("%f",t[5])
2459 opts.yshift = opts.yshift or format("%f",t[6]1)

2460 end
2461 local attr = {
2462 "/Type/Pattern”,

78

2463 "/PatternType 1",

2464 format("/PaintType %i", opts.colored and 1 or 2),

2465 "/TilingType 2",

2466 format("/XStep %s", opts.xstep or wd),

2467 format("/YStep %s", opts.ystep or hd),

2468 format("/Matrix[%s %s %s1", opts.matrix or "1 @ @ 1", opts.xshift or @, opts.yshift or 9),
2469 }

2470 local optres = opts.resources or
2471 optres = optres .. gather_resources(optres)
2472 local patterns = pdfetcs.patterns

2473 if pdfmode then

2474 if opts.bbox then

nn

2475 attr[#attr+1] = format("/BBox[%s]", opts.bbox)

2476 end

2477 attr = tableconcat(attr) :gsub(decimals,rmzeros)

2478 local index = tex.saveboxresource(boxid, attr, optres, true, opts.bbox and 4 or 1)
2479 patterns[name] = { id = index, colored = opts.colored }

2480 else

2481 local cnt = #patterns + 1

2482 local objname = "@mplibpattern” .. cnt

2483 local metric = format("bbox %s", opts.bbox or format(”@ @ %s %s",wd,hd))
2484 texsprint {

2485 "\\expandafter\\newbox\\csname luamplib.patternbox.”, cnt, "\\endcsname”,
2486 "\\global\\setbox\\csname luamplib.patternbox.”, cnt, "\\endcsname",
2487 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",

2488 "\\special{pdf:bcontent}"”,

2489 "\\special{pdf:bxobj ", objname, " ", metric, "}",

2490 "\\raise\\dp\\csname luamplib.patternbox.”, cnt, "\\endcsname",

2491 "\\box\\csname luamplib.patternbox.”, cnt, "\\endcsname",

2492 "\\special{pdf:put @resources <<", optres, ">>}",

2493 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",

2494 "\\special{pdf:econtent}}",

2495 }

2496 patterns[cnt] = objname

2497 patterns[name] = { id = cnt, colored = opts.colored }

2498 end

2499 end

2500

2501 local do_preobj_PAT

2502 do

2503 local function pattern_colorspace (cs)
2504 local on, new = update_pdfobjs(format("”[/Pattern %s]", cs))

2505 if new then

2506 local key, val = format("MP1libCS%i",on), format(pdfetcs.resfmt,on)

2507 if pdfmanagement then

2508 texsprint {

2509 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ColorSpace}{", key, "}", val, "}"
2510 }

2511 else

79

2512 local res = format("/%s %s", key, val)

2513 if is_defined(pdfetcs.pgfcolorspace) then

2514 texsprint { "\\csname ", pdfetcs.pgfcolorspace, "\\endcsname{", res, "}" }
2515 else

2516 pdfetcs. fallback_update_resources("”ColorSpace”,res,"@P1ibCS")

2517 end

2518 end

2519 end

2520 return on

2521 end

2522 function do_preobj_PAT(object, prescript)

2523 local name = prescript and prescript.mplibpattern

2524 if not name then return end

2525 local patterns = pdfetcs.patterns

2526 local patt = patterns[name]

2527 local index = patt and patt.id or err(”cannot get pattern object '%s'"”, name)

2528 local key = format("MPlibPt%s",index)
2529 if patt.colored then

2530 pdf_literalcode("/Pattern cs /%s scn”, key)

2531 else

2532 local color = prescript.mpliboverridecolor

2533 if not color then

2534 local t = object.color

2535 color = t and #t>0 and luamplib.colorconverter(t)

2536 end

2537 if not color then return end

2538 local cs

2539 if color:find” cs " or color:find"@pdf.obj" then

2540 local t = color:explode()

2541 if pdfmode then

2542 cs = format("%s @ R”, ltx.pdf.object_id(t[1]:sub(2,-1)))
2543 color = t[3]

2544 else

2545 cs = t[2]

2546 color = t[3]:match"%[(.+)%]"

2547 end

2548 else

2549 local t = colorsplit(color)

2550 cs = #t == 4 and "/DeviceCMYK" or #t == 3 and "/DeviceRGB" or "/DeviceGray"
2551 color = tableconcat(t,” ")

2552 end

2553 pdf_literalcode("”/MP1ibCS%i cs %s /%s scn”, pattern_colorspace(cs), color, key)
2554 end

2555 if not patt.done then

2556 local val = pdfmode and format("%s @ R",index) or patterns[index]
2557 add_pattern_resources(key,val)

2558 patterns._luamplib_pattern_resources_[format("%s %s",key,val)] = true -- glitch with acrobat
2559 end

2560 patt.done = true

80

2561 end
2562 end
2563

Fading

2564 pdfetcs.fading = { }

2565 local function do_preobj_FADE (object, prescript)

2566 local fd_type = prescript and prescript.mplibfadetype
2567 local fd_stop = prescript and prescript.mplibfadestate
2568 if not fd_type then

2569 return fd_stop -- returns "stop” (if picture) or nil
2570 end

2571 local on, 0s, new

2572 if fd_type == "masking” then

2573 local mac = get_macro("luamplib.group.”..prescript.mplibmaskname)

2574 on = mac:match(pdfmode and "%d+" or "{pdf:uxobj (.-)}")

2575 os = format("<</SMask<</S/Luminosity/G %s>>>>" pdfmode and format(pdfetcs.resfmt, on) or on)
2576 else

n,.n

2577 local bbox = prescript.mplibfadebbox:explode”:
2578 local dx, dy = -bbox[1], -bbox[2]

2579 local vec = prescript.mplibfadevector; vec = vec and vec:explode”:"

2580 if not vec then

2581 if fd_type == "linear"” then

2582 vec = {bbox[1], bbox[2], bbox[3], bbox[2]} -- left to right

2583 else

2584 local centerx, centery = (bbox[1]+bbox[3])/2, (bbox[2]+bbox[4]1)/2
2585 vec = {centerx, centery, centerx, centery} -- center for both circles
2586 end

2587 end

2588 local coords = { vec[1]+dx, vec[2]+dy, vec[3]+dx, vec[4]+dy }
2589 if fd_type == "linear"” then

2590 coords = format("%f %f %f %f", tableunpack(coords))

2591 elseif fd_type == "circular” then

2592 local width, height = bbox[3]-bbox[1], bbox[4]-bbox[2]

2593 local radius = (prescript.mplibfaderadius or "@:"..math.sqrt(width*2+height*2)/2):explode”:"
2504 tableinsert(coords, 3, radius[1])

2595 tableinsert(coords, radius[2])

2596 coords = format("%f %f %f %f %f %f", tableunpack(coords))

2597 else

2598 err("unknown fading method '%s'", fd_type)

2599 end

2600 fd_type = fd_type == "linear” and 2 or 3

2601 local opaq = (prescript.mplibfadeopacity or "1:0"):explode”:"
2602 on = sh_pdfpageresources(fd_type, "0 1", "/DeviceGray”, {{opaq[1]1}}, {{opaq[2]1}}, coords, 1)
2603 os = format("<</PatternType 2/Shading %s>>", format(pdfetcs.resfmt, on))

2604 on = update_pdfobjs(os)

2605 bbox = format(”0 @ %f %f", bbox[3]+dx, bbox[4]+dy)

2606 local streamtext = format("q /Pattern cs/MPlibFd%s scn %s re f Q", on, bbox)

2607 :gsub(decimals, rmzeros)

81

2608 os = format("<</Pattern<</MPlibFd%s %s>>>>", on, format(pdfetcs.resfmt, on))
2609 on = update_pdfobjs(os)

2610 local resources = format(pdfetcs.resfmt, on)

2611 on = update_pdfobjs”<</S/Transparency/CS/DeviceGray>>"
2612 local attr = tableconcat{

2613 "/Subtype/Form”,

2614 "/BBox[", bbox, "1",

2615 "/Matrix[1 @ @ 1 ", format("%f %f", -dx,-dy), "1",
2616 "/Resources ", resources,

2617 "/Group ", format(pdfetcs.resfmt, on),

2618 } :gsub(decimals,rmzeros)

2619 on = update_pdfobjs(attr, streamtext)

2620 os = format("<</SMask<</S/Luminosity/G %s>>>>" format(pdfetcs.resfmt, on))
2621 end

2622 on, new = update_pdfobjs(os)

2623 local key = add_extgs_resources(on,new)
2624 start_pdf_code()

2625 pdf_literalcode("/%s gs", key)

2626 if fd_stop then return "standalone” end
2627 return "start”

2628 end

2629

Transparency Group

2630 pdfetcs.tr_group = { shifts = { } }

2631 luamplib. trgroupshifts = pdfetcs.tr_group.shifts
2632 local function do_preobj_GRP (object, prescript)
2633 local grstate = prescript and prescript.gr_state
2634 1if not grstate then return end

2635 local trgroup = pdfetcs.tr_group

2636 if grstate == "start” then

2637 trgroup.name = prescript.mplibgroupname or "lastmplibgroup”
2638 trgroup.isolated, trgroup.knockout = false, false

2639 for _,v in ipairs(prescript.gr_type:explode”,+") do

2640 trgrouplv] = true

2641 end

2642 trgroup.bbox = prescript.mplibgroupbbox:explode”:"

2643 put2output[[\begingroup\setbox\mplibscratchbox\hbox\bgroup\luamplibtagasgroupset]]
2644 elseif grstate == "stop” then

2645 local 11x,1ly,urx,ury = tableunpack(trgroup.bbox)

2646 put2output(tableconcat{

2647 "\\egroup”,

2648 format("\\wd\\mplibscratchbox %fbp"”, urx-11x),
2649 format("\\ht\\mplibscratchbox %fbp"”, ury-1ly),
2650 "\\dp\\mplibscratchbox opt”,

2651 b

2652 local on = update_pdfobjs(format("<</S/Transparency/I %s/K %s>>", trgroup.isolated,trgroup.knockout))
2653 local grattr = format("/Group %s", pdfetcs.resfmt:format(on))
2654 local res = gather_resources()

82

2655 local bbox = format("%f %f %f %f", 11x,lly,urx,ury) :gsub(decimals,rmzeros)

2656 if pdfmode then

2657 put2output(tableconcat{

2658 "\\saveboxresource type 2 attr{/Type/XObject/Subtype/Form/FormType 1",

2659 "/BBox[", bbox, "1", grattr, "} resources{", res, "}\\mplibscratchbox”,

2660 "\\luamplibtagasgroupput{",trgroup.name,”}{",

2661 [[\setbox\mplibscratchbox\hbox{\useboxresource\lastsavedboxresourceindex}1],
2662 [[\wd\mplibscratchbox @pt\ht\mplibscratchbox @pt\dp\mplibscratchbox optl],
2663 [[\box\mplibscratchbox]],

2664 "N \endgroup”,

2665 "\\expandafter\\xdef\\csname luamplib.group.”, trgroup.name, "\\endcsname{",
2666 "\\setbox\\mplibscratchbox\\hbox{\\hskip”,-11x, "bp\\raise”,-11y, "bp\\hbox{",
2667 "\\useboxresource \\the\\lastsavedboxresourceindex”,

2668 "IN\ \wd\\mplibscratchbox”,urx-11x, "bp\\ht\\mplibscratchbox",ury-1ly, "bp",
2669 "\\box\\mplibscratchbox}",

2670 »

2671 else

2672 trgroup.cnt = (trgroup.cnt or @) + 1

2673 local objname = format("@mplibtrgr%s”, trgroup.cnt)

2674 put2output(tableconcat{

2675 "\\special{pdf:bxobj ", objname, " bbox ", bbox, "}",

2676 "\\unhbox\\mplibscratchbox"”,

2677 "\\special{pdf:put @resources <<", res, ">>}",

2678 "\\special{pdf:exobj <<", grattr, ">>}",

2679 "\\luamplibtagasgroupput{",trgroup.name,”}{",

2680 "\\special{pdf:uxobj ", objname, "}",

2681 "N \endgroup”,

2682)

2683 token.set_macro("luamplib.group.”..trgroup.name, tableconcat{

2684 "\\setbox\\mplibscratchbox\\hbox{\\hskip”,-11x, "bp\\raise”,-11y, "bp\\hbox{",
2685 "\\special{pdf:uxobj ", objname, "}",

2686 "I\ \wd\\mplibscratchbox",urx-11x, "bp\\ht\\mplibscratchbox"”,ury-1ly, "bp",
2687 "\\box\\mplibscratchbox",

2688 }, "global)

2689 end

2690 trgroup.shifts[trgroup.name] = { 11x, 1ly }

2691 end

2692 return grstate

2693 end

2694 function luamplib.registergroup (boxid, name, opts)

2695 local box = texgetbox(boxid)

2606 local wd, ht, dp = node.getwhd(box)

2697 local is_mask = opts.asgroup and opts.asgroup:find”masking"

2698 local res = opts.resources or ""

2609 res = res .. gather_resources(res, is_mask) -- glitch on masking with acrobat

2700 local attr = { "/Type/XObject/Subtype/Form/FormType 1" }

2701 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix,” ") end
2702 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox,” ") end

2703 if opts.matrix and opts.matrix:find"%a"” then

33

2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752

local data = format("mplibtransformmatrix(%s);",opts.matrix)
process(data, "@mplibtransformmatrix”)
opts.matrix = format("%f %f %f %f %f %f",tableunpack(luamplib.transformmatrix))
end
local grtype = 3
if opts.bbox then
attr[#attr+1] = format("/BBox[%s]", opts.bbox)
grtype = 2
end
local mpllx, mplly = get_macro'MPllx’', get_macro’'MPlly’
if is_mask then
local t = opts.matrix and opts.matrix:explode() or {1, 9, 0, 1, 0, 0}
t[5], t[6] = t[5]+mpllx, t[6]+mplly
opts.matrix = format("%f %f %f %f %f %f",tableunpack(t))
mpllx, mplly = @, @
end
if opts.matrix then
attrl#attr+1] = format("/Matrix[%s]", opts.matrix)
grtype = opts.bbox and 4 or 1
end
if opts.asgroup then
local t = { isolated = false, knockout = false, masking = false }
for _,v in ipairs(opts.asgroup:explode”,+") do t[v] = true end
local on
if t.masking then
on = update_pdfobjs"<</S/Transparency/CS/DeviceGray>>"
else
on = update_pdfobjs(format("<</S/Transparency/I %s/K %s>>", t.isolated, t.knockout))
end
attr[#attr+1] = format("/Group %s", pdfetcs.resfmt:format(on))
end
local trgroup = pdfetcs.tr_group
trgroup.shifts[name] = { mpllx, mplly }
local whd
if pdfmode then
attr = tableconcat(attr) :gsub(decimals,rmzeros)
local index = tex.saveboxresource(boxid, attr, res, true, grtype)
token.set_macro("luamplib.group.”. .name, tableconcat{
"\\useboxresource ", index,
}, "global™)
whd = format("%.3f %.3f 0", wd/factor, (ht+dp)/factor) :gsub(decimals,rmzeros)
else
trgroup.cnt = (trgroup.cnt or @) + 1
local objname = format("@mplibtrgr%s”, trgroup.cnt)
texsprint {
"\\expandafter\\newbox\\csname luamplib.groupbox.”, trgroup.cnt, "\\endcsname”,
"\\global\\setbox\\csname luamplib.groupbox."”, trgroup.cnt, "\\endcsname",
"\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
"\\special{pdf:bcontent}",

34

2753 "\\special{pdf:bxobj ", objname, " width ", wd, "sp height ", ht, "sp depth ", dp, "sp}",

2754 "\\unhbox\\csname luamplib.groupbox."”, trgroup.cnt, "\\endcsname”,
2755 "\\special{pdf:put @resources <<", res, ">>}",

2756 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",

2757 "\\special{pdf:econtent}}",

2758 3

2759 token.set_macro(”luamplib.group.”..name, tableconcat{

2760 "\\setbox\\mplibscratchbox\\hbox{\\special{pdf:uxobj ", objname, "3}}",
2761 "\\wd\\mplibscratchbox ", wd, "sp”,

2762 "\\ht\\mplibscratchbox ", ht, "sp",

2763 "\\dp\\mplibscratchbox ", dp, "sp”,

2764 "\\box\\mplibscratchbox",

2765 1, “global“)
2766 whd = format("%.3f %.3f %.3f", wd/factor, ht/factor, dp/factor) :gsub(decimals,rmzeros)
2767 end
2768 info("w/h/d of group '%s': %s", name, whd)
2769 end
2770
luamplib.convert: flushing figures

2771 do
2772 local function stop_special_effects(fade,opaq,over)
2773 if fade then -- fading

2774 stop_pdf_code()

2775 end

2776 if opag then -- opacity

2777 pdf_literalcode(opaq)

2778 end

2779 if over then -- color

2780 if over:find"pdf:bc” then

2781 put2output”\\special{pdf:ec}"”
2782 else

2783 put2output”\\special{color pop}"
2784 end

2785 end

2786 end

2787

For parsing prescript materials.

2788 local function script2table(s)
2789 local t = {}
2790 for _,i in ipairs(s:explode("\13+")) do

2791 local k,v = i:match("(.-)=(.*)") -- v may contain = or empty.
2792 if k and v and k ~= "" and not t[k] then

2793 tlk]l = v

2794 end

2795 end

2796 return t

2797 end

2798

35

Codes below to insert PDF lieterals are mostly from ConTgXt general, with small changes when
needed.

2799 local function pdf_textfigure(font,size,text,width,height,depth)

2800 text = text:gsub("."”,function(c)
2801 return format("\\hbox{\\char%i}",string.byte(c)) -- kerning happens in metapost : false
2802 end)

2803 put2output("\\mplibtextext{%sH{%f H{%sIH{%sH%s}", font,size,text,0,0)
2804 end

2805

2806 local bend_tolerance = 131/65536

2807

2808 local rx, sx, sy, ry, tx, ty, divider =1, 0, 0, 1, 0, 0, 1
2809

2810 local function pen_characteristics(object)
2811 local t = mplib.pen_info(object)
2812 rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty

2813 divider = sx*sy - rx*ry

2814 return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width
2815 end

2816

2817 local function concat(px, py) -- no tx, ty here

2818 return (sy*px-ryxpy)/divider, (sx*py-rx*px)/divider

2819 end

2820

2821 local function curved(ith,pth)

2822 local d = pth.left_x - ith.right_x

2823 if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and

2824 abs(pth.x_coord - pth.left_x - d) <= bend_tolerance then
2825 d = pth.left_y - ith.right_y

2826 if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and
2827 abs(pth.y_coord - pth.left_y - d) <= bend_tolerance then
2828 return false

2829 end

2830 end

2831 return true

2832 end

2833

2834 local function flushnormalpath(path,open)
2835 local pth, ith
2836 for i=1,#path do

2837 pth = path[i]

2838 if not ith then

2839 pdf_literalcode("%f %f m",pth.x_coord,pth.y_coord)

2840 elseif curved(ith,pth) then

2841 pdf_literalcode("%f %f %f %f %f %f c",

2842 ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)
2843 else

2844 pdf_literalcode("%f %f 1",pth.x_coord,pth.y_coord)

2845 end

86

2846 ith = pth

2847 end

2848 if not open then

2849 local one = path[1]

2850 if curved(pth,one) then

2851 pdf_literalcode("%f %f %f %f %f %f c",

2852 pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)
2853 else

2854 pdf_literalcode("%f %f 1",one.x_coord,one.y_coord)
2855 end

2856 elseif #path == 1 then -- special case .. draw point
2857 local one = path[1]

2858 pdf_literalcode("%f %f 1",one.x_coord,one.y_coord)
2859 end

2860 end

2861

2862 local function flushconcatpath(path,open)

2863 pdf_literalcode("%f %f %f %f %f %f cm”, sx, rx, ry, sy, tx ,ty)
2864 local pth, ith

2865 for i=1,#path do

2866 pth = path[i]

2867 if not ith then

2868 pdf_literalcode("%f %f m",concat(pth.x_coord,pth.y_coord))
2869 elseif curved(ith,pth) then

2870 local a, b = concat(ith.right_x,ith.right_y)

2871 local c, d = concat(pth.left_x,pth.left_y)

2872 pdf_literalcode("%f %f %f %f %f %f c”,a,b,c,d,concat(pth.x_coord, pth.y_coord))
2873 else

2874 pdf_literalcode("%f %f 1", concat(pth.x_coord, pth.y_coord))
2875 end

2876 ith = pth

2877 end

2878 if not open then

2879 local one = path[1]

2880 if curved(pth,one) then

2881 local a, b = concat(pth.right_x,pth.right_y)

2882 local c, d = concat(one.left_x,one.left_y)

2883 pdf_literalcode("%f %f %f %f %f %f c”,a,b,c,d,concat(one.x_coord, one.y_coord))
2884 else

2885 pdf_literalcode("%f %f 1",concat(one.x_coord,one.y_coord))
2886 end

2887 elseif #path == 1 then -- special case .. draw point

2888 local one = path[1]

2889 pdf_literalcode("%f %f 1",concat(one.x_coord,one.y_coord))
2890 end

2891 end

2892

Finally, flush figures by inserting PDF literals.

37

2893 local function flush (result,flusher)

2894 if result then

2895 local figures = result.fig

2896 if figures then

2897 for f=1, #figures do

2898 info("flushing figure %s",f)

2899 local figure = figures[f]

2900 local objects = figure:objects()

2901 local fignum = tonumber(figure:filename():match("([%d]+)$") or figure:charcode() or @)
2902 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false

2903 local bbox = figure:boundingbox()

2904 local 11x, 1ly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than unpack
2905 if urx < 11x then

luamplib silently ignores this invalid figure for those that do not contain beginfig ... endfig.

(issue #70) Original code of ConTgXt general was:

2906

-- invalid
pdf_startfigure(fignum,0,0,0,0)
pdf_stopfigure()

else

For legacy behavior, insert ‘pre-fig’ TgX code here.

2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917

if tex_code_pre_mplib[f] then
put2output(tex_code_pre_mplib[f])
end
pdf_startfigure(fignum,1lx,1ly,urx,ury)
start_pdf_code()
if objects then
local savedpath = nil
local savedhtap = nil
for o=1,#objects do
local object = objects[o]
local objecttype = object.type

The following 10 lines are part of btex. . .etex patch. Again, colors are processed at this stage.

2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931

local prescript = object.prescript
prescript = prescript and script2table(prescript) -- prescript is now a table
local cr_over = do_preobj_CR(object,prescript) -- color
local tr_opagq = do_preobj_TR(object,prescript) -- opacity
local fading_ = do_preobj_FADE(object,prescript) -- fading
local trgroup = do_preobj_GRP(object,prescript) -- transparency group
local pattern_ = do_preobj_PAT(object,prescript) -- tiling pattern
local shading_ = do_preobj_shading(object,prescript) -- shading pattern
if prescript and prescript.mplibtexboxid then
put_tex_boxes(object,prescript)
elseif objecttype == "start_bounds” or objecttype == "stop_bounds” then --skip
elseif objecttype == "start_clip” then
local evenodd = not object.istext and object.postscript == "evenodd"
start_pdf_code()

88

2932
2933
2934
2935
2936
2937

flushnormalpath(object.path, false)
pdf_literalcode(evenodd and "Wx n" or "W n")
elseif objecttype == "stop_clip” then
stop_pdf_code()
miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
elseif objecttype == "special” then

Collect TgX codes that will be executed after flushing. Legacy behavior.

2938
2939
2940
2041
2042
2943
2944
2945
2946
2947
2948
2949
2950
2951
2052
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970

if prescript and prescript.postmplibverbtex then
figcontents.post[#figcontents.post+1] = prescript.postmplibverbtex
end
elseif objecttype == "text" then
local ot = object.transform -- 3,4,5,6,1,2
start_pdf_code()
pdf_literalcode("%f %f %f %f %f %f cm”,ot[3],0t[4],0t[5],0t[6],0t[1],0t[2])
pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)
stop_pdf_code()
elseif not trgroup and fading_ ~= "stop” then
local evenodd, collect, both = false, false, false
local postscript = object.postscript
if not object.istext then

if postscript == "evenodd” then
evenodd = true
elseif postscript == "collect” then

collect = true
elseif postscript == "both" then
both = true
elseif postscript == "eoboth” then
evenodd = true
both = true
end
end
if collect then
if not savedpath then
savedpath = { object.path or false }
savedhtap = { object.htap or false }
else
savedpath[#savedpath+1] = object.path or false
savedhtap[#savedhtap+1] = object.htap or false
end
else

Removed from ConTgXt general: color stuff.

2971
2972
2973
2974
2975
2976
2977

local ml = object.miterlimit

if ml and ml ~= miterlimit then
miterlimit = ml
pdf_literalcode("%f M",ml)

end

local 1j = object.linejoin

if 1j and 1j ~= linejoin then

39

2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010

3011

Added : shading

3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

linejoin = 1j
pdf_literalcode("%i j",1j)

end

local 1lc = object.linecap

if 1c and 1lc ~= linecap then
linecap = 1c
pdf_literalcode("%i J",1c)

end

local dl = object.dash

if dl then
local d = format("[%s] %f d”,tableconcat(dl.dashes or {},” "),dl.offset)
if d ~= dashed then

dashed = d
pdf_literalcode(dashed)
end

elseif dashed then
pdf_literalcode("[]1 @ d")
dashed = false
end
local path = object.path
local transformed, penwidth = false, 1
local open = path and path[1].left_type and path[#path].right_type
local pen = object.pen
if pen then
if pen.type == 'elliptical’ then
transformed, penwidth = pen_characteristics(object) -- boolean, value
pdf_literalcode("%f w",penwidth)
if objecttype == 'fill’' then
objecttype = 'both’
end
else -- calculated by mplib itself
objecttype = 'fill’
end
end

local shade_no, shade_stroking = do_preobj_SH(object,prescript) -- shading
if shade_no then
pdf_literalcode"q /Pattern cs”
objecttype = false
end
if transformed then
start_pdf_code()
end
if path then
if savedpath then
for i=1,#savedpath do
local path = savedpath[i]
if transformed then

90

3025 flushconcatpath(path,open)

3026 else

3027 flushnormalpath(path,open)

3028 end

3029 end

3030 savedpath = nil

3031 end

3032 if transformed then

3033 flushconcatpath(path,open)

3034 else

3035 flushnormalpath(path,open)

3036 end

3037 if objecttype == "fill" then

3038 pdf_literalcode(evenodd and "h f*" or "h ")
3039 elseif objecttype == "outline” then

3040 if both then

3041 pdf_literalcode(evenodd and "h B*" or "h B")
3042 else

3043 pdf_literalcode(open and "S" or "h S")
3044 end

3045 elseif objecttype == "both" then

3046 pdf_literalcode(evenodd and "h B*" or "h B")
3047 end

3048 end

3049 if transformed then

3050 stop_pdf_code()

3051 end

3052 local path = object.htap

How can we generate an htap object? Please let us know if you have succeeded.

3053 if path then

3054 if transformed then

3055 start_pdf_code()

3056 end

3057 if savedhtap then

3058 for i=1,#savedhtap do

3059 local path = savedhtap[i]
3060 if transformed then

3061 flushconcatpath(path,open)
3062 else

3063 flushnormalpath(path,open)
3064 end

3065 end

3066 savedhtap = nil

3067 evenodd = true

3068 end

3069 if transformed then

3070 flushconcatpath(path,open)
3071 else

91

3072 flushnormalpath(path,open)

3073 end

3074 if objecttype == "fill" then

3075 pdf_literalcode(evenodd and "h f*" or "h ")
3076 elseif objecttype == "outline” then

3077 pdf_literalcode(open and "S" or "h S")

3078 elseif objecttype == "both" then

3079 pdf_literalcode(evenodd and "h B*" or "h B")
3080 end

3081 if transformed then

3082 stop_pdf_code()

3083 end

3084 end

Added to ConTgXt general: post-object colors and shading stuff. Beware q ... Q scope.

3085 if shade_no then -- shading

3086 pdf_literalcode("W%s %s /MP1libSh%s sh Q",

3087 evenodd and "x" or "", shade_stroking and "s" or "n", shade_no)
3088 end

3089 end

3090 end

3091 if fading_ == "start"” then

3092 pdfetcs.fading.specialeffects = {fading_, tr_opaq, cr_over}
3093 elseif trgroup == "start” then

3004 pdfetcs.tr_group.specialeffects = {fading_, tr_opaq, cr_over}
3005 elseif fading_ == "stop"” then

3096 local se = pdfetcs.fading.specialeffects

3097 if se then stop_special_effects(se[1], se[2], se[3]) end
3098 elseif trgroup == "stop” then

3099 local se = pdfetcs.tr_group.specialeffects

3100 if se then stop_special_effects(se[1], se[2], se[3]) end
3101 else

3102 stop_special_effects(fading_, tr_opaq, cr_over)

3103 end

3104 if fading_ or trgroup then -- extgs resetted

3105 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
3106 end

3107 end

3108 end

3109 stop_pdf_code()

3110 pdf_stopfigure()

output collected materials to PDF, plus legacy verbatimtex code.

3111 for _,v in ipairs(figcontents) do

3112 if type(v) == "table" then

3113 texsprint”\\mplibtoPDF{"; texsprint(v[1], v[2]); texsprint”}"
3114 else

3115 texsprint(v)

3116 end

3117 end

92

3118 if #figcontents.post > @ then texsprint(figcontents.post) end
3119 figcontents = { post = { } }

3120 end

3121 end

3122 end

3123 end

3124 end

3125

3126 function luamplib.convert (result, flusher)

3127 flush(result, flusher)

3128 return true -- done
3129 end

3130 end

3131

3132 function luamplib.colorconverter (cr)

3133 local n = #cr

3134 if n == 4 then

3135 local c, m, y, k = cr[11, cr[2]1, cr[31, crl4]

3136 return format("%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K",c,m,y,k,c,m,y,k), "0 g @ G"
3137 elseif n == 3 then

3138 local r, g, b = cr[1], cr[2], cr[3]

3139 return format("%.3f %.3f %.3f rg %.3f %.3f %.3f RG",r,g,b,r,g,b), "0 g 0 G"

3140 e€lse

3141 local s = cr[1]

3142 return format("%.3f g %.3f G",s,s), "0 g 0 G"
3143 end

3144 end

2.2 TgX package

First we need to load some packages.

3145 \ifcsname ProvidesPackage\endcsname

We need BIEX 2024-06-01 as we use 1tx.pdf.object_id when pdfmanagement is loaded. But as
fp package does not accept an option, we do not append the date option.
3146 \NeedsTeXFormat{LaTeX2e}
3147 \ProvidesPackage{luamplib}
3148 [2026/02/09 v2.39.0 mplib package for LuaTeX]
3149 \f1
3150 \ifdefined\newluafunction\else
3151 \input ltluatex
3152 \fi
In DVI mode, a new XObject (mppattern, mplibgroup) must be encapsulated in an \hbox.
But this should not affect typesetting. So we use Hook mechanism provided by KIgX kernel.
In Plain, atbegshi.sty is loaded.
3153 \ifnum\outputmode=0
3154 \ifdefined\AddToHookNext
3155 \def\luamplibatnextshipout{\AddToHookNext{shipout/background}}

93

3156 \def\luamplibatfirstshipout{\AddToHook{shipout/firstpage}}

3157 \def\luamplibateveryshipout{\AddToHook{shipout/background}}

3158 \else

3159 \input atbegshi.sty

3160 \def\luamplibatnextshipout#1{\AtBeginShipoutNext{\AtBeginShipoutAddToBox{#1}}}
3161 \let\luamplibatfirstshipout\AtBeginShipoutFirst

3162 \def\luamplibateveryshipout#1{\AtBeginShipout{\AtBeginShipoutAddToBox{#1}}}
3163 \fi

3164 \fi

Loading of lua code.
3165 \directlua{require("luamplib")}
legacy commands. Seems we don’t need it, but no harm.

3166 \ifx\pdfoutput\undefined

3167 \let\pdfoutput\outputmode

3168 \fi

3169 \ifx\pdfliteral\undefined

3170 \protected\def\pdfliteral{\pdfextension literal}
3171 \fi

Set the format for METAPOST.
3172 \def\mplibsetformat#1{\directlua{luamplib.setformat("#1")}}

luamplib works in both PDF and DVI mode, but only DVIPDFMx is supported currently
among a number of DVI tools. So we output a info.

3173 \ifnum\pdfoutput>0

3174 \let\mplibtoPDF\pdfliteral

3175 \else

3176 \def\mplibtoPDF#1{\special{pdf:literal direct #13}}

3177 \ifcsname PackageInfo\endcsname

3178 \PackageInfo{luamplib}{only dvipdfmx is supported currently}

3179 \else

3180 \immediate\write-1{luamplib Info: only dvipdfmx is supported currently}
3181 \fi

3182 \fi

To make mplibcode typeset always in horizontal mode.

3183 \def\mplibforcehmode{\let\prependtomplibbox\leavevmode}
3184 \def\mplibnoforcehmode{\let\prependtomplibbox\relax}
3185 \mplibnoforcehmode

Catcode. We want to allow comment sign in mplibcode.

3186 \def\mplibsetupcatcodes{%

3187 %catcode'\{=12 %catcode'\}=12

3188 \catcode'\#=12 \catcode'*=12 \catcode'\~=12 \catcode*'_=12
3189 \catcode'\&=12 \catcode'\$=12 \catcode'\%=12 \catcode'*"M=12

3190 }
Make btex. . .etex box zero-metric.
3191 \def\mplibputtextbox#1{\vbox to @pt{\vss\hbox to @Opt{\raise\dp#1\copy#1\hss}}}

94

use Transparency Group

3192 \protected\def\usemplibgroup#1#{\usemplibgroupmain}

3193 \def\usemplibgroupmain#1{%

3194 \prependtomplibbox\hbox dir TLT\bgroup

3195 \csname luamplib.group.#1\endcsname

3196 \egroup

3197 }

3198 \protected\def\mplibgroup#1{%

3199 \begingroup

3200 \def\MP11x{0}\def\MP11ly{0}%

3201 \def\mplibgroupname{#13}%

3202 \mplibgroupgetnexttok

3203 }

3204 \def\mplibgroupgetnexttok{\futurelet\nexttok\mplibgroupbranch}
3205 \def\mplibgroupskipspace{\afterassignment\mplibgroupgetnexttok\let\nexttok= }
3206 \def\mplibgroupbranch{%

3207 \ifx [\nexttok

3208 \expandafter\mplibgroupopts

3209 \else

3210 \ifx\mplibsptoken\nexttok

3211 \expandafter\expandafter\expandafter\mplibgroupskipspace
3212 \else

3213 \let\mplibgroupoptions\empty

3214 \expandafter\expandafter\expandafter\mplibgroupmain

3215 \fi

3216 \fi

3217 }

3218 \def\mplibgroupopts[#1]1{\def\mplibgroupoptions{#1}\mplibgroupmain}
3219 \def\mplibgroupmain{\setbox\mplibscratchbox\hbox\bgroup\ignorespaces}
3220 \protected\def\endmplibgroup{\egroup

3221 \directlua{ luamplib.registergroup(

3222 \the\mplibscratchbox, '\mplibgroupname’, {\mplibgroupoptions}
3223)%

3224 \endgroup

3225 }

Patterns

3226 {\def\:{\global\let\mplibsptoken= } \: }

3227 \protected\def\mppattern#1{%

3228 \begingroup

3229 \def\mplibpatternname{#13}%

3230 \mplibpatterngetnexttok

3231}

3232 \def\mplibpatterngetnexttok{\futurelet\nexttok\mplibpatternbranch}
3233 \def\mplibpatternskipspace{\afterassignment\mplibpatterngetnexttok\let\nexttok= }
3234 \def\mplibpatternbranch{%

3235 \ifx [\nexttok

3236 \expandafter\mplibpatternopts

3237 \else

95

3238 \ifx\mplibsptoken\nexttok

3239 \expandafter\expandafter\expandafter\mplibpatternskipspace
3240 \else

3241 \let\mplibpatternoptions\empty

3242 \expandafter\expandafter\expandafter\mplibpatternmain

3243 \fi

3244 \fi

3245 }

3246 \def\mplibpatternopts[#11{%

3247 \def\mplibpatternoptions{#1}%

3248 \mplibpatternmain

3249 }

3250 \def\mplibpatternmain{%

3251 \setbox\mplibscratchbox\hbox\bgroup\ignorespaces
3252 }

3253 \protected\def\endmppattern{%

3254 \egroup

3255 \directlua{ luamplib.registerpattern(

3256 \the\mplibscratchbox, '\mplibpatternname’, {\mplibpatternoptions}
3257)}%

3258 \endgroup

3259 }

simple way to use mplib: \mpfig draw fullcircle scaled 10; \endmpfig

3260 \def\mpfiginstancename{@mpfig}

3261 \protected\def\mpfig{%

3262 \begingroup

3263 \futurelet\nexttok\mplibmpfigbranch
3264 }

3265 \def\mplibmpfigbranch{%

3266 \ifx *\nexttok

3267 \expandafter\mplibprempfig

3268 \else

3269 \ifx [\nexttok

3270 \expandafter\expandafter\expandafter\mplibgobbleoptsmpfig
3271 \else

3272 \expandafter\expandafter\expandafter\mplibmainmpfig

3273 \fi

3274 \fi

3275 }

3276 \def\mplibgobbleoptsmpfig[#1]{\mplibmainmpfig}
3277 \def\mplibmainmpfig{%

3278 \begingroup

3279 \mplibsetupcatcodes

3280 \mplibdomainmpfig

3281 }

3282 \long\def\mplibdomainmpfig#1\endmpfig{%

3283 \endgroup

3284 \directlua{

96

3285 local legacy = luamplib.legacyverbatimtex

3286 local everympfig = luamplib.everymplib["\mpfiginstancename"] or ""
3287 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"] or ""
3288 luamplib.legacyverbatimtex = false

3289 luamplib.everymplib["\mpfiginstancename"] = ""

3290 luamplib.everyendmplib["\mpfiginstancename"] = ""

3291 luamplib.process_mplibcode(

3292 "beginfig(@) "..everympfig.."” "..[===[\unexpanded{#1}]===].." "..everyendmpfig.."” endfig;",
3293 "\mpfiginstancename")

3294 luamplib.legacyverbatimtex = legacy

3295 luamplib.everymplib["\mpfiginstancename"] = everympfig

3296 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig

3297 }%

3298 \endgroup

3299 }

3300 \def\mplibprempfig#1{%

3301 \begingroup

3302 \mplibsetupcatcodes

3303 \mplibdoprempfig

3304 }

3305 \long\def\mplibdoprempfig#1\endmpfig{%

3306 \endgroup

3307 \directlua{

3308 local legacy = luamplib.legacyverbatimtex

3309 local everympfig = luamplib.everymplib["\mpfiginstancename"]

3310 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"]
3311 luamplib.legacyverbatimtex = false

3312 luamplib.everymplib["\mpfiginstancename"] = ""

3313 luamplib.everyendmplib["\mpfiginstancename"] = ""

3314 luamplib.process_mplibcode([===[\unexpanded{#1}]===1, "\mpfiginstancename")
3315 luamplib.legacyverbatimtex = legacy

3316 luamplib.everymplib["\mpfiginstancename"] = everympfig

3317 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3318 }%

3319 \endgroup

3320 }

3321 \protected\def\endmpfig{endmpfig}
The Plain-specific stuff.

3322 \unless\ifcsname ver@luamplib.sty\endcsname

3323 \def\mplibcodegetinstancename[#1]{\xdef\currentmpinstancename{#1}\mplibcodeindeed}
3324 \protected\def\mplibcode{%

3325 \begingroup

3326 \futurelet\nexttok\mplibcodebranch

3327 }

3328 \def\mplibcodebranch{%

3329 \ifx [\nexttok

3330 \expandafter\mplibcodegetinstancename

3331 \else

97

3332 \global\let\currentmpinstancename\empty

3333 \expandafter\mplibcodeindeed
3334 \fi
3335 }

3336 \def\mplibcodeindeed{%

3337 \begingroup

3338 \mplibsetupcatcodes

3339 \mplibdocode

3340 }

3341 \long\def\mplibdocode#1\endmplibcode{%

3342 \endgroup

3343 \directlua{luamplib.process_mplibcode([===[\unexpanded{#1}]===], "\currentmpinstancename")}%
3344 \endgroup

3345
3346 \protected\def\endmplibcode{endmplibcode}
3347 \else

The BIEX-specific part: a new environment.
3348 \newenvironment{mplibcode}[11[1{%

3349 \xdef\currentmpinstancename{#13}%
3350 \mplibtmptoks{}\1txdomplibcode
3351 M}

3352 \def\ltxdomplibcode{%

3353 \begingroup

3354 \mplibsetupcatcodes

3355 \1txdomplibcodeindeed

3356}

3357 \def\mplib@mplibcode{mplibcode}

3358 \long\def\ltxdomplibcodeindeed#1\end#2{%
3359 \endgroup

3360 \mplibtmptoks\expandafter{\the\mplibtmptoks#1}%
3361 \def\mplibtemp@a{#2}%

3362 \ifx\mplib@mplibcode\mplibtemp@a

3363 \directlua{luamplib.process_mplibcode([===[\the\mplibtmptoks]===],"\currentmpinstancename”)}%
3364 \end{mplibcode}%

3365 \else

3366 \mplibtmptoks\expandafter{\the\mplibtmptoks\end{#2}}%

3367 \expandafter\1ltxdomplibcode

3368 \fi

3369 }

3370 \fi

User settings.

3371 \def\mplibshowlog#1{\directlua{
3372 local s = string.lower("#1")

3373 if s == "enable” or s == "true” or s == "yes" then
3374 luamplib.showlog = true

3375 else

3376 luamplib.showlog = false

3377 end

98

3378 3}
3379 \def\mpliblegacybehavior#1{\directlua{

3380 local s = string.lower("#1")

3381 if s == "enable” or s == "true” or s == "yes" then
3382 luamplib.legacyverbatimtex = true

3383 else

3384 luamplib.legacyverbatimtex = false

3385 end

3386 1}

3387 \def\mplibverbatim#1{\directlua{
3388 local s = string.lower("#1")

3389 if s == "enable” or s == "true” or s == "yes" then
3390 luamplib.verbatiminput = true

3391 else

3392 luamplib.verbatiminput = false

3393 end

3394 1}

3395 \newtoks\mplibtmptoks

\everymplib & \everyendmplib: macros resetting luamplib.every(end)mplib tables

3396 \ifcsname ver@luamplib.sty\endcsname
3397 \protected\def\everymplib{%
3398 \begingroup

3399 \mplibsetupcatcodes
3400 \mplibdoeverymplib
3401}

3402 \protected\def\everyendmplib{%
3403 \begingroup

3404 \mplibsetupcatcodes
3405 \mplibdoeveryendmplib
3406 }

3407 \newcommand\mplibdoeverymplib[2]1[1{%

3408 \endgroup

3409 \directlua{

3410 luamplib.everymplib["#1"] = [===[\unexpanded{#2}]===
3411 Y%

3412}

3413 \newcommand\mplibdoeveryendmplib[2][1{%

3414 \endgroup

3415 \directlua{

3416 luamplib.everyendmplib["#1"] = [===[\unexpanded{#2}]===]
3417 Y%

3418}

3419 \else

3420 \def\mplibgetinstancename[#1]{\def\currentmpinstancename{#13}}

3421 \protected\def\everymplib#1#{%

3422 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3423 \begingroup

3424 \mplibsetupcatcodes

99

3425 \mplibdoeverymplib

3426}

3427 \long\def\mplibdoeverymplib#1{%

3428 \endgroup

3429 \directlua{

3430 luamplib.everymplib["\currentmpinstancename”] = [===[\unexpanded{#1}]===
3431 %

3432

3433 \protected\def\everyendmplib#1#{%

3434 \ifx\empty#1\empty \mplibgetinstancename[J\else \mplibgetinstancename#1\fi
3435 \begingroup

3436 \mplibsetupcatcodes

3437 \mplibdoeveryendmplib

3438

3439 \long\def\mplibdoeveryendmplib#1{%

3440 \endgroup

3441 \directlua{

3442 luamplib.everyendmplib["\currentmpinstancename”] = [===[\unexpanded{#1}]===
3443 Y%

3444 }

3445 \fi

TgX macros for dimen/color

3446 \def\mpdim#1{ runscript(”luamplibdimen{#13}") }

3447 \def\mpcolor#1#{\domplibcolor{#13}}

3448 \def\domplibcolor#1#2{ runscript(”luamplibcolor{#1{#2}}") }
mplib’s number system. Now binary has gone away.

3449 \def\mplibnumbersystem#1{\directlua{
3450 local t = "#1"

3451 if t == "binary” then t = "decimal” end
3452 luamplib.numbersystem = t
3453 }}

Settings for .mp cache files.

3454 \def\mplibmakenocache#1{\mplibdomakenocache #1,x*,
3455 \def\mplibdomakenocache#1,{%

3456 \ifx\empty#1\empty

3457 \expandafter\mplibdomakenocache

3458 \else

3459 \ifx*#1\else

3460 \directlua{luamplib.noneedtoreplace["#1.mp"]=true}%
3461 \expandafter\expandafter\expandafter\mplibdomakenocache
3462 \fi

3463 \fi

3464 }

3465 \def\mplibcancelnocache#1{\mplibdocancelnocache #1,*,
3466 \def\mplibdocancelnocache#1,{%

3467 \ifx\empty#1\empty

3468 \expandafter\mplibdocancelnocache

100

3469 \else
3470 \ifx*x#1\else

3471 \directlua{luamplib.noneedtoreplace["#1.mp"]=false}%

3472 \expandafter\expandafter\expandafter\mplibdocancelnocache
3473 \fi

3474 \fi

3475 }

3476 \def\mplibcachedir#1{\directlua{luamplib.getcachedir("\unexpanded{#1}")}}
More user settings.

3477 \def\mplibtextextlabel#1{\directlua{
3478 local s = string.lower("#1")

3479 if s == "enable” or s == "true” or s == "yes" then
3480 luamplib.textextlabel = true

3481 else

3482 luamplib.textextlabel = false

3483 end

3484 1}

3485 \def\mplibcodeinherit#1{\directlua{
3486 local s = string.lower("#1")

3487 if s == "enable” or s == "true” or s == "yes" then
3488 luamplib.codeinherit = true

3489 else

3490 luamplib.codeinherit = false

3491 end

3492 }}

3493 \def\mplibglobaltextext#1{\directlua{
3494 local s = string.lower("#1")

3495 if s == "enable” or s == "true” or s == "yes" then
3496 luamplib.globaltextext = true

3497 else

3498 luamplib.globaltextext = false

3499 end

3500 }}

The followings are from ConTgXt general, mostly.
We use a dedicated scratchbox.

3501 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the literals.

3502 \def\mplibstarttoPDF#1#2#3#4{%

3503 \prependtomplibbox

3504 \hbox dir TLT\bgroup

3505 \xdef\MPLLx{#1}\xdef\MP11ly{#2}%

3506 \xdef\MPurx{#3}\xdef\MPury{#4}%

3507 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3508 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3509 \parskip@pt%

3510 \leftskip@pt%

3511 \parindent@pt%

101

3512 \everypar{}%

3513 \setbox\mplibscratchbox\vbox\bgroup
3514 \noindent

3515 }

3516 \def\mplibstoptoPDF{%

3517 \par

3518 \egroup %

3519 \setbox\mplibscratchbox\hbox %

3520 {\hskip-\MP11x bp%

3521 \raise-\MP1ly bp%

3522 \box\mplibscratchbox}%

3523 \setbox\mplibscratchbox\vbox to \MPheight
3524 {\vfill

3525 \hsize\MPwidth

3526 \wd\mplibscratchbox@pt%
3527 \ht\mplibscratchboxdpt%
3528 \dp\mplibscratchbox@pt%
3529 \box\mplibscratchbox}%

3530 \wd\mplibscratchbox\MPwidth
3531 \ht\mplibscratchbox\MPheight
3532 \box\mplibscratchbox

3533 \egroup

3534 F

Text items have a special handler.

3535 \def\mplibtextext#1#2#3#4#5{%
3536 \begingroup

3537 \setbox\mplibscratchbox\hbox
3538 {\font\temp=#1 at #2bp%
3539 \temp

3540 #3}%

3541 \setbox\mplibscratchbox\hbox
3542 {\hskip#4 bp%

3543 \raise#5 bp%

3544 \box\mplibscratchbox}%
3545 \wd\mplibscratchbox@pt%

3546 \ht\mplibscratchbox@pt%

3547 \dp\mplibscratchbox@pt%

3548 \box\mplibscratchbox

3549 \endgroup

3550 }

Input luamplib.cfg when it exists.

3551 \openin@=luamplib.cfg
3552 \ifeof@ \else

3553 \closein@

3554 \input luamplib.cfg
3555 \fi

Code for tagpdf

102

3556 \def\luamplibtagtextboxset#1#2{#2}

3557 \let\luamplibnotagtextboxset\luamplibtagtextboxset
3558 \let\luamplibtagasgroupset\relax

3559 \let\luamplibtagasgroupput\luamplibtagtextboxset
3560 \ifcsname SuspendTagging\endcsname\else\endinput\fi
3561 \ifcsname ver@tagpdf.sty\endcsname \else

3562 \ExplSyntaxOn

3563 \keys_define:nn{luamplib/tagging}

3564 {

3565 ,alt .code:n = { }

3566 ,actualtext .code:n = { }

3567 ,artifact .code:n ={ }

3568 ,text .code:n ={ }

3569 ,off .code:n = { }

3570 ,tag .code:n = { }

3571 ,adjust-BBox .code:n = { }

3572 ,tagging-setup .code:n = { }

3573 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#13} }
3574 ,instancename .meta:n = { instance = {#1} }

3575 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \1_keys_key_str }
3576 3

3577 \RenewDocumentCommand\mplibcode{0{3}}

3578 {

3579 \tl_gclear:N \currentmpinstancename

3580 \keys_set:ne{luamplib/tagging}{#1}

3581 \mplibtmptoks{}\1txdomplibcode

3582 3

3583 \cs_set_eq:NN \mplibalttext \use_none:n
3584 \cs_set_eq:NN \mplibactualtext \use_none:n

2025/12/05: \begin{center\mpfig ...\endmpfig\end{center} raises an Error! as we issue \everypar{}
before flushing literals out. It is related to \partokencontext=2 recently introduced by KIEX.
Why we used vbox initially? where hbox seems to be sufficient. Anyway, among various solu-
tions including \partokencontext\z@, \let\par\@epar, and \endgraf, we here attempt to address
the issue by adding the following line, which ETEX’s \everypar should have done.

3585 \tl_put_left:Nn \mplibstoptoPDF \@newlistfalse
3586 \ExplSyntaxOff

3587 \endinput\fi

3588 \ExplSyntaxOn

3589 \t1_new:N \1__luamplib_tag_envname_t1

3590 \t1_new:N \1__luamplib_tag_alt_tl

3591 \t1_new:N \1__luamplib_tag_alt_dflt_tl

3592 \t1_new:N \1__luamplib_tag_actual_tl

3593 \t1_new:N \1__luamplib_tag_struct_tl

3594 \t1_set:Nn\1__luamplib_tag_struct_tl {Figure}
3595 \bool_new:N \1__luamplib_tag_usetext_bool
3596 \bool_new:N \1__luamplib_tag_bboxcorr_bool
3597 \seq_new:N \1__luamplib_tag_bboxcorr_seq
3598 \t1_new:N \1__luamplib_tag_bbox_draw_t1

103

3599 \t1l_new:N \1__luamplib_BBox_11lx_t1

3600 \t1_new:N \1__luamplib_BBox_lly_t1

3601 \t1_new:N \1__luamplib_BBox_urx_tl

3602 \t1_new:N \1__luamplib_BBox_ury_t1

3603 \msg_new:nnn {luamplib}{figure-text-reuse}

3604 {

3605 tex-text~box~#1~probably~is~incorrectly~tagged.~
3606 Reusing~a~box~in~text~mode~is~strongly~discouraged.~
3607 Check~the~resulting~PDF.

3608 }

3609 \msg_new:nnn {luamplib}{mplibgroup-text-mode}
3610 {

3611 mplibgroup~'#1'~probably~is~incorrectly~tagged.~
3612 Using~mplibgroup~with~text~mode~is~not~recommended.~
3613 Check~the~resulting~PDF.

3614 }

3615 \msg_new:nnn{luamplib}{alt-text-missing}

3616 {

3617 Alternate~text~for~#1~is~missing.~

3618 Using~the~default~value~'#2'~instead.

3619 }

Sockets for tex-text boxes.

3620 \socket_new:nn{tagsupport/luamplib/textext/set}{2}

3621 \socket_new:nn{tagsupport/luamplib/textext/put}{2}

3622 \socket_new_plug:nnn{tagsupport/luamplib/textext/set}{default}
3623 {

TODO: we check text mode here. If we tag text boxes for all modes, we will get a lot of
structure-has-no-parent warning; no good-looking, though it seems to be no harm.

3624 \bool_if:NTF \1__luamplib_tag_usetext_bool

3625 {

3626 \tag_mc_end_push:

3627 \tag_struct_begin:n{tag=NonStruct, stash, parent-tag=text}

3628 \cs_gset_nopar:cpe {luamplib.taggedbox.#1} {\tag_get:n{struct_num}}

TODO: We force an MC. Otherwise a and b in btex a x b etex are not tagged.

3629 \tag_mc_begin:n{tag=text}

3630 #2

3631 \tag_mc_end:

3632 \tag_struct_end:

3633 \tag_mc_begin_pop:n{}

3634}

3635 {

3636 \tag_suspend:n{\luamplibtagtextboxset}
3637 #2

3638 \tag_resume:n{\luamplibtagtextboxset}
3639}

3640 }

3641 \socket_new_plug:nnn{tagsupport/luamplib/textext/put}{default}

104

3642 {

3643 \bool_lazy_and:nnTF

3644 { \1__luamplib_tag_usetext_bool }

3645 { \cs_if_free_p:c {luamplib.notaggedbox.#1} }
3646 {

3647 \tag_resume:n{\mplibputtextbox}

3648 \tag_mc_end:

3649 \cs_if_exist:cTF {luamplib.taggedbox.#13}

3650 {

3651 \exp_args:Nc \tag_struct_use_num:n {luamplib.taggedbox.#1}
3652 #2

3653 \cs_undefine:c {luamplib.taggedbox.#13}

3654 b

3655 {

3656 \msg_warning:nnn{luamplib}{figure-text-reuse}{#1}
3657 \tag_mc_begin:n{}

3658 \int_set:Nn \1_tmpa_int {#1}

3659 \tag_mc_reset_box:N \1_tmpa_int

3660 #2

3661 \tag_mc_end:

3662 }

3663 \tag_mc_begin:n{artifact}

3664)

3665 {

3666 \int_set:Nn \1_tmpa_int {#1}

3667 \tag_mc_reset_box:N \1_tmpa_int

3668 #2

3669 }

3670 }

3671 \socket_assign_plug:nn{tagsupport/luamplib/textext/set}{default}
3672 \socket_assign_plug:nn{tagsupport/luamplib/textext/put}{default}
3673 \cs_set_nopar:Npn \luamplibtagtextboxset

3674 {

3675 \tag_socket_use:nnn{luamplib/textext/set}

3676 }

For tex-text boxes starting with [taggingoff], which we will not tag at all. They will be just in
the artifact MC-chunks.

3677 \cs_set_nopar:Npn \luamplibnotagtextboxset #1 #2

3678 {

3679 \bool_set_eq:NN \1_tmpa_bool \1__luamplib_tag_usetext_bool
3680 \bool_set_false:N \1__luamplib_tag_usetext_bool

3681 \tag_socket_use:nnn{luamplib/textext/set}{#1}{#2}

3682 \cs_gset_nopar:cpn {luamplib.notaggedbox.#1}{#1}

3683 \bool_set_eq:NN \1__luamplib_tag_usetext_bool \1_tmpa_bool
3684 }

3685 \cs_set_nopar:Npn \mplibputtextbox #1

3686 {

3687 \vbox to Opt{\vss\hbox to @pt{

105

3688 \socket_use:nnn{tagsupport/luamplib/textext/put}{#13}{\raise\dp#1\copy#1}
3689 \hss}}
3690 }

TODO: Not sure whether asgroup/mplibgroup with text mode will be tagged correctly. Prob-
ably not. At least, this will raise a warning.

3691 \cs_set_nopar:Npn \luamplibtagasgroupset

3692 {

3693 \bool_set_false:N \1__luamplib_tag_usetext_bool

3694 }

3695 \cs_set_nopar:Npn \luamplibtagasgroupput

3696 {

3697 \bool_if:NT \1__luamplib_tag_usetext_bool { \tag_resume:n{\luamplibtagasgroupput} }
3698 \tag_socket_use:nnn{luamplib/mplibgroup/put}

3699 }

A socket for mplibgroup. Again, we issue a warning upon text mode.

3700 \socket_new:nn{tagsupport/luamplib/mplibgroup/put}{2}
3701 \socket_new_plug:nnn{tagsupport/luamplib/mplibgroup/put}{default}

3702 {
3703 \cs_if_free:cT {luamplib.mplibgroup.text.#1}
3704 {

3705 \msg_warning:nnn {luamplib} {mplibgroup-text-mode} {#1}

3706 \cs_gset_nopar:cpn {luamplib.mplibgroup.text.#1} {#1}

3707 }

3708 \tag_mc_end:

3709 \tag_mc_begin:n{tag=text}

3710 #2

3711 \tag_mc_end:

3712 \tag_mc_begin:n{artifact}

3713 }

3714 \socket_assign_plug:nn{tagsupport/luamplib/mplibgroup/put}{default}

A macro for BBox attribute

3715 \cs_set_nopar:Npn __luamplib_tag_bbox_attribute:n #1

3716 {

3717 \tl_set:Ne \1_tmpa_tl {luamplib.BBox.\tag_get:n{struct_num}}

3718 \tex_savepos:D

3719 \property_record:ee{\1_tmpa_t1}{xpos,ypos}

3720 \tl_set:Ne \1__luamplib_BBox_11x_t1

3721 { \dim_to_decimal_in_bp:n { \property_ref:een {\1_tmpa_t1}{xpos}{@}sp } }
3722 \tl_set:Ne \1__luamplib_BBox_1ly_t1

3723 { \dim_to_decimal_in_bp:n { \property_ref:een {\1_tmpa_t1}{ypos}{@}sp - \dp#1 } }
3724 \tl_set:Ne \1__luamplib_BBox_urx_t1l

3725 { \dim_to_decimal_in_bp:n { \1__luamplib_BBox_11lx_t1 bp + \wd#1 } }

3726 \tl_set:Ne \1__luamplib_BBox_ury_t1

3727 { \dim_to_decimal_in_bp:n { \1__luamplib_BBox_lly_tl bp + \ht#1 + \dp#1 } }
3728 \bool_if:NT \1__luamplib_tag_bboxcorr_bool

3729 {

3730 \int_zero:N \1_tmpa_int

106

3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

\tl_map_inline:nn

{
\1__luamplib_BBox_11x_t1
\1__luamplib_BBox_1ly_t1
\1__luamplib_BBox_urx_tl
\1__luamplib_BBox_ury_tl

3

{
\int_incr:N \1_tmpa_int
\tl_set:Ne ##1

{
\fp_eval:n
{
##1
"
\dim_to_decimal_in_bp:n { \seq_item:NV \1__luamplib_tag_bboxcorr_seq \1_tmpa_int }
3
3
}
}
\tag_struct_gput:ene {\tag_get:n{struct_num}} {attribute}
{

/0 /Layout /BBox [
\1__luamplib_BBox_l11x_t1\c_space_tl
\1__luamplib_BBox_1ly_t1\c_space_t1l
\1__luamplib_BBox_urx_t1\c_space_t1l
\1__luamplib_BBox_ury_t1

]

}
\bool_if:NT \1__tag_graphic_debug_bool
{

\iow_log:e

{
luamplib/tagging~debug: ~BBox~of~structure~\tag_get:n{struct_num}~is~
\1__luamplib_BBox_11x_t1\c_space_tl
\1__luamplib_BBox_1ly_t1\c_space_tl
\1__luamplib_BBox_urx_t1\c_space_t1
\1__luamplib_BBox_ury_tl

3

\sys_if_output_pdf:TF

{

\tl_set:Ne \1__luamplib_tag_bbox_draw_t1
{
\pdfextension save\relax
\opacity_select:n{0.5} \color_select:n{red}
\pdfextension literal~text
{
\1__luamplib_BBox_11x_t1\c_space_tl
\1__luamplib_BBox_1ly_t1\c_space_tl

107

3780 \fp_eval:n { \1__luamplib_BBox_urx_tl - \1__luamplib_BBox_l1lx_t1 }~

3781 \fp_eval:n { \1__luamplib_BBox_ury_tl - \1__luamplib_BBox_lly_t1 }~
3782 re~f

3783 3

3784 \pdfextension restore\relax

3785 3

3786 3

3787 {

3788 \tl_set:Ne \1__luamplib_tag_bbox_draw_t1

3789 {

3790 \special{pdf:bcontent}

3791 \opacity_select:n{0.5} \color_select:n{red}

3792 \special{pdf:code~

3793 1~0~0~1~

3794 -\dim_to_decimal_in_bp:n { \property_ref:een{\1_tmpa_t1}{xpos}{0}sp + \wd#1 }~
3795 -\dim_to_decimal_in_bp:n { \property_ref:een{\1_tmpa_t1}{ypos}{@0}sp }~
3796 cm

3797 3

3798 \special{pdf:code~

3799 \1__luamplib_BBox_11x_t1\c_space_t1

3800 \1__luamplib_BBox_1ly_t1\c_space_tl

3801 \fp_eval:n { \1__luamplib_BBox_urx_tl - \1__luamplib_BBox_l1lx_t1 }~
3802 \fp_eval:n { \1__luamplib_BBox_ury_t1l - \1__luamplib_BBox_lly_t1 3}~
3803 re~f

3804 3

3805 \special{pdf:econtent}

3806 }

3807 3

3808 }

3809 }

Sockets for main process

3810 \socket_new:nn{tagsupport/luamplib/figure/begin}{1}

3811 \socket_new:nn{tagsupport/luamplib/figure/end}{2}

3812 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{transparent}{#2}
3813 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{alt}

3814 {

3815 \tag_mc_end_push:

3816 \tl_if_empty:NT\1__luamplib_tag_alt_tl

3817 {

3818 \tl_if_empty:eTF{#1}

3819 { \tl_set:Nn \1__luamplib_tag_alt_tl {metapost~figure} }

3820 { \tl_set:Ne \1__luamplib_tag_alt_tl {metapost~figure~\text_purify:n{#13}} }
3821 \msg_warning:nnVV{luamplib}{alt-text-missing}

3822 \1__luamplib_tag_envname_t1 \1__luamplib_tag_alt_t1l

3823 b

3824 \tag_struct_begin:n

3825 {

3826 tag=\1__luamplib_tag_struct_t1,

108

3827 alt=\1__luamplib_tag_alt_tl,

3828 }
3829 \tag_mc_begin:n{}
3830 }

3831 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{alt}
3832 {

3833 __luamplib_tag_bbox_attribute:n {#1}

3834 #2

3835 \tl_use:N \1__luamplib_tag_bbox_draw_t1

3836 \tag_mc_end:

3837 \tag_struct_end:

3838 \tag_mc_begin_pop:n{}

3839 }

3840 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{actualtext}
3841 {

3842 \tag_mc_end_push:

3843 \tag_struct_begin:n

3844 {

3845 tag=Span,

3846 actualtext=\1__luamplib_tag_actual_t1,
3847 }

3848 \tag_mc_begin:n{}

3849 }

3850 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{actualtext?}
3851 {

3852 #2

3853 \tag_mc_end:

3854 \tag_struct_end:

3855 \tag_mc_begin_pop:n{}

3856 }

3857 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{artifact}
3858 {

3859 \tag_mc_end_push:

3860 \tag_mc_begin:n{artifact}

3861 }

3862 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{artifact}
3863 {

3864 #2

3865 \tag_mc_end:

3866 \tag_mc_begin_pop:n{}

3867 }

A socket for tagging init, so that we can declare \SetKeys[luamplib/taggingl{
the document.

3868 \socket_new:nn{tagsupport/luamplib/figure/init}{0}

3869 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{alt}
3870 {

3871 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{alt}
3872 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{alt}

109

...} anywhere in

3873 }

3874 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{actualtext}
3875 {

3876 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{actualtext}
3877 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{actualtext}

In vmode, hmode will be forced by \noindent upon actualtext and text modes.

3878 \prependtomplibbox \mplibnoforcehmode

3879 \mode_if_vertical:T { \noindent \aftergroup\par }

3880 }

3881 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{artifact}
3882 {

3883 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3884 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3885 }

3886 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{text}

3887 {

3888 \bool_set_true:N \1__luamplib_tag_usetext_bool

3889 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3890 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3891 \prependtomplibbox \mplibnoforcehmode

3892 \mode_if_vertical:T { \noindent \aftergroup\par }

3893 }

3894 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{off?}

3895 {

3896 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{noop}
3897 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{transparent}
3898 }

3899 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

Key-value options

3900 \keys_define:nn{luamplib/tagging}

3901 {

3902 ,alt .code:n =

3903 {

3904 \tl_set:Ne\l__luamplib_tag_alt_t1{\text_purify:n{#1}}

3905 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

3906 }
3907 ,actualtext .code:n =
3908 {

3909 \tl_set:Ne\l__luamplib_tag_actual_t1{\text_purify:n{#1}}
3910 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{actualtext}

3911}
3912 ,artifact .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{artifact} }

3913 ,text .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{text} }
3914 ,0ff .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{off} }
3915 ,tag .code:n =

3916 {

3917 \str_case:nnF {#13}

3918 {

3919 {false} { \keys_set:nn {luamplib/tagging} {off} }

3920 {artifact} { \keys_set:nn {luamplib/tagging} {artifact} }

3921 b

3922 {

3923 \tl_set:Nn\1__luamplib_tag_struct_t1{#1}

3924 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

3925 }

3926

3927 ,adjust-BBox .code:n =

3928 {

3929 \bool_set_true:N \1__luamplib_tag_bboxcorr_bool

3930 \seq_set_split:Nnn \1__luamplib_tag_bboxcorr_seq{~}{#1~0pt~0pt~Opt~0Opt}
3931

3932 ,tagging-setup .code:n = { \keys_set_known:nn {luamplib/tagging} {#1} }
3933 J

3934 \keys_define:nn {luamplib/instance}

3935 {

3936 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#13} }

3937 ,instancename .meta:n = { instance = {#1} }

3938 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \1_keys_key_str }
3939 }

Redefine our macros

3940 \cs_set_nopar:Npn \mplibstarttoPDF #1 #2 #3 #4
3941 {

3942 \prependtomplibbox

3943 \hbox dir~TLT\bgroup

3944 \tag_socket_use:nn{luamplib/figure/begin}\1__luamplib_tag_alt_dflt_tl
3945 \xdef\MP1Lx{#1}\xdef\MP11y{#2}%

3946 \xdef\MPurx{#3}\xdef\MPury{#43}%

3947 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3948 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3949 \parskipopt

3950 \leftskipopt

3951 \parindentopt

3952 \everypar{}%

3953 \setbox\mplibscratchbox\vbox\bgroup

3954 \tag_suspend:n{\mplibstarttoPDF}
3955 \noindent

3956 }

3957 \cs_set_nopar:Npn \mplibstoptoPDF
3958 {

3959 \par

3960 \egroup
3961 \setbox\mplibscratchbox\hbox

3962 {\hskip-\MP11lx bp
3963 \raise-\MP1ly bp
3964 \box\mplibscratchbox}%

3965 \setbox\mplibscratchbox\vbox to \MPheight

3966 {\vfill

3967 \hsize\MPwidth

3968 \wd\mplibscratchboxept
3969 \ht\mplibscratchbox@pt
3970 \dp\mplibscratchbox@pt
3971 \box\mplibscratchbox}%

3972 \wd\mplibscratchbox\MPwidth

3973 \ht\mplibscratchbox\MPheight

3974 \tag_socket_use:nnn{1luamplib/figure/end}{\mplibscratchbox}{\box\mplibscratchbox}
3975 \egroup

3976 }

3977 \RenewDocumentCommand\mplibcode{0{}}

3978 {

3979 \tl_set:Nn \1__luamplib_tag_envname_t1l {mplibcode}

3980 \tl_gclear:N \currentmpinstancename

3981 \keys_set_known:neN {luamplib/tagging} {#1} \1l_tmpa_tl

3982 \keys_set:nV {luamplib/instance} \1_tmpa_tl

3983 \tl_set_eq:NN \1__luamplib_tag_alt_dflt_tl \currentmpinstancename
3984 \tag_socket_use:n{luamplib/figure/init}

3985 \mplibtmptoks{}\1txdomplibcode

3986 }

3987 \RenewDocumentCommand\mpfig{s 0{}}

3988 {

3989 \begingroup

3990 \tl_set:Nn \1__luamplib_tag_envname_t1 {mpfig}

3991 \keys_set_known:ne {luamplib/tagging} {#2}

3992 \tl_set_eq:NN \1__luamplib_tag_alt_dflt_tl \mpfiginstancename
3993 \tag_socket_use:n{luamplib/figure/init}

3994 \IfBooleanTF{#1} { \mplibprempfig * }

3995 { \mplibmainmpfig }
3996 }

3997 \RenewDocumentCommand\usemplibgroup{0{} m}
3998 {

3999 \begingroup

go00 \tl_set:Nn \1__luamplib_tag_envname_t1l {usemplibgroup}

go01 \keys_set_known:ne {luamplib/tagging} {#1}

go02 \tag_socket_use:n{luamplib/figure/init}

4003 \prependtomplibbox\hbox dir~TLT\bgroup

4004 \tag_socket_use:nn{luamplib/figure/begin}{#2}

4005 \setbox\mplibscratchbox\hbox\bgroup

4006 \bool_if:NF \1__luamplib_tag_usetext_bool { \tag_suspend:n{\usemplibgroup} }

4007 \tag_socket_use:nnn{luamplib/mplibgroup/put}{#2}{\csname luamplib.group.#2\endcsname}
4008 \egroup

4009 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\unhbox\mplibscratchbox}
go10 \egroup

go11 \endgroup

4012 }

Allow setting alt/actual text within METAPOST code. Of course we can use them in TgX code as

well.

4013 \cS_new_nopar:Npn \mplibalttext #1

4014 {

4015 \tl_set:Ne \1__luamplib_tag_alt_tl {\text_purify:n{#13}}
4016 }

4017 \cS_new_nopar:Npn \mplibactualtext #1

4018 {

g019 \tl_set:Ne \1__luamplib_tag_actual_tl {\text_purify:n{#1}}

4020 }
4021 \ExplSyntax0ff

That’s all folks!

113

3 The GNU GPL License v2

The GPL requires the complete license text to be distributed along with the code. I recommend
the canonical source, instead: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. But if

you insist on an included copy, here it is. You might want to zoom in.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 021101301, USA

Everyone s permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

totake aw
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applis to most of the Free Software Foundation’s software and to
any other program whaose authors commit to using it. (Some other Free Software Foun-

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to cach and
every part regardless of who wrote it

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;

(a) Accompany it with
which must be distributed under the terms of Sections 1 and 2 above on a

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
aversion number of this License, you may choose any version ever published by the
Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally

No WARRANTY

a el v fe 12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
dation software is covered by the GNU Library General Public License instead.) You can ‘medium customarily used for software interchange; or. A
apply it to your programs, too. (b) Accompany it with a written offer, valid for at least three years, to give any e A ree I ComE TorEIe ANDon OTHiEn PANAIRS -
When we speak of free software, we are referring to freedom, not price. Our General Pub- third party, for a charge no more than your cost of physically performing oy "
i y Y VIDE THE PROGRAM "AS 1s” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
lic Licenses are designed to make sure that you have the freedom to distribute copies of source distribution, a complete machine-readable copy of the corresponding s A Y
free software (and charge for this service if you wish), that you receive source code or source code, to be distributed under the terms of Sections 1 and 2 above on a - N .
N ’ . CCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
can get it if you want it, that you can change the software or use picces of it in new frec ‘medium customarily used for software interchange; or, A R
programs; and that you know you can do Ihe?e things. (€) Accompany it with the information you received as to the offer to distribute GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
To proteet your rights, we necd to make restrictions that forbid anyone to deny you these corresponding source code. (This alternative is allowed only for noncommer- o Commeron:
rights or to ask you to surrender the rights. These restrictions translate to certain respon- cial distribution and only if you received the program in object code or exe-
sibilities for you if you distribute copies of the software, or if you modify it cutable form with such an offer,in accord with Subsection b above.) 13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
For example, if you distribute copics of such a program, whether gratis or for a fec, you ANY COPYRIGIT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
must give the recipients all the rights that you have. You must make sure that they, too, “The source code for a work means the preferred form of the work for making mod- CRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
receive or can get the source code. And you must show them these terms so they know ifications to it. For an executable work, complete source code means all the source CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
their rights. code for all modules it contains, plus any associated interface definition files, plus OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
We protect your rights with two steps: (1) copyright the software, and (2) offer you this the scripts used to control compilation and installation of the executable. However, LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
license which gives you legal permission to copy, distribute and/or modify the software. as a special exception, the source code distributed need not include anything that is OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
Also, for each author's protection and ours, we want to make certain that everyone un- normally distributed (in cither source or binary form) with the major components PROGRANS), EVEN IF SUCH HOLDER O OTHER PARTY HAS BEEN ADVISED OF THE POS-
derstands that there is no warranty for this free software. If the software is modified by (compiler, kernel, and so on) of the operating system on which the executable runs, SIBILITY OF SUCH DAMAGES.
someone else and passed on, we want its recipients to know that what they have is not the unless that component itself accompanies the executable.
°"g‘!“a‘¥' 5o that any problems introduced by others will not reflect on the original authors' If distribution of executable or object code is made by offering access to copy from END OF TERMS AND CONDITIONS
reputations. a designated place, then offering equivalent access to copy the source code from the
Finally, any free program is threatencd constantly by software patents. We wish to avoid
same place counts as distribution of the source code, even though third parties are
the danger that redistributors of a free program will individually obtain patent licenses,
: i I not compelled to copy the source along with the object code.
in effect making the program proprietary. To prevent this, we have made it clear that any Append How to Apply These Terms to Your New Programs
patent must be licensed for everyone's free use or not licensed at al 5. You may not copy, modify, sublicense, or distribute the Program except as expressly
‘The precise terms and conditions for copying, distribution and modification follow. provided under this License. Any attempt otherwise to copy, modify, sublicense or If you d new program, and you f e tothe pub-

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MoDIFICATION

“This License applies to any program o other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program’, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that i to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term “modification”)
Each licensee is addressed as “you'.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program s not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

‘You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty: keep
intact all the notices that refer to this License and to the absence of any warranty:
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

3. Youmay modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

z

You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself s interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

‘These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when

distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

You are not required to accept this License, since you have not signed it. However,

grants you permission to Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all ts terms and
conditions for copying, distributing or modifying the Program or works based on it

Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

Itis not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

‘This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among.
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

‘The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

114

lic, the best way to achieve this s to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of cach source file to most effectively convey the exclusion of warranty; and cach file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does,
Copyright (C) yyyy name of author

“This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version

Tl-m program is distributed in the hope that it will be useful, but WITHOUT

/ARRANTY; without even the implied warranty of MERCHANTABIL-
n 'Y or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details

You should have received a copy of the GNU General Public License along with
this program if not. write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program s interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
“show W'

“This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show ¢’ for details

‘The hypothetical commands shon w and shon ¢ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever s
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Contents
	1 Documentation
	1.1 TeX
	1.1.1 \mplibforcehmode
	1.1.2 \everymplib, \everyendmplib
	1.1.3 \mplibsetformat
	1.1.4 \mplibnumbersystem
	1.1.5 \mplibshowlog
	1.1.6 \mpliblegacybehavior
	1.1.7 \mplibtextextlabel
	1.1.8 \mplibcodeinherit
	1.1.9 \mplibglobaltextext
	1.1.10 Separate metapost instances
	1.1.11 \mplibverbatim
	1.1.12 \mpdim
	1.1.13 \mpcolor
	1.1.14 \mpfig, \endmpfig
	1.1.15 About cache files
	1.1.16 About figure box metric
	1.1.17 luamplib.cfg
	1.1.18 Tagged PDF

	1.2 MetaPost
	1.2.1 mplibdimen, mplibcolor
	1.2.2 mplibtexcolor, mplibrgbtexcolor
	1.2.3 withmplibcolors
	1.2.4 withtransparency
	1.2.5 withshadingmethod
	1.2.6 withfademethod
	1.2.7 mplibgraphictext
	1.2.8 mplibglyph
	1.2.9 mplibdrawglyph, and its friends
	1.2.10 mpliboutlinetext
	1.2.11 \mppattern, withmppattern
	1.2.12 asgroup
	1.2.13 \mplibgroup
	1.2.14 withmaskinggroup
	1.2.15 mpliblength, mplibuclength
	1.2.16 mplibsubstring, mplibucsubstring

	1.3 Lua
	1.3.1 runscript
	1.3.2 luamplib.instances
	1.3.3 luamplib.process_mplibcode
	1.3.4 luamplib.registerpattern
	1.3.5 luamplib.registergroup

	2 Implementation
	2.1 Lua module
	2.2 TeX package

	3 The GNU GPL License v2

